重庆市巴川中学2019-2020学年第一学期七年级期末考试数学试题
重庆巴川中学人教版七年级上册数学期末试卷及答案

3.下列判断正确的是()
A.有理数的绝对值一定是正数.
B.如果两个数的绝对值相等,那么这两个数相等.
C.如果一个数是正数,那么这个数的绝对值是它本身.
D.如果一个数的绝对值是它本身,那么这个数是正数.
4.一周时间有604800秒,604800用科学记数法表示为( )
29.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示
为_________.
30.已知代数式 与 互为相反数,则x的值是_______.
三、压轴题
31.已知 (本题中的角均大于 且小于 )
(1)如图1,在 内部作 ,若 ,求 的度数;
(2)如图2,在 内部作 , 在 内, 在 内,且 , , ,求 的度数;
19.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是__.
20.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.
21.如图,数轴上点A与点B表示的数互为相反数,且AB=4则点A表示的数为______.
22.把 ,5, 按从小到大的顺序排列为______.
A. B. C. D.
5.如图,数轴的单位长度为1,点A、B表示的数互为相反数,若数轴上有一点C到点B的距离为2个单位,则点C表示的数是()
A.-1或2B.-1或5C.1或2D.1或5
6.下列调查中,适宜采用全面调查的是()
A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查
C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查
7.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为
重庆巴川中学人教版七年级上册数学期末试卷及答案

重庆巴川中学人教版七年级上册数学期末试卷及答案.doc 一、选择题1.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .32.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 3.下列因式分解正确的是()A .21(1)(1)x x x +=+- B .()am an a m n +=- C .2244(2)m m m +-=- D .22(2)(1)a a a a --=-+4.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④5.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm7.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 8.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=69.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180° 10.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b == C .1,3a b == D .2,2a b ==11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.=38A ∠︒,则A ∠的补角的度数为______.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.18.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)19.﹣225ab 是_____次单项式,系数是_____. 20.已知一个角的补角是它余角的3倍,则这个角的度数为_____.21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 22.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .23.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、解答题25.解方程:131 142x xx+-+=-26.已知,,,A B C D四点如图所示,请按要求画图.(1)画直线AB;(2)若所画直线AB表示一条河流,点,C D分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB上确定点P,使得在点P处开渠到两块稻田,C D的距离之和最短,并说明理由.27.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34)28.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.29.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?30.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).四、压轴题31.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.32.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.33.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】解:∵ 2.5-<1-<0<3,∴最小的数是 2.5-,故选:C .【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.3.D解析:D【解析】【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案.【详解】解:A 、21x +无法分解因式,故此选项错误;B 、()am an a m n +=+,故此选项错误;C 、244m m +-无法分解因式,故此选项错误;D 、22(2)(1)a a a a --=-+,正确;故选:D .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.4.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误; 根据客车数列方程,应该为2554045n n ++=,③正确,②错误; 所以正确的是①③.故选A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.5.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C 在线段AB 上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4, ,故选:D .【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.7.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B .【点睛】本题考查了倒数的概念,熟练掌握是解题的关键. 8.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A 的补角只要用180°﹣∠A 即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.10.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.11.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:A∠=,38∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.16.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.18.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.19.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 20.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.21.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.23.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、解答题25.x=-3【解析】【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【详解】去分母得,4+(1+3x)=4x-2(x-1),去括号得,4+1+3x=4x-2x+2,移项得,3x+2x-4x=2-4-1,合并同类项得,x=-3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.(1)作图见解析;(2)作图见解析,理由:两点之间,线段最短.【解析】【分析】(1)根据直线的意义,画出直线AB即可.(2)根据两点之间线段最短,连接CD,与直线AB的交点即为所求.【详解】(1)直线AB为所求.(2)画线段CD交直线AB于点P,则点P为所求.理由:两点之间,线段最短.【点睛】本题考查了直线的画法和线段公理即两点之间线段最短,解决本题的关键是正确理解题意,熟练掌握线段公理.27.-3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣1+12﹣18+4=﹣3.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣57 7【解析】【分析】(1)根据题意列出算式2(3x2+x+2)﹣13(﹣3x2+9x+6),再去括号、合并即可求解;(2)由已知等式知2A﹣13B+32C=0,将多项式代入,依此即可求解;(3)由题意得出x=2是方程C=2x+7a的解,从而得出关于a的方程,解之可得.【详解】解:(1)2A﹣1 3 B=2(3x2+x+2)﹣13(﹣3x2+9x+6)=6x2+2x+4+x2﹣3x﹣2=7x2﹣x+2;(2)依题意有:7x 2﹣x+2+32C -=0, 14x 2﹣2x+4+C ﹣3=0,C =﹣14x 2+2x ﹣1;(3)∵x =2是C =2x+7a 的解,∴﹣56+4﹣1=4+7a ,解得:a =﹣577. 故a 的值是﹣577. 【点睛】本题考查了整式的加减、相反数和一元一次方程的解法,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.29.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级()1班出发12小时或2小时或4小时后,两队相距2千米 【解析】【分析】 (1) 设后队追上前队需要x 小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;(2)由路程=速度×时间可求联络员走的路程;(3)分三种情况讨论,列出方程求解即可.【详解】()1设后队追上前队需要x 小时,根据题意得:()64x 41-=⨯x 2∴=,答:后队追上前队需要2小时;()210220⨯=千米,答:联络员走的路程是20千米;()3设七年级()1班出发t 小时后,两队相距2千米,当七年级()2班没有出发时,21t 42==, 当七年级()2班出发,但没有追上七年级()1班时,()4t 6t 12=-+,t 2∴=,当七年级()2班追上七年级()1班后,()6t 14t 2-=+,t 4∴=,答:七年级()1班出发12小时或2小时或4小时后,两队相距2千米.【点睛】本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.30.﹣323.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣8﹣23+5=﹣323.【点睛】此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键.四、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.33.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s 【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。
重庆巴川中学人教版七年级上册数学期末试卷及答案

①求t的值;
②此时OQ是否平分∠AOC?请说明理由;
