高考文数题型秘籍【38】直接证明与间接证明(解析版)

合集下载

第二节直接证明与间接证明

第二节直接证明与间接证明

第二节直接证明与间接证明直接证明与间接证明是数学推理中常用的两种证明方法。

直接证明是通过逻辑推理直接得出结论,而间接证明是通过反证法或归谬法得出结论。

以下将详细介绍这两种证明方法,并进行比较。

直接证明是最常见的证明方法之一、它的基本思路是根据已知条件和数学定义,逐步演绎出所要证明的结论。

直接证明需要使用与所要证明的结论相关的定理、性质、定义等来推导,使之成立。

这种方法是一个逐步推进的过程,每一步都必须经过严格的逻辑推理,从已知到结论的推导链条必须清晰、合理。

直接证明通常比较直观,逻辑性较为明显,容易理解。

例如,我们可以通过直接证明来证明“两个相等的数相加,结果仍然相等”。

间接证明是与直接证明相对的一种证明方式。

它的基本思路是假设所要证明的结论不成立,通过逻辑推理得出矛盾或不合理的结论,从而排除了假设的情况,证明了原来的结论是成立的。

间接证明常常采用反证法或归谬法。

反证法是一种最常用的间接证明方法,其基本思路是通过假设结论不成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。

归谬法是一种较少使用的间接证明方法,它的基本思路是假设结论成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。

