2019-2020中考数学第一次模拟试卷(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020中考数学第一次模拟试卷(附答案)
一、选择题
1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位
似图形,且相似比为1
3
,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐
标为()
A.(6,4)B.(6,2)C.(4,4)D.(8,4)
2.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
A.1 个B.2 个C.3 个D.4个
3.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数01234
人数41216171
关于这组数据,下列说法正确的是()
A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
4.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2 B.3 C.5 D.7
5.51
是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请
你估算5﹣1的值( ) A .在1.1和1.2之间
B .在1.2和1.3之间
C .在1.3和1.4之间
D .在1.4和1.5之间
6.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )
A .53
B .255
C .52
D .23
7.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若
AD=6, 则CP 的长为( )
A .3.5
B .3
C .4
D .4.5
8.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,
6,1AB AE ==,则CD 的长是( )
A .26
B .210
C .211
D .43 9.下列计算正确的是( ) A .()3473=a b a b B .()23
2482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a
10.如图,已知////AB CD EF ,那么下列结论正确的是( )
A.AD BC
DF CE
=B.BC DF
CE AD
=C.
CD BC
EF BE
=D.
CD AD
EF AF
=
11.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()
A.B.
C.
D.
12.cos45°的值等于( )
A2B.1C 3
D.
2
2
二、填空题
13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:
抽取的体检表
数n
501002004005008001000120015002000色盲患者的频
数m
37132937556985105138色盲患者的频
率m/n
0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点
E,则AD的长为____________.
15.若a ,b 互为相反数,则22a b ab +=________.
16.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm
17.使分式的值为0,这时x=_____.
18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3
=,那么tan ∠DCF 的值是____.
19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .
20.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
三、解答题
21.(问题背景)
如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.
小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)
如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由.
(学以致用)
如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边
AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .
22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.
(1)求DE 的长;
(2)求△ADB 的面积.
23.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.
(1)求证:四边形ADCE 为矩形;
(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明
24.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.
(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?
(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a %(a >0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了103
a %:实木椅子的销售量比第一月全月实木椅子的销售量多了a %,这一周两种椅子的总销售金额达到了251000元,求a 的值.
25.如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离.(结果精确到
0.1海里,参考数据2≈1.41,3≈1.73)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.
【详解】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1
3
,
∴
1
3 AD
BG
=,
∵BG=12,
∴AD=BC=4,
∵AD∥BG,
∴△OAD∽△OBG,
∴
1
3 OA OB
=
∴
0A1 4OA3
= +
解得:OA=2,
∴OB=6,
∴C点坐标为:(6,4),故选A.
【点睛】
此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.C
解析:C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
3.A
解析:A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
4.C
解析:C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,5,7,7,
中位数为:5.
故选C.
考点:众数;中位数.
5.B
解析:B
【解析】
【分析】
根据4.84<5<5.29,可得答案.
【详解】
∵4.84<5<5.29,
∴,
∴,
故选B .
【点睛】
是解题关键.
6.A
解析:A
【解析】
【分析】
在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .
【详解】
在直角△ABC 中,根据勾股定理可得:AB ===3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠
B A
C AB ==. 故选A .
【点睛】
本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.
7.B
解析:B
【解析】
【分析】
【详解】
解:∵∠ACB =90°,∠ABC =60°,
∴∠A =30°,
∵BD 平分∠ABC ,
∴∠ABD =
12
∠ABC =30°, ∴∠A =∠ABD ,
∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,
∴CP =
12
BD =3. 故选B . 8.C
解析:C
【解析】
【分析】
过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出
45,222OEG OE OG ∠=︒==,求出30OEF ∠=︒,由直角三角形的性质得出
122
OF OE ==,由勾股定理得出11DF =,即可得出答案. 【详解】
解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ===
=, ∴2EG AG AE =-=,
在Rt BOG ∆中,221392OG OB BG =-=-=,
∴EG OG =,
∴EOG ∆是等腰直角三角形,
∴45OEG ∠=︒,222OE OG =
=, ∵75DEB ∠=︒,
∴30OEF ∠=︒,
∴122
OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=,
∴2211CD DF ==;
故选:C .
【点睛】
考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.
9.C
解析:C
【解析】
【分析】
根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一
计算即可得答案.
【详解】
A.43123()a b a b =,故该选项计算错误,
B.()23
2482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,
D.22(5)1025a a a -=-+,故该选项计算错误,
故选B.
【点睛】
本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.
10.A
解析:A
【解析】
【分析】
已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.
【详解】
∵AB ∥CD ∥EF , ∴
AD BC DF CE
=. 故选A .
【点睛】 本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
11.A
解析:A
【解析】
【分析】
【详解】
∵正比例函数y=mx (m≠0),y 随x 的增大而减小,
∴该正比例函数图象经过第一、三象限,且m <0,
∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,
综上所述,符合题意的只有A 选项,
故选A.
12.D
解析:D
【解析】
【分析】
将特殊角的三角函数值代入求解.
【详解】
.
解:cos45°=
2
故选D.
【点睛】
本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.
二、填空题
13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故
解析:07
【解析】
【分析】
随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.
【详解】
解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07
故答案为:0.07.
【点睛】
本题考查利用频率估计概率.
14.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角
解析:
【解析】
试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD==
【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
15.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因
式分解和有理数的乘法运算注意掌握任何数
解析:0
【解析】
【分析】
先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.