(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).
(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.
27.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.
(1)若b=-4,则a的值为__________.
(2)若OA=3OB,求a的值.
(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.
(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).
①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;
②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.
28.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
15.若x=2是关于x的方程5x+a=3(x+3′用度表示为_____.
2019-2020学年重庆市巴蜀中学七年级上册期末数学试卷含解析-可编辑修改

2019-2020学年重庆市巴蜀中学七年级(上)期末数学试卷一、选择题(每题4分,共48分)1.在﹣2,﹣1,0,2这四个数中,最小的数是( )A .﹣2B .﹣1C .0D .22.对于单项式5πR 2,下列说法正确的是( )A .系数为5B .系数为5πC .次数为3D .次数为43.如图,有一个正方体纸巾盒,它的平面展开图是( )A .B .C .D .4.下列说法正确的是( )A .一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩B .事件发生的频率就是它的概率C .质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%D .成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件5.如图,AB=12cm ,C 为AB 的中点,点D 在线段AC 上,且AD :CB=1:3,则DB 的长度是( )A .4cmB .6cmC .8cmD .10cm6.如图,点B ,O ,D 在同一直线上,若∠1=15°,∠2=105°,则∠AOC 的度数是( )A .75°B .90°C .105°D .125°7.若代数式4x ﹣5与的值相等,则x 的值是( )A.1 B.C.D.28.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y9.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A.12人,15人B.14人,13人C.15人,12人D.13人,14人10.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=311.已知方程组的解也是方程3x﹣2y=0的解,则k的值是()A.k=﹣5 B.k=5 C.k=﹣10 D.k=1012.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有()个.A.145 B.146 C.180 D.181二、填空题(每空3分,共30分)13.5的相反数是.14.计算 2a﹣(﹣1+2a)= .15.如果收入50元记作+50元,那么支出20元记作.16.每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为人.17.如图,数轴上点A、B所表示的两个数的和的绝对值是.18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.19.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是度.20.一块手表上午10:45时针和分针所夹锐角的度数是.21.圣诞节到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省28元,那么妈妈购买这件衣服实际花费了元.22.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是.三、解答题(共27题)23.计算:(1)18﹣6÷(﹣2)×(﹣);(2)(﹣﹣)×24+(1﹣0.5)+3×.24.解方程(组):(1)7﹣3(x+1)=2(4﹣x)(2).25.先化简,再求值:3(x2﹣2xy)﹣4[xy﹣1+(﹣xy+x2)],其中x=﹣4,y=.26.巴蜀中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有人;扇形统计图中a= ;(2)补全条形统计图;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?27.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.28.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.29.张老师周末到某家居建材市场购买沙发、橱窗和地板三样物品,碰巧该市场推出“迎圣诞元旦双节”优惠活动,具体优惠情况如下:(1)若购买三样物品原价8000元,请求出张老师实际的付款金额?(2)若购买三样物品实际花费了6820元.①请求出三件物品的原价总共是多少钱?②几天后,张老师发现地板的样式不适合需要退货,该市场规定:消费者需支付优惠差额(即退货商品在购买时所享受的优惠),并且还要支付商品原价5%的手续费,最终该市场退还了张老师2345元,请问地板原价是多少钱?2019-2020学年重庆市巴蜀中学七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.在﹣2,﹣1,0,2这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.2【考点】有理数大小比较.【分析】因为正数大于一切负数,0大于负数,所以负数最小,﹣2<﹣1,所以﹣2最小.【解答】解:﹣2<﹣1<0<2,故选A.2.对于单项式5πR2,下列说法正确的是()A.系数为5 B.系数为5πC.次数为3 D.次数为4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式5πR2的系数是5π,次数是2,故选:B.3.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.4.下列说法正确的是()A.一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩B.事件发生的频率就是它的概率C.质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%D.成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件【考点】用样本估计总体;随机事件;概率的意义.【分析】正确理解频率和概率的概念,掌握随机事件的概念,分析即可.【解答】解:A、第二胎可能是男孩,也可能是女孩,是随机事件,错误;B、事件发生的频率就是它的概率,概率并不等同于频率,概念混淆,错误;C、符合用样本估计总体的统计思想,正确;D、混淆了频率与概率的概念,错误.故选C.5.如图,AB=12cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.4cm B.6cm C.8cm D.10cm【考点】两点间的距离.【分析】根据中点的定义求出AC、BC的长,根据题意求出AD,结合图形计算即可.【解答】解:∵AB=12cm,C为AB的中点,∴AC=BC=AB=6cm,∵AD:CB=1:3,∴AD=2cm,∴DC=AC﹣AD=4cm,∴DB=DC+BC=10cm,故选:D.6.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【考点】角的计算.【分析】由图示可得,∠2与∠BOC互补,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.7.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.2【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.8.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y【考点】整式的加减.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选:A.9.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A.12人,15人B.14人,13人C.15人,12人D.13人,14人【考点】二元一次方程组的应用.【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.本题中有2个定量:工程队的人数,沙的吨数,可根据定量找到两个等量关系:挖沙人数+运沙人数=27,4×挖沙人数=5×运沙人数.根据这两个等量关系可列出方程组.【解答】解:设分配挖沙x人,运沙y人,则,解得,∴应分配挖沙15人,运沙12人.故选C.10.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3【考点】合并同类项.【分析】根据同类项的概念,列出方程求解.【解答】解:由题意得,,解得:.故选C.11.已知方程组的解也是方程3x﹣2y=0的解,则k的值是()A.k=﹣5 B.k=5 C.k=﹣10 D.k=10【考点】解三元一次方程组.【分析】根据三元一次方程组的概念,先解方程组,得到x,y的值后,代入4x﹣3y+k=0求得k的值.【解答】解:解方程组,得:,把x,y代入4x﹣3y+k=0得:﹣40+45+k=0解得:k=﹣5.故选A.12.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有()个.A.145 B.146 C.180 D.181【考点】规律型:图形的变化类.【分析】根据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10﹣1)2=181个.【解答】解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10﹣1)2=181个.故选D.二、填空题(每空3分,共30分)13.5的相反数是﹣5 .【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故答案为﹣5.14.计算 2a﹣(﹣1+2a)= 1 .【考点】整式的加减.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=2a+1﹣2a=1.故答案为:1.15.如果收入50元记作+50元,那么支出20元记作﹣20元.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,收入记为正,可得支出的表示方法.【解答】解:如果收入50元记作+50元,那么支出20元记作﹣20元,故答案为:﹣20元.16.每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为 5.4×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将5400000用科学记数法表示为:5.4×106.故答案为:5.4×106.17.如图,数轴上点A、B所表示的两个数的和的绝对值是 1 .【考点】数轴;绝对值;有理数的加法.【分析】首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可.【解答】解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,则﹣3+2=﹣1,|﹣1|=1,故答案为:1.18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是 5 .【考点】简单组合体的三视图.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.19.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是135 度.【考点】角平分线的定义.【分析】本题是有公共定点的两个直角三角形问题,通过图形可知∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,同时∠AOC+∠BOC+∠BOD+∠BOC=180°,可以通过角平分线性质求解.