例如,我们可以通过反证法来证明“根号2是无理数”。

直接证明与间接证明各有其优点和适用范围。

直接证明较为直观和直接,逻辑性更明显,适用于证明一些简单且直接的结论,或是一些简单的数学性质和定理。

间接证明更具有一般性和普遍性,适用于证明复杂的结论,或是一些需要反证或归谬的情况。

通过间接证明,我们可以深入分析和推理,挖掘结论的内在逻辑关系。

间接证明常常需要对结论进行反向思考,找到对立面、矛盾面,通过推导和推理得到最终的结论。

总的来说,直接证明和间接证明是数学推理中常用的两种证明方法。

直接证明通过逻辑推理直接得出结论,适用于一些简单直接的结论。

间接证明通过反证或归谬得出结论,适用于一些复杂或需要反向思考的结论。

直接证明与间接证明

直接证明与间接证明

第4讲直接证明与间接证明讲义讲义一、导入【教学建议】我们知道,合情推理所得结论的正确性是需要证明的,这正是数学区别于其他学科的显著特点,数学结论的正确性必须通过逻辑推理的方式加以证明.综合法和分析法是直接证明中最基本的两种方法,反证法是间接证明的一种直接方法.C先生上了公交车却发现没带钱包,售票员不由分说让他下车,一位小伙子微笑着递过一块钱,C 先生很感激.车上的人开始小声议论C 先生是骗钱的,就在C先生生气准备甩票下车的时候,借钱给他的小伙子大声问:“能不能借一下您的手机?”C先生递过手机,小伙子拨了个号码,说了两三分钟的话,C先生想这下可以证明我的清白了.下车后C先生打开手机愣住了,原来小伙子根本没有拨通电话,但是直接证明了他的清白.二、知识讲解知识点1 综合法1.用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键.2. 综合法证明数学命题的步骤第一步:分析条件,选择方向.认真发掘题目的已知条件,特别是隐含条件,分析已知与结论之间的联系,选择相关的公理、定理、公式、结论,确定恰当的解题方法.第二步:转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.知识点2 分析法1.分析法的推理过程也属于演绎推理,每一步推理都是严密的逻辑推理.2.分析法证明不等式的依据、方法与技巧.(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.知识点3 反证法1.反证法证明数学命题的一般步骤第一步:分清命题“p→q”的条件和结论;第二步:作出与命题结论q相矛盾的假定⌝q(反设);第三步:由p和⌝q出发,应用正确的推理方法,推出矛盾结果(归谬);第四步:断定产生矛盾结果的原因,在于开始所作的假定⌝q不真,于是原结论q成立,从而间接地证明了命题p→q为真.第三步中所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知条件矛盾,与临时假定矛盾以及自相矛盾等各种情况.2.反证法的适用对象作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:(1)直接证明需分多种情况的;(2)结论本身是以否定形式出现的一类命题——否定性命题;(3)关于唯一性、存在性的命题;(4)结论以“至多”、“至少”等形式出现的命题;(5)条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题.三、例题精析【教学建议】分析法和综合法是对立统一的两种方法.一个命题用何种方法证明,要能针对具体问题进行分析,灵活地运用各种证法.当不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目更是行之有效的方法.用反证法证题时,必须把结论的否定作为条件使用,否则就不是反证法.【题干】(1)设A =12a +12b ,B =2a +b(a >0,b >0),则A 、B 的大小关系为________. 【答案】A ≥B【解析】A -B =a +b 2ab -2a +b =)(24)(2b a ab ab b a +-+≥0. 【题干】(2)若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】 A【解析】 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .【题干】(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【答案】 1和3【解析】 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.【题干】(4)设数列{a n }的前n 项和为S n .若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是 例题1“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.【解析】(1)由已知,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m .所以{a n }是“H 数列”.(2)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下面证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 【题干】(1)欲证2−√5<√6−√7成立,只需证( )A .(2−√5)2<(√6−√7)2B .(2−√6)2<(√5−√7)2C .(2+√7)2<(√5+√6)2D .(2−√5−√6)2<(−√7)2【答案】C【解析】由分析法知,欲证2−√5<√6−√7,只需证2+√7<√6+√5,即证(2+√7)2<(√6+√5)2,故选C .【题干】(2)分析法又称执果索因法,已知x >0,用分析法证明1+x <1+x 2时,索的因是( ) A .x 2>1B .x 2>4C .x 2>0D .x 2>1【答案】 C【解析】 因为x >0,所以要证1+x <1+x 2,只需证(1+x )2<⎝⎛⎭⎫1+x 22, 即证0<x 24,即证x 2>0,因为x >0,所以x 2>0成立,故原不等式成立. 【题干】(3)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .【求证】1a +b +1b +c =3a +b +c . 例题2证明:要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立. 【题干】(1)用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________.【答案】 x ≠-1且x ≠1【解析】 “x =-1或x =1”的否定是“x ≠-1且x ≠1”.【题干】(2)设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤【答案】 C【解析】 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.【题干】(3)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不可能成等差数列.【解析】假设1a ,1b ,1c 成等差数列,则2b =1a +1c ,所以2ac=bc+ab.① 因为a ,b ,c 成等差数列,所以2b=a+c.②把②代入①,得2ac=b (a+c )=b ·2b.所以b 2=ac.③由②平方,得4b 2=(a+c )2.④把③代入④,得4ac=(a+c )2,所以(a-c )2=0.所以a=c.例题3代入②,得b=a,故a=b=c,所以数列a,b,c的公差为0.这与已知矛盾,因此假设错误.故1a ,1b,1c不可能成等差数列.。