【详解】
解:∵22a b ab += ab (a+b ),而a+b=0,
∴原式=0.
故答案为0,
【点睛】
本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.
16.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm 根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面
解析:1
【解析】
试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm ,根据题意得2πr=904180
π⨯,解得r=1. 故答案为:1.
点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法
解析:1
【解析】
试题分析:根据题意可知这是分式方程,
=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法 18.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB =CD ∠D =90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF =BC ∵∴∴设CD =2xCF =3x ∴∴tan ∠DCF =故答案为:【点
5 【解析】
【分析】
【详解】
解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,
∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3
=.∴设CD =2x ,CF =3x , ∴22DF=CF CD 5x -=.
∴tan ∠DCF =DF 5x 5=CD =. 故答案为:
5. 【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.
19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角
解析:110°或70°.
【解析】
试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.
考点:1.等腰三角形的性质;2.分类讨论.
20.【解析】【分析】过点E 作交AG 的延长线于H 根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E 作交AG 的延长线于H 厘米`根据折叠的性质可知:根据折叠的性质可知:( 解析:423+【解析】
【分析】
过点E 作EH AG ⊥交AG 的延长线于H,根据折叠的性质得到15,C CAG ∠=∠=o
根据三角形外角的性质可得30,EAG EGA ∠=∠=o 根据锐角三角函数求出GC ,即可求解.
【详解】
如图,过点E 作EH AG ⊥交AG 的延长线于H ,
15,2C AE EG ︒∠===厘米,`
根据折叠的性质可知:15,C CAG ∠=∠=o
30,EAG EGA ∴∠=∠=o
322cos302223,2
AG HG EG ==⋅=⨯⨯=o 根据折叠的性质可知:23,GC AG ==
2,BE AE ==
222342 3.BC BE EG GC ∴=++=++=+(厘米) 故答案为:4 3.+
【点睛】
考查折叠的性质,解直角三角形,作出辅助线,构造直角三角形是解题的关键.
三、解答题
21.【问题背景】:EF =BE +FD ;【探索延伸】:结论EF =BE +DF 仍然成立,见解析;
【学以致用】:5.
【解析】
【分析】
[问题背景]延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;
[探索延伸]延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;
[学以致用]过点C 作CG ⊥AD 交AD 的延长线于点G ,利用勾股定理求得DE 的长.
【详解】
[问题背景】解:如图1,
在△ABE 和△ADG 中,
∵DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩
,
∴△ABE ≌△ADG (SAS ),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=1
2
∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,
在△AEF和△GAF中,
∵
AE AG
EAF GAF AF AF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+FD,
∴EF=BE+FD;
故答案为:EF=BE+FD.
[探索延伸]解:结论EF=BE+DF仍然成立;
理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,
∵
DG BE
B ADG AB AD
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,
∵∠EAF=1
2
∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,
在△AEF和△GAF中,
∵
AE AG
EAF GAF AF AF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+FD,
∴EF=BE+FD;
[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,
设DG=x,则AD=6﹣x,DE=x+3,
在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,
∴(6﹣x )2+32=(x +3)2,
解得x =2.
∴DE =2+3=5.
故答案是:5.
【点睛】
此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.
22.(1)DE=3;(2)ADB S 15∆=.
【解析】
【分析】
(1)根据角平分线性质得出CD=DE ,代入求出即可;
(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.
【详解】
(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,
∴CD=DE ,
∵CD=3,
∴DE=3;
(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,
∴△ADB 的面积为ADB 11S AB DE 1031522
∆=⋅=⨯⨯=. 23.(1)见解析 (2) 12AD BC =
,理由见解析. 【解析】
【分析】
(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.
【详解】
(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,
∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,
∴∠DAE=∠DAC+∠CAE=12
×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,
∴四边形ADCE 为矩形.
(2)当12
AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=
12
AD BC =Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =
时,四边形ADCE 是一个正方形. 【点睛】
本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.
24.(1)普通椅子销售了400把,实木椅子销售了500把;(2)a 的值为15.
【解析】
【分析】
(1)设普通椅子销售了x 把,实木椅子销售了y 把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.
【详解】
(1)设普通椅子销售了x 把,实木椅子销售了y 把,
依题意,得:900180400272000
x y x y +=⎧⎨+=⎩,
解得:
400
500 x
y
=
⎧
⎨
=
⎩
.
答:普通椅子销售了400把,实木椅子销售了500把.
(2)依题意,得:(180﹣30)×400(1+10
3
a%)+400(1﹣2a%)×500(1+a%)=
251000,
整理,得:a2﹣225=0,
解得:a1=15,a2=﹣15(不合题意,舍去).
答:a的值为15.
【点睛】
本题考查了二元一次方程组的应用以及一元二次方程的应用,找准等量关系,正确列出二元一次方程组和一元二次方程是解题关键.
25.A、C之间的距离为10.3海里.
【解析】
【分析】
【详解】
解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.
设CD=x,在Rt△ACD中,可得AD=x,
在Rt△ABD中,可得BD3x.
又∵BC=20,∴x3x=20,解得:x =31).
∴AC2231) 1.4110(1.731)10.29310.3
x=≈⨯⨯-=≈ (海里).
答:A、C之间的距离为10.3海里.。