【解答】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故答案为:135.20.一块手表上午10:45时针和分针所夹锐角的度数是52.5°.【考点】钟面角.【分析】首先根据题意画出草图,再根据钟表表盘的特征:表面上每一格30°,进行解答.【解答】解:10:45,时针和分针中间相差1个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午10:45时针和分针所夹锐角的度数是1×30°=52.5°.故答案为:52.5°.21.圣诞节到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省28元,那么妈妈购买这件衣服实际花费了112 元.【考点】一元一次方程的应用.【分析】设这件运动服的标价为x元,则妈妈购买这件衣服实际花费了0.8x元,由题意可得出关于x的一元一次方程,解之即可求出x的值,故妈妈购买这件衣服实际花费的钱数即可得出.【解答】解:设这件运动服的标价为x元,则妈妈购买这件衣服实际花费了0.8x元,根据题意得,x﹣0.8x=28,解得:x=140,0.8x=112,故妈妈购买这件衣服实际花费了112元.故答案为112.22.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是45% .【考点】分式方程的应用.【分析】可设甲、乙的进价,甲种款式售出的件数为未知数,根据售出的乙种款式比售出的甲种款式的件数少40%时,这个老板得到的总利润率为40%得到甲、乙进价之间的关系,进而求得当售出的乙种款式的件数比甲种款式的件数多80%时,这个老板的总利润率即可.【解答】解:设甲种款式进价为a元,则售出价为1.3a元;乙种款式的进价为b元,则售出价为1.5b元;若售出甲种款式x件,则售出乙种款式0.6x件,依题意有=40%,解得:a=0.6b,当售出的乙种款式的件数比甲种款式的件数多80%时,设甲种款式的件数为y件,则乙种款式的件数1.8y件,则==45%.答:这个老板得到的总利润率是45%.故答案为:45%.三、解答题(共27题)23.计算:(1)18﹣6÷(﹣2)×(﹣);(2)(﹣﹣)×24+(1﹣0.5)+3×.【考点】有理数的混合运算.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式利用乘法分配律及乘法法则计算即可得到结果.【解答】解:(1)原式=18﹣1=17;(2)原式=21﹣4﹣18++2=1.24.解方程(组):(1)7﹣3(x+1)=2(4﹣x)(2).【考点】解二元一次方程组;解一元一次方程.【分析】(1)根据一元一次方程的解法即可解答;(2)利用加减消元法即可解答.【解答】解:(1)7﹣3(x+1)=2(4﹣x)7﹣3x﹣3=8﹣2x﹣3x+2x=8﹣7﹣x=1x=﹣1.(2)整理方程组得:①×2得:12x﹣4y=10③③﹣②得:9x=4,解得:x=,把x=代入①得:﹣2y=5,解得:y=﹣.所以方程组的解为:.25.先化简,再求值:3(x2﹣2xy)﹣4[xy﹣1+(﹣xy+x2)],其中x=﹣4,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣6xy﹣xy+4+6xy﹣6x2=﹣3x2﹣xy+4,当x=﹣4,y=时,原式=﹣48+2+4=﹣42.26.巴蜀中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有300 人;扇形统计图中a= 12 ;(2)补全条形统计图;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)男生人数为20+40+60+180=300;8分对应百分数用8分的总人数÷500;(2)8分以下总人数=500×10%=50,其中女生=50﹣20,10分总人数=500×62%=310,其中女生人数=310﹣180=130,进而补全直方图;(3)可利用样本的百分数去估计总体的概率,即可求出答案.【解答】解(1)如图,男生人数为20+40+60+180=300,8分对应百分数为(40+20)÷500=12%,故答案为:300,12;(2)补图如图所示:(3)500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是=.27.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.【考点】角平分线的定义.【分析】(1)根据题意可知,∠AOC=120°,由OM平分∠AOC,ON平分∠BOC;推出∠MOC=∠AOC=60°,∠CON=∠BOC=15°,由图形可知,∠MON=∠MOC﹣∠CON,即∠MON=45°;(2)同理可得,∠MOC=(α+β),∠CON=β,根据图形便可推出∠MON=∠MOC﹣∠CON=(α+β)﹣β=α.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°;故答案为:45°;(2)同理可得,∠MOC=(α+β),∠CON=β,则∠MON=∠MOC﹣∠CON=(α+β)﹣β=α.28.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.【考点】二元一次方程的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)根据:“A型汽车价格上涨的部分+B型汽车价格上涨的部分=同时购买A、B型汽车比原价高的部分”列方程求解可得.【解答】解:(1)设每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)根据题意,得:18×m%+26×3m%=(18+26)×12%,解得:m=5.5,答:m的值为5.5.29.张老师周末到某家居建材市场购买沙发、橱窗和地板三样物品,碰巧该市场推出“迎圣诞元旦双节”优惠活动,具体优惠情况如下:(1)若购买三样物品原价8000元,请求出张老师实际的付款金额?(2)若购买三样物品实际花费了6820元.①请求出三件物品的原价总共是多少钱?②几天后,张老师发现地板的样式不适合需要退货,该市场规定:消费者需支付优惠差额(即退货商品在购买时所享受的优惠),并且还要支付商品原价5%的手续费,最终该市场退还了张老师2345元,请问地板原价是多少钱?【考点】一元一次方程的应用.【分析】(1)设三件物品的原价总共是x元,由花费的钱数可知,商品的原价应在5000元﹣10000元之间,根据原价﹣优惠的钱数=花费的钱数列出方程解答即可;(2)设地板的原价为a元,由退回的钱数可知,商品的原价应在5000元之内,根据原价﹣优惠的钱数﹣支付原价的手续费=2345,列出方程解答即可.【解答】解:(1)购买三样物品原价8000元,张老师实际的付款金额为8000×80%=6400元;(2)设三件家电的原价总共是x元,由题意得,x﹣5000×10%﹣(x﹣5000)×20%=6820,解得:x=7900.答:三件家电的原价总共是7900元.(2)设地板的原价为a元,由题意得a﹣10%a﹣20%a=2345,解得:a=3350.答:地板的原价为3350元.2019-20202月15日。
重庆巴川中学人教版七年级上册数学期末试卷及答案

重庆巴川中学人教版七年级上册数学期末试卷及答案.doc一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 3.4 =( ) A .1B .2C .3D .44.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 5.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .6.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个7.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( )A .13或﹣1 B .1或﹣1 C .13或73D .5或738.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个9.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 10.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)11.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限12.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6013.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -14.下列各数中,比73-小的数是( ) A .3- B .2-C .0D .1-15.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.已知单项式245225n m x y x y ++与是同类项,则m n =______.20. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.21.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.22.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19零食¥82.00- 10.20 餐费¥100.00-23.写出一个比4大的无理数:____________. 24.已知23,9n mn aa -==,则m a =___________.25.16的算术平方根是 . 26.化简:2x+1﹣(x+1)=_____.27.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.28.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______. 29.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.30.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等. 33.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)35.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N是直线AB上一点,且AN BN MN-=,求MNAB的值.38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.2.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C . 【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.3.B解析:B 【解析】 【分析】根据算术平方根的概念可得出答案. 【详解】解:根据题意可得:,故答案为:B. 【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.4.C解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 6.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ), 解得:m =﹣1, 故选:A . 【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.8.D解析:D 【解析】 【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断; ③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断 【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x ax x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x ax a =⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确④方程组解得25-15x ay a =⎧⎨=-⎩由题意得:x-3a=5 把25-15x a y a =⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确 则正确的选项有四个 故选D 【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键9.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x 厘米.根据题意得:2×(10+x )=10×4+6×2.