高考数学一轮 直接证明与间接证明

高考数学一轮 直接证明与间接证明

第38课直接证明与间接证明[最新考纲]1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明(1)反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)反证法的步骤:①反设——假设命题的结论不成立,即假定原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( ) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明时,推出的矛盾不能与假设矛盾.( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案] (1)√ (2)× (3)× (4)√2.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是____________.方程x 2+ax +b =0没有实根 [“方程x 2+ax +b =0至少有一个实根”的反面是“方程x 2+ax +b =0没有实根”.]3.要证明3+7<25,可选择的方法有以下几种,其中最合理的是____________.(填序号)①综合法; ②分析法; ③反证法;④归纳法.② [要证明3+7<25成立,可采用分析法对不等式两边平方后再证明.] 4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +x a +x 的大小关系是__________.b +x a +x >b a [∵b +x a +x -b a =x (a -b )(a +x )a >0, ∴b +x a +x>b a .] 5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.等边[由题意2B=A+C,又A+B+C=π,∴B=π3,又b2=ac,由余弦定理得b2=a2+c2-2ac cos B=a2+c2-ac,∴a2+c2-2ac=0,即(a-c)2=0,∴a=c,∴A=C,∴A=B=C=π3,∴△ABC为等边三角形.]如图38-1ABCD是正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD= 2.(1)求证:平面P AB⊥平面PCD;(2)求三棱锥D-PBC的体积.图38-1[解](1)因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,又CD⊥AD,所以CD⊥平面P AD,所以CD⊥P A.因为P A=PD=22AD,所以△P AD是等腰直角三角形,且∠APD=π2,即P A⊥PD.又CD∩PD=D,所以P A⊥平面PCD又P A⊂平面P AB,所以平面P AB⊥平面PCD.(2)取AD的中点O,连接OP,如图因为P A =PD ,所以PO ⊥AD .因为平面P AD ⊥平面ABCD ,平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .即PO 为三棱锥P -BCD 的高, 由P A =PD =22AD =2,知OP =1.因为底面ABCD 是正方形,所以S △BCD =12×2×2=2.所以V 三棱锥D -PBC =V 三棱锥P -BCD=13PO ·S △BCD =13×1×2=23.[规律方法] 综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用.[变式训练1] 已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图象在交点(0,0)处有公共切线.(1)求a ,b 的值;(2)证明:f (x )≤g (x ). 【导学号:62172205】 [解] (1)f ′(x )=11+x ,g ′(x )=b -x +x 2,由题意得⎩⎪⎨⎪⎧g (0)=f (0),f ′(0)=g ′(0),解得a =0,b =1.(2)证明:令h (x )=f (x )-g (x )=ln(x +1)-13x 3+12x 2-x (x >-1). h ′(x )=1x +1-x 2+x -1=-x 3x +1.所以h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数. h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).已知a >0[证明] 要证a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a + 2.因为a >0,故只需要证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22, 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2,从而只需要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a ,只需要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.[规律方法] 1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规范性.[变式训练2]已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:1a+b+1b+c=3a+b+c.[证明]要证1a+b +1b+c=3a+b+c,即证a+b+ca+b+a+b+cb+c=3,也就是ca+b+ab+c=1,只需证c(b+c)+a(a+b)=(a+b)(b+c),需证c2+a2=ac+b2,又△ABC三内角A,B,C成等差数列,故B=60°,由余弦定理,得b2=c2+a2-2ac cos 60°,即b2=c2+a2-ac,故c2+a2=ac+b2成立.于是原等式成立.设{an}(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.[解](1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1. ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. [规律方法] 用反证法证明问题的步骤:(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论) (2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)[变式训练3] 已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根. 【导学号:62172206】[证明] 假设三个方程都没有实数根,则 ⎩⎪⎨⎪⎧(4a )2-4(-4a +3)<0,(a -1)2-4a 2<0,(2a )2-4×(-2a )<0⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,∴-32<a <-1.这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.[思想与方法]1.综合法与分析法的关系:分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件的关系,找到解题思路,再运用综合法证明;或两种方法交叉使用.2.反证法证题的实质是证明它的逆否命题成立.反证法证明的关键:①准确反设;②从否定的结论正确推理;③得出矛盾.[易错与防范]1.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.2.利用反证法证明数学问题时,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.课时分层训练(三十八)A组基础达标(建议用时:30分钟)一、填空题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的个数有____________.(填序号)①②③④⑤[由分析法、综合法、反证法的定义知①②③④⑤都正确.]2.用反证法证明命题:若整数系数的一元二次方程ax2+bx+c=0(a≠0)有有理实数根,则a,b,c中至少有一个是偶数.下列假设中正确的是____________.(填序号)①假设a,b,c至多有一个是偶数;②假设a,b,c至多有两个偶数;③假设a,b,c都是偶数;④假设a,b,c都不是偶数.④[“至少有一个”的否定为“一个都没有”,即假设a,b,c都不是偶数.]3.若a,b,c为实数,且a<b<0,则下列命题正确的是____________.【导学号:62172207】①ac2<bc2;②a2>ab>b2;③1a<1b;④ba>ab.②[a2-ab=a(a-b),∵a<b<0,∴a-b<0,∴a2-ab>0,∴a2>ab.又ab-b2=b(a-b)>0,∴ab>b2,即a 2>ab >b 2.]4.