高邮市一中2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高邮市一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )
A
.﹣ B
.﹣ C
.﹣ D
.﹣
或﹣
2. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假
设的内容应为( ) A .a 、b 都能被5整除 B .a 、b 都不能被5整除 C .a 、b 不都能被5整除 D .a 不能被5整除 3. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充分必要条件 D .既不充分也不必要条件 4. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )
=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个 5. sin3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin3cos8.5<< B .cos8.5sin3sin1.5<< C.sin1.5cos8.5sin3<< D .cos8.5sin1.5sin3<< 6. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是
sinA=的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也非必要条件 7. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A .0.42 B .0.28 C .0.3 D .0.7 8. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2] B .(﹣2,2] C .[﹣2,2] D .[﹣2,﹣1) 9. 现要完成下列3项抽样调查: ①从10盒酸奶中抽取3盒进行食品卫生检查. ②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需
要请32名听众进行座谈.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是( )
A .①简单随机抽样,②系统抽样,③分层抽样
B .①简单随机抽样,②分层抽样,③系统抽样
C .①系统抽样,②简单随机抽样,③分层抽样
D .①分层抽样,②系统抽样,③简单随机抽样
10.设函数的集合,平面上点的集合
,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中
两个点的函数的个数是
A4
B6
C8
D10
11.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )
A .5A ∈
B .1.5A ∉
C .1A -∉
D .0A ∈ 12.已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]
二、填空题
13.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .
14.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .
15.若全集,集合,则 16.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .
17.已知函数22tan ()1tan x f x x
=-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.
18
由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元.
三、解答题
19.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面
ABC.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;
(Ⅲ)求四面体PABC体积的最大值.
20.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭
圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.
21.已知曲线C 1:ρ=1,曲线C 2:
(t 为参数) (1)求C 1与C 2交点的坐标;
(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由.
2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)
22.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点1,2P ⎛⎫ ⎪ ⎪⎝⎭
,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.
(1)求椭圆C 的方程;
(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.
23.(本小题满分12分)若二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=, 且()01f =.
(1)求()f x 的解析式;
(2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.
24.已知函数f(x)=alnx﹣x(a>0).
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);
(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α
高邮市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
13. (3,1) .
14. .
15.{|0<<1}
16. .
17.π.
18. .
三、解答题
19.
20.
21.
22.(1)2
212x y +=;(2)证明见解析.
23.(1)()2=+1f x x x -;(2)1m <-.
24.。