故选:A .【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.10.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.11.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.12.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.13.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.14.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.15.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题16.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.17.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.18.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.9【解析】【分析】根据同类项的定义进行解题,则,解出m、n的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 20.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.21.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 22.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.23.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.24.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 26.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.27.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 28.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案. 【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.29.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键30.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续。
重庆市2019-2020学年七年级上学期期末数学试题(I)卷

重庆市2019-2020学年七年级上学期期末数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,经过刨平的木板上的,两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.点动成线B.两点之间线段最短C.两点确定一条直线D.面动成体2 . 下列图形中,从左面看到的图形是()A.B.C.D.3 . 如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“母”字的对面的字是()A.祖B.国C.岁D.万4 . 下列说法正确的是()A.经过一点有且只有一条直线与已知直线平行B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.同一平面内,不相交的两条直线是平行线D.“相等的角是对顶角”是真命题5 . 互为相反数的两个数的和是()A.0B.1C.D.6 . 已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是()A.20米/秒,200米B.18米/秒,180米C.16米/秒,160米D.15米/秒,150米7 . 下列各组同类项的一组是()A.ab2与-0.5a2b B.3a2b与-4a2bc C.a3与b3D.-2a3b与ba38 . 下列各组数中,互为倒数的是()A.与B.与D.与C.与二、填空题9 . 如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC =82°,则∠BOF =______°.10 . 有理数在数轴上的位置如图所示,则化简的结果为_________.11 . 已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.12 . 一件商品的原价为a元,提高50%后标价,再按标价打七折销售,则此时售价为_____元.13 . 观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为_____;第n个单项式为_____.14 . 计算:的余角为__________,__________°.15 . 请写出一个解是5的一元一次方程,你写的方程是___________.16 . 我省为135万名农村中小学生免费提供教科书,减轻了农民的负担135万用科学记数法可表示为______________.三、解答题17 . 若方程2x+1=3x的解与关于x的方程x-3a=4的解相同,求关于y的方程的解.18 . 计算:(1)(2)19 . 解方程: (1) (2) 2-.20 . 甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.21 . 阅读下面材料:数学课上,老师给出了如下问题:如图甲,∠AOB=70°,OC平分∠AOB.若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图乙,因为OC平分∠AOB,∠AOB=70°,所以∠BOC=____∠AOB=________°.因为∠BOD=20°,所以∠COD=°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部” .完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图甲中画出另一种情况对应的图形,求出此时∠COD的度数.22 . 计算题(1)(--+)÷;(2)23 . 如图1,是一个由53个大小相同的小正方体堆成的立体图形,从正面观察这个立体图形得到的平面图形如图2所示.(1)请在图3、图4中依次画出从左面、上面观察这个立体图形得到的平面图形(2)保持这个立体图形中最底层的小正方体不动,从其余部分中取走k个小正方体,得到一个新的立体图形.如果依次从正面、左面、上面观察新的立体图形,所得到的平面图形分别与图2、图3、图4是一样的,那么k的最大值为.24 . 如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.25 . 画线段,在线段的延长线上取点,使,取线段的中点.画出图形(不写作法)并求线段的长.26 . 在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?。
重庆市八中2019-2020学年七年级(上)期末数学试卷含答案解析

重庆市八中2019-2020学年七年级(上)期末数学试卷含答案解析一.选择题(共8小题)1.﹣的相反数是()A.2 B.C.﹣2 D.﹣2.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.3.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.60°B.70°C.80°D.85°4.如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD=BE,若DE=4,则AC等于()A.6 B.7 C.8 D.95.如图,直线AB∥CD,∠D=75°,∠B=30°,则∠E的度数是()A.30°B.45°C.55°D.70°6.如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab 的值为()A.8 B.16 C.20 D.247.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12 B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)8.下列图形都是由同样大小的五角星按照一定规律所组成的,其中第①个图形中一共有4个五角星,第②个图形中一共有7个五角星,第③个图形中一共有10个五角星,第④个图形中一共有13个五角星,……,按此规律排列下去,第⑧个图形中五角星的个数为()A.21 B.25 C.28 D.30二.填空题(共13小题)9.(多选)下列说法中,错误的有.A.两点确定一条直线B.两条直线被第三条直线所截,同位角相等C.相等的两个角是对顶角D.平面内的一条直线和两条平行线中的一条垂直,则它与另一条也垂直E.从直线外一点到这条直线的垂线段,叫做这点到直线的距离10.(多选)如图,下列条件中能判断直线l1∥l2的有.A.∠1=∠2B.∠4=∠5C.∠2+∠4=180°D.∠1=∠3E.∠6=∠1+∠211.据国家统计局数据显示,我国2018年全国粮食总产量约为658000000吨.其中数据658000000用科学记数法可表示为.12.若|m﹣n|=n﹣m,且|m|=4,|n|=3,则m+n=.13.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.14.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长3a﹣b,则长方形的周长为.15.如图,把一张长方形纸片沿EF折叠后,点D、C分别落在D',C'的位置,若∠AED'=48°,则∠EFB=.16.兄弟俩今年年龄之和为30岁,当哥哥像弟弟这样大时,弟弟的年龄刚好是哥哥年龄的一半,哥哥今年的年龄是岁.17.若A=x2﹣2xy+y2,B=x2+2xy+y2,若2A﹣3B+C=0,则C=.18.方程+=1与方程|x﹣1|=2的解一样,则m2﹣2m+1=.19.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为.20.如图,AB∥CD∥EF∥GH,AE∥DG,点C在AE上,点F在DG上,设与∠α相等的角的个数为m,与∠β互补的角的个数为n,若α≠β,则m+n的值是.21.A、B两地相距15km,甲、乙两人同时从A出发去B.甲先乘汽车到达A、B之间的C 地,然后下车步行,乙全程骑自行车,结果两人同时到达.已知甲步行的速度是乙骑自行车速度的一半,乙骑自行车的速度是甲乘汽车速度的一半,那么C地与A地相距km.三.解答题(共9小题)22.计算:(1)(﹣2﹣1)÷(﹣)×(﹣6)(2)﹣12﹣(+﹣)×(﹣24)23.化简(1)3(4m2﹣3m+2)﹣2(1﹣4m2+m)(2)3x2y﹣[2xy2﹣(5x2y﹣3xy2)+4x2y]﹣xy24.解下列方程(1)2(2x﹣3)﹣4(4x﹣4)=12(2)﹣0.5=25.如图已知∠1=∠2,∠B=∠C,求证:AB∥CD.证明:∵∠1=∠2(已知),且∠1=∠4(),∴∠2=∠4 ().∴BF∥().∴∠=∠3 ().又∵∠B=∠C(已知),∴(等量代换).∴AB∥CD().26.如图,已知OD平分∠AOB,OE在∠BOC内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC的度数;(2)若知∠DOE=70°,求∠EOC的度数.27.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A、B两工地,已知A工地需要70吨,B工地需要110吨.甲仓库运到A、B两地运费分别是140元/吨、150元/吨;乙仓库运到A、B两地的运费分别是200元/吨、80元/吨,(运费:元/吨,表示运送每吨水泥所需要的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用关于x的代数式表达下面的量:甲仓库乙仓库A工地xB工地(2)若本次运送的水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.28.如图,已知AB∥CD,点E在BC的延长线上,AE与CD交于点F,∠1=∠2,∠3=∠4,试判断AD与BE的位置关系,并说明为什么.29.某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和西红柿共40kg到菜市场去卖,黄瓜和西红柿这天的批发价和零售价(单位:元/kg)如下表所示:品名黄瓜西红柿批发价 2.4 3零售价 3 4(1)他当天购进黄瓜和西红柿各多少千克?(2)由于西红柿特别好卖,第二天他又按照批发价买入10kg黄瓜和50kg西红柿,黄瓜仍然按照3元/kg销售,但运输过程中出现意外,第二天西红柿丢了20%,当第二天西红柿售价为多少元时,这两天的利润率为.30.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC =90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转直至ON边第一次重合在直线AD上,整个过程时间记为t秒.(1)从旋转开始至结束,整个过程共持续了秒;(2)如图2,旋转三角板MON,使得OM、ON在直线OC的异侧,请直接写出∠CON与∠AOM数量关系;如图3,继续旋转三角板MON,使得OM、ON同时在直线OC的右侧,请问上面的数量关系是否仍然成立?并说明理由.(3)若在三角板MON旋转的同时,另一个三角板OBC也绕点O以每秒12°的速度顺时针旋转,当ON边第一次重合在直线AD上时两三角板同时停止.①试用字母t分别表示∠AOM与∠AOC;②在旋转的过程中,当t为何值时OM平分∠AOC.参考答案与试题解析一.选择题(共8小题)1.﹣的相反数是()A.2 B.C.﹣2 D.﹣【分析】根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.【解答】解:与﹣符号相反的数是,所以﹣的相反数是;故选:B.2.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、的主视图是第一层两个小正方形,第二层右边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左一个小正方形,故选:A.3.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.60°B.70°C.80°D.85°【分析】首先根据角平分线的性质可得∠EOB=∠COE,进而得到∠COB的度数,再根据邻补角互补可算出∠BOD的度数.【解答】解:∵OE平分∠COB,∴∠EOB=∠COE,∵∠EOB=50°,∴∠COB=100°,∴∠BOD=180°﹣100°=80°.故选:C.4.如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD=BE,若DE=4,则AC等于()A.6 B.7 C.8 D.9【分析】先根据AD=BE求出AB=DE,再根据线段中点的定义解答即可.【解答】解:∵D,B,E三点依次在线段AC上,∴DE=DB+BE.∵AD=BE,∴DE=DB+AD=AB.∵DE=4,∴AB=4.∵点B为线段AC的中点,∴AC=2AB=8.故选:C.5.如图,直线AB∥CD,∠D=75°,∠B=30°,则∠E的度数是()A.30°B.45°C.55°D.70°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠D=∠AFE=75°,∴∠E=∠AFE﹣∠B=75°﹣30°=45°,故选:B.6.如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab 的值为()A.8 B.16 C.20 D.24【分析】观察图形,可得出关于a的一元一次方程,解之可得出a的值,结合a+b=10可求出b值,再将a,b的值代入ab中即可求出结论.【解答】解:∵5a=10,∴a=2.∵a+b=10,∴b=8,∴ab=16.故选:B.7.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12 B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.8.下列图形都是由同样大小的五角星按照一定规律所组成的,其中第①个图形中一共有4个五角星,第②个图形中一共有7个五角星,第③个图形中一共有10个五角星,第④个图形中一共有13个五角星,……,按此规律排列下去,第⑧个图形中五角星的个数为()A.21 B.25 C.28 D.30【分析】根据图形的变化即可写出规律式,进而求解.【解答】解:观察图形的变化可知:第①个图形中一共有4个五角星,即4=3×1+1;第②个图形中一共有7个五角星,即7=3×2+1;第③个图形中一共有10个五角星,即10=3×3+1;第④个图形中一共有13个五角星,即13=3×4+1;……,按此规律排列下去,第n个图形中一共有五角星个数为(3n+1)第⑧个图形中五角星的个数为3×8+1=25.故选:B.二.填空题(共13小题)9.(多选)下列说法中,错误的有BCE.A.两点确定一条直线B.两条直线被第三条直线所截,同位角相等C.相等的两个角是对顶角D.平面内的一条直线和两条平行线中的一条垂直,则它与另一条也垂直E.从直线外一点到这条直线的垂线段,叫做这点到直线的距离【分析】依据直线的性质、对顶角的性质、平行线的性质以及点到直线的距离的概念,即可得出结论.【解答】解:A.两点确定一条直线,故本选项正确;B.两条平行直线被第三条直线所截,同位角相等,故本选项错误;C.相等的两个角不一定是对顶角,故本选项错误;D.平面内的一条直线和两条平行线中的一条垂直,则它与另一条也垂直,故本选项正确;E.从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故本选项错误;故答案为:BCE.10.(多选)如图,下列条件中能判断直线l1∥l2的有BCDE.A.∠1=∠2B.∠4=∠5C.∠2+∠4=180°D.∠1=∠3E.∠6=∠1+∠2【分析】要证明两直线平行,则要找到同位角、内错角相等,同旁内角互补等.【解答】解:A、∠1和∠2不是直线l1、l2被第三条直线所截形成的角,故不能判断直线l1∥l2.B、∵∠4=∠5,∴l1∥l2(同位角相等两直线平行).C、∠2、∠4是直线l1、l2被第三条直线所截形成的同旁内角,故∠2+∠4=180°能判断直线l1∥l2.D、∵∠1=∠3,∴l1∥l2(内错角相等两直线平行).E、作l1∥l,∴∠1=∠7,∵∠6=∠7+∠8,∴∠8=∠2,∴l∥l2,∴l1∥l2.故答案为:BCDE.11.据国家统计局数据显示,我国2018年全国粮食总产量约为658000000吨.其中数据658000000用科学记数法可表示为 6.58×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:658000000=6.58×108.故答案为:6.58×108.12.若|m﹣n|=n﹣m,且|m|=4,|n|=3,则m+n=﹣1或﹣7 .【分析】根据绝对值的意义得到m=±4,n=±3,且n>m,则n=3,n=﹣4或n=﹣3,m=﹣4,然后分别代入m+n中计算即可.【解答】解:∵|m|=4,|n|=3,∴m=±4,n=±3,而|m﹣n|=n﹣m,∴n>m,∴n=3,n=﹣4或n=﹣3,m=﹣4,∴m+n=3+(﹣4)=﹣1;或m+n=﹣3+(﹣4)=﹣7.故答案为﹣1或﹣7.13.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为 2 .【分析】先把多项式合并,然后把二次项系数等于0,再解方程即可.【解答】解:合并得4x3+2x2﹣(kx2+17x﹣6)=4x3+(2﹣k)x2﹣17x+6,根据题意得2﹣k=0,解得k=2.故答案是:2.14.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长3a﹣b,则长方形的周长为14a+2b.【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:∵一个长方形,一边长为2a+b,另一边比它长3a﹣b,∴长方形的周长为:2(2a+b+2a+b+3a﹣b)=14a+2b.故答案为:14a+2b.15.如图,把一张长方形纸片沿EF折叠后,点D、C分别落在D',C'的位置,若∠AED'=48°,则∠EFB=66°.【分析】由折叠的性质可得∠DEF=∠D′EF,因为∠AED′=48°,结合平角可求得∠DEF=∠D′EF=66°,由平行的性质可求得∠EFB=∠DEF=66°.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∴∠DEF=∠EFB,又由折叠的性质可得∠D′EF=∠DEF,∵∠AED′+∠D′EF+∠DEF=180°,∠AED′=50°,∠D′EF=∠DEF==66°,∴∠EFB=∠DEF=66°.故答案为:66°.16.兄弟俩今年年龄之和为30岁,当哥哥像弟弟这样大时,弟弟的年龄刚好是哥哥年龄的一半,哥哥今年的年龄是18 岁.【分析】设哥哥今年年龄为x岁,由“兄弟两今年的年龄和是30岁,”得出弟弟今年年龄为(30﹣x)岁,当哥哥像弟弟现在这样大时,即哥哥的年龄为(30﹣x)岁时,哥哥增长了[x﹣(30﹣x)]岁,这时弟弟的年龄为(30﹣x)﹣[x﹣(30﹣x)]岁,再根据“弟弟的年龄恰好是哥哥的一半”列出方程解答即可.【解答】解:设哥哥今年年龄为x,弟弟今年年龄为(30﹣x)岁,(30﹣x)﹣[x﹣(30﹣x)]=(30﹣x),解得x=18.答:哥哥今年18岁.故答案为:18.17.若A=x2﹣2xy+y2,B=x2+2xy+y2,若2A﹣3B+C=0,则C=x2+10xy+y2.【分析】把A与B代入已知等式表示出C即可.【解答】解:∵A=x2﹣2xy+y2,B=x2+2xy+y2,且2A﹣3B+C=0,∴C=﹣2A+3B=﹣2(x2﹣2xy+y2)+3(x2+2xy+y2)=﹣2x2+4xy﹣2y2+3x2+6xy+3y2=x2+10xy+y2,故答案为:x2+10xy+y218.方程+=1与方程|x﹣1|=2的解一样,则m2﹣2m+1=16或4 .【分析】首先解出方程|x﹣1|=2的解,然后把方程的解代入方程+=1求出m,即可求出代数式的值.【解答】解:解方程|x﹣1|=2 得:x﹣1=±2,解得:x=3或﹣1,把x=3代入方程+=1,解得:m=﹣3,m2﹣2m+1=(m﹣1)2=16;把x=﹣1代入方程+=1,解得:m=3,m2﹣2m+1=(m﹣1)2=4故答案为:16或4.19.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为117°.【分析】过B作BE∥m,过C作CF∥n,依据平行线的性质,即可得到∠DCF=∠2=62°,∠BCF=∠EBC=55°,进而得到∠BCD的度数.【解答】解:如图,过B作BE∥m,过C作CF∥n,∵m∥n,∴m∥BE∥CF∥n,∴∠ABE=∠1=35°,∠DCF=∠2=62°,又∵AB⊥BC,∴∠ABC=90°,∴∠EBC=90°﹣35°=55°,∴∠BCF=∠EBC=55°,∴∠BCD=∠BCF+∠DCF=55°+62°=117°.故答案为:117°.20.如图,AB∥CD∥EF∥GH,AE∥DG,点C在AE上,点F在DG上,设与∠α相等的角的个数为m,与∠β互补的角的个数为n,若α≠β,则m+n的值是11 .【分析】设BA的延长线为AM,由AB∥CD∥EF∥GH,AE∥DG,根据平行线的性质得到与∠α相等的角∠EFG、∠AEF、∠D、∠ACD、∠MAC,因为∠β+∠EFG=180°,即可推出∠β互补的角的个数,即可求出答案.【解答】解:设BA的延长线为AM,∵AB∥CD∥EF∥GH,AE∥DG,∴∠a=∠EFG=∠AEF=∠D=∠ACD=∠MAC,∠β+∠EFG=180°,∴与∠β互补的角有∠α,∠EFG,∠AEF,∠D,∠ACD,∠MAC,∴m=5,n=6,∴m+n=11.故答案为:11.21.A、B两地相距15km,甲、乙两人同时从A出发去B.甲先乘汽车到达A、B之间的C 地,然后下车步行,乙全程骑自行车,结果两人同时到达.已知甲步行的速度是乙骑自行车速度的一半,乙骑自行车的速度是甲乘汽车速度的一半,那么C地与A地相距10 km.【分析】等量关系为:乘汽车走AC之间路程的时间+步行BC之间的时间=乙骑自行车15km的时间,把相关数值代入即可求解.【解答】解:设AC相距xkm,乙骑自行车的速度为akm/小时.+=,解得x=10,故答案为10.三.解答题(共9小题)22.计算:(1)(﹣2﹣1)÷(﹣)×(﹣6)(2)﹣12﹣(+﹣)×(﹣24)【分析】(1)根据有理数的减法和乘除法可以解答本题;(2)根据有理数的乘方和乘法分配律可以解答本题.【解答】解:(1)(﹣2﹣1)÷(﹣)×(﹣6)=(﹣3)×(﹣6)×(﹣6)=﹣108;(2)﹣12﹣(+﹣)×(﹣24)=﹣1+21+14﹣20=14.23.化简(1)3(4m2﹣3m+2)﹣2(1﹣4m2+m)(2)3x2y﹣[2xy2﹣(5x2y﹣3xy2)+4x2y]﹣xy【分析】(1)先去括号,然后合并同类项;(2)先去括号,然后合并同类项.【解答】解:(1)3(4m2﹣3m+2)﹣2(1﹣4m2+m)=12m2﹣9m+6﹣2+m2﹣2m=13m2﹣11m+4;(2)3x2y﹣[2xy2﹣(5x2y﹣3xy2)+4x2y]﹣xy=3x2y﹣[2xy2﹣5x2y+3xy2+4x2y]﹣xy=3x2y﹣2xy2+5x2y﹣3xy2﹣4x2y﹣xy=4x2y﹣5xy2﹣xy.24.解下列方程(1)2(2x﹣3)﹣4(4x﹣4)=12(2)﹣0.5=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣6﹣16x+16=12,移项合并得:﹣12x=2,解得:x=﹣;(2)方程整理得:﹣=,去分母得:300x﹣6﹣60=40x﹣60,移项合并得:260x=6,解得:x=.25.如图已知∠1=∠2,∠B=∠C,求证:AB∥CD.证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量替换).∴BF∥CE(同位角相等,两直线平行).∴∠C=∠3 (两直线平行,同位角相等).又∵∠B=∠C(已知),∴(等量代换).∴AB∥CD(内错角相等,两直线平行).【分析】由∠1=∠2结合对顶角相等即可得出∠2=∠4,进而可证出CE∥BF,再根据平行线的性质可得出∠3=∠C=∠B,利用平行线的判定定理即可证出AB∥CD.【解答】证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量替换),∴BF∥CE(同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量替换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;等量替换;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.26.如图,已知OD平分∠AOB,OE在∠BOC内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC的度数;(2)若知∠DOE=70°,求∠EOC的度数.【分析】(1)可以设∠BOE为x°,根据条件列方程解决,求出∠BOE,进而求出∠EOC 的度数;(2)设∠BOE=a,则∠ECO=3a,根据条件列方程解决,求出∠BOE.【解答】解:∵∠AOC=170°,∠AOB=70°,∴∠BOC=100°,设∠BOE=x,则∠ECO=3x,∴∠BOC=∠BOE+∠EOC=x+3x=100°,∴x=25°,∴∠EOC=75°;(2)设∠BOE=a,则∠ECO=3a,∵∠DOE=70°,OD平分∠AOB,∴∠AOD﹣∠BOD=70°﹣a,∴∠AOC=2∠AOD+∠BOE+∠EOC=2(70°﹣a)+a+3a=170°,∴a=15°,∴∠EOC=3a=45°.27.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A、B两工地,已知A工地需要70吨,B工地需要110吨.甲仓库运到A、B两地运费分别是140元/吨、150元/吨;乙仓库运到A、B两地的运费分别是200元/吨、80元/吨,(运费:元/吨,表示运送每吨水泥所需要的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用关于x的代数式表达下面的量:甲仓库乙仓库A工地x70﹣xB工地100﹣x x+10 (2)若本次运送的水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.【分析】(1)根据题意填写表格即可;(2)根据本次运送水泥总运费需要25900元列方程化简即可.【解答】解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:甲仓库乙仓库A工地x70﹣xB工地100﹣x x+10 故答案为:70﹣x;100﹣x;x+10;(2)根据题意可得:140x+150(100﹣x)+200(70﹣x)+80(x+10)=25900,整理得:﹣130x+3900=0.解得:x=30答:甲仓库运到A工地水泥的吨数是30吨.28.如图,已知AB∥CD,点E在BC的延长线上,AE与CD交于点F,∠1=∠2,∠3=∠4,试判断AD与BE的位置关系,并说明为什么.【分析】想办法证明∠3=∠DAC即可解决问题.【解答】解:结论:AD∥BE.理由:∵∠1=∠2,∴∠BAE=∠CAD,∵AB∥CD,∴∠4=∠BAE,∵∠3=∠4,∴∠3=∠DAC,∴AD∥BE.29.某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和西红柿共40kg到菜市场去卖,黄瓜和西红柿这天的批发价和零售价(单位:元/kg)如下表所示:品名黄瓜西红柿批发价 2.4 3零售价 3 4(1)他当天购进黄瓜和西红柿各多少千克?(2)由于西红柿特别好卖,第二天他又按照批发价买入10kg黄瓜和50kg西红柿,黄瓜仍然按照3元/kg销售,但运输过程中出现意外,第二天西红柿丢了20%,当第二天西红柿售价为多少元时,这两天的利润率为.【分析】(1)设该蔬菜经营户购进黄瓜x千克,购进西红柿y千克,根据总价=单价×数量结合该蔬菜经营户用114元购进黄瓜和西红柿共40千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设当第二天西红柿售价为m元/千克时,这两天的利润率为,根据销售收入﹣成本=利润,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设该蔬菜经营户购进黄瓜x千克,购进西红柿y千克,依题意,得:,解得:.答:该蔬菜经营户购进黄瓜10千克,购进西红柿30千克.(2)设当第二天西红柿售价为m元/千克时,这两天的利润率为,依题意,得:10×3+30×4+10×3+50×(1﹣20%)m﹣114﹣(10×2.4+50×3)=(114+10×2.4+50×3)×,解得:m=5.1.答:当第二天西红柿售价为5.1元/千克时,这两天的利润率为.30.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC =90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转直至ON边第一次重合在直线AD上,整个过程时间记为t秒.(1)从旋转开始至结束,整个过程共持续了9 秒;(2)如图2,旋转三角板MON,使得OM、ON在直线OC的异侧,请直接写出∠CON与∠AOM数量关系;如图3,继续旋转三角板MON,使得OM、ON同时在直线OC的右侧,请问上面的数量关系是否仍然成立?并说明理由.(3)若在三角板MON旋转的同时,另一个三角板OBC也绕点O以每秒12°的速度顺时针旋转,当ON边第一次重合在直线AD上时两三角板同时停止.①试用字母t分别表示∠AOM与∠AOC;②在旋转的过程中,当t为何值时OM平分∠AOC.【分析】(1)根据∠NOD=90°即可解决问题;(2)①结论:∠CON﹣∠AOM=45°;由∠CON=90°﹣∠COM,∠AON=45°﹣∠COM,可得∠CON﹣∠AOM=(90°﹣∠COM)﹣(45°﹣∠COM)=45°②如图3中,结论仍然成立.证明方法类似;(3)①∠AOM=10°t,∠AOC=12°t+45°;②由OM平分∠AOC,可得∠AOC=2∠AOM,由此列出方程12°t+45°=2•10°t,即可解决问题;【解答】解:(1)如图1中,∵∠MON=∠NOD=90°,∴t==9s.故答案为9.(2)①结论:∠CON﹣∠AOM=45°;理由:如图2中,∵∠CON=90°﹣∠COM,∠AON=45°﹣∠COM,∴∠CON﹣∠AOM=(90°﹣∠COM)﹣(45°﹣∠COM)=45°②如图3中,结论仍然成立.理由:∵∠CON=90°+∠COM,∠AOM=45°+∠COM,∴∠CON﹣∠AOM=(90°+∠COM)﹣(45°+∠COM)=45°.(3)①∠AOM=10t,∠AOC=12t+45;②∵OM平分∠AOC,∴∠AOC=2∠AOM,∴12t+45°=2×10t,解得:t=,∴当t为s时OM平分∠AOC.。
重庆巴川中学人教版七年级上册数学期末试卷及答案

重庆巴川中学人教版七年级上册数学期末试卷及答案.doc一、选择题1.以下选项中比-2小的是( ) A .0 B .1C .-1.5D .-2.52.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .139 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .3 4.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -5.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 6.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个7.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 8.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣39.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .10.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4 B .﹣2 C .4 D .2 12.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒二、填空题13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.16.化简:2xy xy +=__________.17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 19.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)20.五边形从某一个顶点出发可以引_____条对角线.21.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)22.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到P1(1,1),第2次接着运动到点P2(2,0),第3次接着运动到点P3(3,-2),…,按这的运动规律,点P2019的坐标是_____.23.观察“田”字中各数之间的关系:则c的值为____________________.24.一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm.三、解答题25.解方程组5 37 x yx y+=⎧⎨+=⎩.26.为引导学生“爱读书,多读书,读好书”,某校七(2)班决定购买A、B两种书籍.若购买A种书籍1本和B种书籍3本,共需要180元;若购买A种书籍3本和B种书籍1本,共需要140元.(1)求A、B两种书籍每本各需多少元?(2)该班根据实际情况,要求购买A、B两种书籍总费用不超过700元,并且购买B种书籍的数量是A种书籍的32,求该班本次购买A、B两种书籍有哪几种方案?27.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG 平分∠BOF ,试求∠GOH 的度数.28.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.29.甲乙两站相距450km ,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇? (2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车? (3)快车先开30min ,两车相向而行,慢车行驶多少小时两车相遇? 30.解方程:()2(-2)-3419(1)x x x -=- 四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 33.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【解析】 【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案. 【详解】 根据题意可得:2.52 1.501-<-<-<<, 故答案为:D. 【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.B解析:B 【解析】 【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .3.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.B解析:B 【解析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.5.D解析:D 【解析】 【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程. 【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D . 【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.C解析:C 【解析】①∵AD 平分△ABC 的外角∠EAC , ∴∠EAD=∠DAC ,∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB , ∴∠EAD=∠ABC , ∴AD ∥BC , 故①正确. ②由(1)可知AD ∥BC , ∴∠ADB=∠DBC , ∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABC=2∠ADB , ∵∠ABC=∠ACB , ∴∠ACB=2∠ADB ,③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.9.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.10.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.二、填空题13.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.16..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.17.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】<<,解:45923∴<<,=,a2∴=,b3=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.20.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.22.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.23.【解析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
2019-2020学年重庆八中七年级(上)期末数学试卷

2019-2020学年重庆八中七年级(上)期末数学试卷一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,请将正确答案的代号填涂在答题卡上的相应位置.1.(4分)在6-,0,23-,4这四个数中,最小的数是( ) A .23- B .6- C .0 D .42.(4分)单项式323ab c 的次数为( )A .5B .7C .9D .63.(4分)如图是由完全相同的6个小正方体组成的几何体,则该几何体从上面看为( )A .B .C .D .4.(4分)七边形的内角和是( )A .360︒B .720︒C .900︒D .1260︒5.(4分)城市轨道交通的建设为市民的出行提供了很多便利,截至2019年6月,重庆市形成了由10条运营线路组成,总长达313000米的轨道交通网,将313000用科学记数法表示为( )A .63.1310⨯B .53.1310⨯C .60.31310⨯D .431.310⨯6.(4分)关于x 的一元一次方程331103n x --=,那么n 的值为( ) A .0 B .1 C .23 D .437.(4分)如图,已知线段6AB cm =,在线段AB 的延长线上有一点C ,且4BC cm =,若点M 为AB 中点,那么MC 的长度为( )A .5cmB .6cmC .7cmD .无法确定8.(4分)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是先提价10%,再打九折;乙的方案是先打九折,再提价10%;则甲、乙两个商家对这件商品的最终定价()A .甲比乙多B .乙比甲多C .甲、乙一样多D .无法确定9.(4分)如图,下列条件:①12∠=∠;②45∠=∠;③25180∠+∠=︒;④13∠=∠;⑤64180∠+∠=︒;其中能判断直线12//l l 的有( )A .②③④B .②③⑤C .②④⑤D .②④10.(4分)在2019年全国信息学奥利匹克联赛中,重庆八中学子再创辉煌,竞赛成绩全市领先,共56人获得全国一等奖,同时摘下高一年级组冠军,高二年级组第二名,包揽初二年级组冠、亚、季军.在校内选拔赛时,某位同学连续答题40道,答对一题得5分,答错一题扣2分,最终该同学获得144分.请问这位同学答对多少道题?下面共列出4个方程,其中正确的是 .(多选)A .设答对了x 道题,则可列方程:52(40)144x x --=B .设答错了y 道题,则可列方程:5(40)2144y y --=C .设答对题目得a 分,则可列方程:1444052a a -+= D .设答错题目扣b 分,则可列方程1444052b b --= 二、填空题(每小题4分,共6个小题,共24分)11.(4分)数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为 .12.(4分)已知m 、n 满足2|3|(2)0m n ++-=,那么2021()m n +的值为 .13.(4分)若代数式3a 和213x a --是同类项,则x = .14.(4分)如图,点O 在直线AB 上,OD 平分AOE ∠,90COE ∠=︒,15COD ∠=︒,则BOD ∠的度数为 .15.(4分)若关于x 的方程3752x x -=+的解与关于y 的方程4378y a a +=-的解互为倒数,则a 的值为 .16.(4分)将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠= ︒.三、解答题(共36分)17.(16分)计算、解方程题(1)112()12|6|43-+-⨯+- (2)2331()()2242÷---- (3)823(4)x x +=-- (4)24223x x x ---= 18.(8分)先化简,再求值(1)223(421)332a a a a -+-+-,其中23a =-. (2)22(35)2(542)m mn mn m -+--+,其中22m mn -=.19.(6分)完成下面的证明.如图,已知AD BC ⊥于点D ,EF BC ⊥于点F ,12∠=∠,求证://AB DG 证:AD BC ⊥Q 于D ,EF BC ⊥于(F )90ADB EFB ∴∠=∠=︒(垂直的定义)//(AD EF ∴ )1∴∠= (两直线平行,同位角相等)12∠=∠Q (已知) 2∴∠ ( )//(AB DG ∴ )20.(6分)重庆市第八中学校为给学生营造良好舒适的休息环境,决定改造校园内的一小花园,如图是该花园的平面示意图,它是由6个正方形拼成的长方形用以种植六种不同的植物,已知中间最小的正方形A 的边长是2米,正方形C 、D 边长相等.请根据图形特点求出该花园的总面积.四、填空题与选择题(本大题5个小题,每小题4分,共20分)21.(4分)若代数式22(3)x ax bx x +---的值与字母x 无关,则a b -的值为( )A .0B .2-C .2D .122.(4分)已知数轴上三个点A ,B ,C 对应的有理数分别为a ,b ,c ,且a b c <<,0abc <,0a b c ++=.O 为原点.则下列说法正确的有 .(多选) A .0a b c <<<B .AO CO <C .AO BO CO =+D .OB BC =23.(4分)如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则()a b c --= .24.(4分)A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距 千米.25.(4分)如图,已知//AB CD ,AE 、CE 分别平分FAB ∠、FCD ∠,30F ∠=︒,则E ∠= ︒.五、解答题(共30分)26.(10分)设x 、y 是任意两个有理数,规定x 与y 之间的一种运算“⊕”为:345()435()x y x y x y x y x y +-⎧=⎨+-<⎩⊕… (1)求1(1)-⊕的值; (2)若(2)(3)2m m -+=⊕,求m 的值.27.(10分)已知90AOB EOF ∠=∠=︒,OM 平分AOE ∠,ON 平分BOF ∠.(1)如图1,当OE 在AOB ∠内部时①AOE∠;(填>,=,)<∠BOF②求MON∠的度数;(2)如图2,当OE在AOB∠的度数是否变化?请说明理由.∠外部时,(1)题②的MON28.(10分)尺规作图是指用无刻度的直尺和圆规作图.尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.初中阶段同学们首次接触的尺规作图是“作一条线段等于已知线段”.(1)如图1,在线段AB外有一点C,现在利用尺规作图验证“两点之间线段最短”,<+.请根据提示,用尺规完成作图,并补充验证步骤.AB AC CB第一步,以A为圆心,AC为半径作弧,交线段AB于点M,则AC=;第二步,以B为圆心,BC为半径作弧,交线段AB于点N,则BC=;则AC BC=++=+AB故:AB AC CB<+.(2)如图2,在直线l上,从左往右依次有四个点O,E,O',F,且4='=,10EF=.现OE EO以O为圆心,半径长为r作圆,与直线l两个交点中右侧交点记为点P.再以O'为圆心;相同半径长r作圆,与直线l两个交点中左侧交点记为点Q.若P,Q,F三点中,有一点分另外两点所连线段之比为1:2,求半径r的长.2019-2020学年重庆八中七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,请将正确答案的代号填涂在答题卡上的相应位置.1.(4分)在6-,0,23-,4这四个数中,最小的数是( ) A .23- B .6- C .0 D .4【解答】解:26043-<-<<, ∴在6-,0,23-,4这四个数中,最小的数是6-. 故选:B .2.(4分)单项式323ab c 的次数为( )A .5B .7C .9D .6【解答】解:单项式323ab c 的次数为:6.故选:D .3.(4分)如图是由完全相同的6个小正方体组成的几何体,则该几何体从上面看为( )A .B .C .D .【解答】解:根据俯视图的意义,从上面看,所得到的图形,因此B 选项的图形符合题意, 故选:B .4.(4分)七边形的内角和是( )A .360︒B .720︒C .900︒D .1260︒【解答】解:根据多边形的内角和公式可得:(72)180900-︒=︒g.故选C . 5.(4分)城市轨道交通的建设为市民的出行提供了很多便利,截至2019年6月,重庆市形成了由10条运营线路组成,总长达313000米的轨道交通网,将313000用科学记数法表示为( )A .63.1310⨯B .53.1310⨯C .60.31310⨯D .431.310⨯【解答】解:5313000 3.1310=⨯,故选:B .6.(4分)关于x 的一元一次方程331103n x --=,那么n 的值为( ) A .0 B .1 C .23 D .43【解答】解:由题意得:331n -=,32n =,23n =, 故选:C .7.(4分)如图,已知线段6AB cm =,在线段AB 的延长线上有一点C ,且4BC cm =,若点M 为AB 中点,那么MC 的长度为( )A .5cmB .6cmC .7cmD .无法确定【解答】解:M Q 是线段AB 的中点,6AB cm =,132MB AB cm ∴==, 4BC cm =Q ,347()MC MB BC cm ∴=+=+=,故选:C .8.(4分)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是先提价10%,再打九折;乙的方案是先打九折,再提价10%;则甲、乙两个商家对这件商品的最终定价( )A .甲比乙多B .乙比甲多C .甲、乙一样多D .无法确定【解答】解:甲:把原来的价格看作单位“1”,则1(110%)90%99%⨯+⨯=;乙:把原来的价格看作单位“1”,则190%(110%)99%⨯⨯+=;则甲、乙两个商家对这件商品的最终定价一样多.故选:C .9.(4分)如图,下列条件:①12∠=∠;②45∠=∠;③25180∠+∠=︒;④13∠=∠;⑤64180∠+∠=︒;其中能判断直线12//l l 的有( )A .②③④B .②③⑤C .②④⑤D .②④【解答】解:①由12∠=∠不能得到12//l l ,故本条件不合题意;②45∠=∠Q ,12//l l ∴,故本条件符合题意;③由25180∠+∠=︒不能得到12//l l ,故本条件不合题意;④13∠=∠Q ,12//l l ∴,故本条件符合题意.⑤由64180∠+∠=︒不能得到12//l l ,故本条件不合题意.故选:D .10.(4分)在2019年全国信息学奥利匹克联赛中,重庆八中学子再创辉煌,竞赛成绩全市领先,共56人获得全国一等奖,同时摘下高一年级组冠军,高二年级组第二名,包揽初二年级组冠、亚、季军.在校内选拔赛时,某位同学连续答题40道,答对一题得5分,答错一题扣2分,最终该同学获得144分.请问这位同学答对多少道题?下面共列出4个方程,其中正确的是 AB .(多选)A .设答对了x 道题,则可列方程:52(40)144x x --=B .设答错了y 道题,则可列方程:5(40)2144y y --=C .设答对题目得a 分,则可列方程:1444052a a -+= D .设答错题目扣b 分,则可列方程1444052b b --= 【解答】解:A 、若设答对了x 道题,则可列方程:52(40)144x x --=,故本选项符合题意;B 、若设答错了y 道题,则可列方程:5(40)2144y y --=,故本选项符合题意;C 、若设答对题目得a 分,则可列方程:1444052a a -+=,故本选项不符合题意; D 、设答错题目扣b 分,则可列方程1444052b b -+=,故本选项不符合题意. 故答案是:AB . 二、填空题(每小题4分,共6个小题,共24分)11.(4分)数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为 两点确定一条直线 .【解答】解:两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.故答案为:两点确定一条直线.12.(4分)已知m 、n 满足2|3|(2)0m n ++-=,那么2021()m n +的值为 1- .【解答】解:2|3|(2)0m n ++-=Q ,30m ∴+=,20n -=,3m ∴=-,2n =,20212021()(32)1m n ∴+=-+=-.故答案为:1-.13.(4分)若代数式3a 和213x a --是同类项,则x = 2 .【解答】解:Q 代数式3a 和213x a --是同类项,213x ∴-=,解得2x =.故答案为:214.(4分)如图,点O 在直线AB 上,OD 平分AOE ∠,90COE ∠=︒,15COD ∠=︒,则BOD ∠的度数为 105︒ .【解答】解:90COE ∠=︒Q ,15COD ∠=︒,901575DOE ∴∠=︒-︒=︒OD Q 平分AOE ∠,1752AOD DOE AOE ∴∠=∠=︒=∠, 150AOE ∴∠=︒,18015030BOE ∴∠=︒-︒=︒,3075105BOD BOE DOE ∴∠=∠+∠=︒+︒=︒.15.(4分)若关于x 的方程3752x x -=+的解与关于y 的方程4378y a a +=-的解互为倒数,则a 的值为 169 . 【解答】解:解方程3752x x -=+得92x =-, 根据题意得,方程4378y a a +=-的解为29y =-, 所以24()3789a a ⨯-+=-, 解得169a =. 故答案为169. 16.(4分)将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠= 28 ︒.【解答】解://AD BC Q ,52EFG ∠=︒, 52DEF FEG ∴∠=∠=︒,12180∠+∠=︒,由折叠的性质可得52GEF DEF ∠=∠=︒,1180180525276GEF DEF ∴∠=︒-∠-∠=︒-︒-︒=︒,21801104∴∠=︒-∠=︒,211047628∴∠-∠=︒-︒=︒.故答案为:28.三、解答题(共36分)17.(16分)计算、解方程题(1)112()12|6|43-+-⨯+- (2)2331()()2242÷----(3)823(4)x x +=--(4)24223x x x ---= 【解答】解:(1)原式1121212643=-+⨯-⨯+ 2346=-+-+3=;(2)原式3414232=-⨯+- 1242=-+- 152=-; (3)去括号得:82312x x +=-+,移项合并得:46x =,解得: 1.5x =;(4)去分母得:3(2)62(42)x x x --=-,去括号得:36684x x x --=-,移项合并得:14x =.18.(8分)先化简,再求值(1)223(421)332a a a a -+-+-,其中23a =-. (2)22(35)2(542)m mn mn m -+--+,其中22m mn -=.【解答】解:(1)原式22363332a a a a =--++- 23362a a =--+, 当23a =-时, 原式22233()6()332=-⨯--⨯-+ 43432=-++ 146=; (2)原式22351084m mn mn m =-+-+-211111m mn =-+211()1m mn =-+,当22m mn -=时,原式22123=+=.19.(6分)完成下面的证明.如图,已知AD BC ⊥于点D ,EF BC ⊥于点F ,12∠=∠,求证://AB DG证:AD BC ⊥Q 于D ,EF BC ⊥于(F 已知 )90ADB EFB ∴∠=∠=︒(垂直的定义)//(AD EF ∴ )1∴∠= (两直线平行,同位角相等)12∠=∠Q (已知)2∴∠ ( )//(AB DG ∴ )【解答】证明:AD BC ⊥Q 于D ,EF BC ⊥于F (已知)90ADB EFB ∴∠=∠=︒(垂直的定义)//AD EF ∴(同位角相等,两直线平行)1BAD ∴∠=∠(两直线平行,同位角相等)12∠=∠Q (已知)2BAD ∴∠=∠(等量代换)//(AB DG ∴ 内错角相等,两直线平行);故答案为:已知;同位角相等,两直线平行;BAD ∠;BAD =∠;等量代换;内错角相等,两直线平行.20.(6分)重庆市第八中学校为给学生营造良好舒适的休息环境,决定改造校园内的一小花园,如图是该花园的平面示意图,它是由6个正方形拼成的长方形用以种植六种不同的植物,已知中间最小的正方形A 的边长是2米,正方形C 、D 边长相等.请根据图形特点求出该花园的总面积.【解答】解:设图中最大正方形B 的边长是x 米,Q 最小的正方形的边长是2米,∴正方形F 的边长为(2)x -米,正方形E 的边长为(4)x -米,正方形C 的边长为22x +米. MQ PN =Q ,2242x x x x +∴-+-=+米, 解得:14x =.则121022QM =+=(米),121426PQ =+=(米)故该花园的总面积2226572=⨯=(平方米).答:该花园的总面积是572平方米.四、填空题与选择题(本大题5个小题,每小题4分,共20分)21.(4分)若代数式22(3)x ax bx x +---的值与字母x 无关,则a b -的值为( )A .0B .2-C .2D .1【解答】解:22222(3)3(1)(1)3x ax bx x x ax bx x b x a x +---=+-++=-+++Q ,且代数式的值与字母x 无关,10b ∴-=,10a +=,解得:1a =-,1b =,则112a b -=--=-,故选:B .22.(4分)已知数轴上三个点A ,B ,C 对应的有理数分别为a ,b ,c ,且a b c <<,0abc <,0a b c ++=.O 为原点.则下列说法正确的有 A 、B 、C .(多选) A .0a b c <<<B .AO CO <C .AO BO CO =+D .OB BC =【解答】解:0abc <Q ,a ∴、b 、c 中有一个负数或三个负数,0a b c ++=Q ,a ∴、b 、c 中有一个负数,a b c <<Q ,0a ∴<,0c b >>,故A 正确;0a b c ++=Q ,c b a ∴-=+,OC AO ∴>,故B 正确;c b a -=+Q ,OC OB OA ∴=+,故C 正确;BC b c =-Q ,OB b =,若b c b -=时,0c =,不符合题意,故D 错误;故答案为A 、B 、C .23.(4分)如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则()a b c --= 2- .【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a ”与“c ”是相对面,“b ”与“2-”是相对面,“1”与“1-”是相对面,Q 正方体相对面上的数互为相反数,2b ∴=,0a c +=,()022a b c a b c a c b ∴--=-+=+-=-=-.故答案为:2-.24.(4分)A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距 760 千米.【解答】解:设乙车的平均速度是x 千米/时,则5604(7x +)560=. 解得60x =即乙车的平均速度是60千米/时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(7)t +小时,则80(110%)60(7)t t +=+解得15t =.所以60(7)560760t +-=(千米)故答案是:760.25.(4分)如图,已知//AB CD ,AE 、CE 分别平分FAB ∠、FCD ∠,30F ∠=︒,则E ∠= 15 ︒.【解答】解:延长EA 交CD 于G ,如图所示://AB CD Q ,AGD EAB ∴∠=∠,AE Q 、CE 分别平分FAB ∠、FCD ∠,EAF EAB AGD ∴∠=∠=∠,ECF ECD ∠=∠,AGD ECD E ∠=∠+∠Q ,EAF ECF E ∴∠=∠+∠,CHF AHE ∠=∠Q ,F ECF EAF E ∴∠+∠=∠+∠,即F ECF ECF E E ∠+∠=∠+∠+∠, 1152E F ∴∠=∠=︒. 故答案为:15.五、解答题(共30分)26.(10分)设x 、y 是任意两个有理数,规定x 与y 之间的一种运算“⊕”为:345()435()x y x y x y x y x y +-⎧=⎨+-<⎩⊕… (1)求1(1)-⊕的值;(2)若(2)(3)2m m -+=⊕,求m 的值.【解答】解:(1)根据题中的新定义得:原式314(1)5=⨯+⨯--345=--6=-;(2)显然23m m -<+,利用题中的新定义化简已知等式得:4(2)3(3)53m m -++-=,去括号得:483953m m -++-=,移项合并得:77m =,解得:1m =.27.(10分)已知90AOB EOF ∠=∠=︒,OM 平分AOE ∠,ON 平分BOF ∠.(1)如图1,当OE 在AOB ∠内部时①AOE ∠ = BOF ∠;(填>,=,)<②求MON ∠的度数;(2)如图2,当OE 在AOB ∠外部时,(1)题②的MON ∠的度数是否变化?请说明理由.【解答】解:(1)如图1,①90AOB EOF ∠=∠=︒Q ,90AOB BOE EOF BOE ∴∠-∠=∠-∠=︒,即:AOE BOF ∠=∠,故答案为:=,②OM Q 平分AOE ∠,ON 平分BOF ∠.12AOM EOM AOE ∴∠=∠=∠,12BON FON BOF ∠=∠=∠, 由①得:AOE BOF ∠=∠,AOM EOM BON FON ∴∠=∠=∠=∠,90MON EOM BOE BON AOM EOM BOE AOB ∴∠=∠+∠+∠=∠+∠+∠=∠=︒;(2)如图2,当OE 在AOB ∠外部时,(1)题②的MON ∠的度数不变,理由:OM Q 平分AOE ∠,ON 平分BOF ∠.12AOM EOM AOE ∴∠=∠=∠,12BON FON BOF ∠=∠=∠, 90AOB EOF ∠=∠=︒Q ,AOB BOE EOF BOE ∴∠+∠=∠+∠,即AOE BOF ∠=∠,AOM EOM BON FON∴∠=∠=∠=∠,∴∠=∠+∠+∠=∠+∠=∠=︒;90MON BOM BOE EON BOM AOM AOB28.(10分)尺规作图是指用无刻度的直尺和圆规作图.尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.初中阶段同学们首次接触的尺规作图是“作一条线段等于已知线段”.(1)如图1,在线段AB外有一点C,现在利用尺规作图验证“两点之间线段最短”,<+.请根据提示,用尺规完成作图,并补充验证步骤.AB AC CB第一步,以A为圆心,AC为半径作弧,交线段AB于点M,则AC=AM;第二步,以B为圆心,BC为半径作弧,交线段AB于点N,则BC=;则AC BC=++=+AB故:AB AC CB<+.(2)如图2,在直线l上,从左往右依次有四个点O,E,O',F,且4EF=.现OE EO='=,10以O为圆心,半径长为r作圆,与直线l两个交点中右侧交点记为点P.再以O'为圆心;相同半径长r作圆,与直线l两个交点中左侧交点记为点Q.若P,Q,F三点中,有一点分另外两点所连线段之比为1:2,求半径r的长.【解答】解:(1)第一步,以A为圆心,AC为半径作弧,交线段AB于点M,则AC AM=;第二步,以B为圆心,BC为半径作弧,交线段AB于点N,则BC BN=;则AC BC AM BN AB MN+=+=+.故:AB AC CB<+故答案为:AM,BN,AM,BN,MN;(2)如图1,当12PQQF=时,4OE O E='=Q,10EF=,6O F∴'=,OP O Q r='=,4PE QE r∴==-,82PQ r∴=-,6QF O Q O F r='+'=+.∴821 62rr-=+,解得2r=;如图2,当12QPPF=时,第21页(共21页)8O P r '=-Q ,(8)28PQ O Q O P r r r ∴='-'=--=-, 8614PF O P O F r r ='+'=-+=-, ∴281142r r -=- 解得6r =;如图3,当12PF QP =时, 8O P OQ r '==-Q ,282(8)28PQ O Q O P r r ∴='+'=+-=-, 6(8)14PF O F O P r r ='-'=--=-, ∴141282r r -=- 解得9r =.答:半径的长为2或6或9.。