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是________.(填序号)①a -b >0; ②a -c >0; ③(a -b )(a -c )>0; ④(a -b )(a -c )<0.③ [由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.]5.用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设__________. x ≠-1且x ≠1 [“x =-1或x =1”的否定是“x ≠-1且x ≠1”.]6.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是__________. m <n [法一(取特殊值法):取a =2,b =1,得m <n . 法二(分析法):a -b <a -b ⇐b +a -b >a ⇐a <b +2b ·a -b +a -b⇐2b ·a -b >0,显然成立.]7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是__________.3 [要使b a +a b ≥2,只要b a >0,且ab >0,即a ,b 不为0且同号即可,故有3个.] 8.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)____________0.(填“>”“<”或“=”) 【导学号:62172208】< [∵x 1+x 2>0,∴x 1>-x 2,又f (x )是奇函数,且在[0,+∞)上单调递减,故f (x )在R 上单调递减,故f (x 1)<f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)<0.]9.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为____________.A ≤B ≤C [∵a +b 2≥ab ≥2ab a +b,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数. ∴f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,即A ≤B ≤C .] 10.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为____________. 332[∵f (x )=sin x 在区间(0,π)上是凸函数, 且A 、B 、C 、∈(0,π),∴f (A )+f (B )+f (C )3≤f ⎝ ⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3, 即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.]二、解答题11.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .[证明] 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a3-b3-2ab2+a2b≥0,即2a(a2-b2)+b(a2-b2)≥0,即(a+b)(a-b)(2a+b)≥0.∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0,从而(a+b)(a-b)(2a+b)≥0成立,∴2a3-b3≥2ab2-a2b.12.设数列{a n}是公比为q的等比数列,S n是它的前n项和.(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?【导学号:62172209】[解](1)证明:假设数列{S n}是等比数列,则S22=S1S3,即a21(1+q)2=a1·a1·(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{S n}不是等比数列.(2)当q=1时,S n=na1,故{S n}是等差数列;当q≠1时,{S n}不是等差数列,否则2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.综上,当q=1时,数列{S n}是等差数列;当q≠1时,数列{S n}不是等差数列.B组能力提升(建议用时:15分钟)1.设x,y,z>0,则三个数yx+yz,zx+zy,xz+xy____________.(填序号)①都大于2; ②至少有一个大于2;③至少有一个不小于2; ④至少有一个不大于2.③ [因为x >0,y >0,z >0,所以⎝ ⎛⎭⎪⎫y x +y z +⎝ ⎛⎭⎪⎫z x +z y +⎝ ⎛⎭⎪⎫x z +x y =⎝ ⎛⎭⎪⎫y x +x y +⎝ ⎛⎭⎪⎫y z +z y +⎝ ⎛⎭⎪⎫x z +z x ≥6, 当且仅当x =y =z 时等号成立,则三个数中至少有一个不小于2.]2.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则下列说法正确的是____________.(填序号)①△A 1B 1C 1和△A 2B 2C 2都是锐角三角形;②△A 1B 1C 1和△A 2B 2C 2都是钝角三角形;③△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形;④△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形;④ [由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.]3.已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N +). (1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式; (2)设b n =a n a n +1(n ∈N +),数列{b n }的前n 项和记为T n ,证明:T n <16.[解] (1)由已知可得,当n ∈N +时,a n +1=a n 3a n +1. 两边取倒数得,1a n +1=3a n +1a n =1a n +3, 即1a n +1-1a n=3, 所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=2,公差为3的等差数列,其通项公式为1a n =1a 1+(n -1)×3=2+(n -1)×3=3n -1. 所以数列{a n }的通项公式为a n =13n -1. (2)证明:由(1)知a n =13n -1,故b n =a n a n +1=13n -1×13(n +1)-1=1(3n -1)(3n +2)=13⎝ ⎛⎭⎪⎫13n -1-13n +2, 故T n =b 1+b 2+…+b n=13×⎝ ⎛⎭⎪⎫12-15+13×⎝ ⎛⎭⎪⎫15-18+…+13×⎝ ⎛⎭⎪⎫13n -1-13n +2 =13⎝⎛⎭⎪⎫12-13n +2=16-13×13n +2.因为13n +2>0,所以T n <16.4.若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3.因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧ h (a )=b ,h (b )=a ,即⎩⎨⎧ 1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.。

直接证明与间接证明_知识讲解

直接证明与间接证明_知识讲解

直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。

直接证明与间接证明-高考数学知识点

直接证明与间接证明-高考数学知识点

直接证明与间接证明-高考数学知识点
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.
2.证明基本步骤:假设原命题的结论不成立→从假设出发,经推理论证得到矛盾→矛盾的原因是假设不成立,从而原命题的结论成立
3.应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).
4.方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.
二、分析法与综合法的关系
①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.。

直接证明与间接证明_分析法

直接证明与间接证明_分析法

直接证明与间接证明_分析法直接证明和间接证明是逻辑学中的两种证明方法。

直接证明是通过事实和逻辑推理直接得出结论的方法,而间接证明则是通过反证法来达到证明的目的。

下面将从分析法的角度来探讨直接证明和间接证明的特点和应用。

首先,直接证明是一种简洁明确的证明方法。

它通过逐步展示事实和推理过程,直接地得出结论。

直接证明要求每一步的推理都是严谨和合乎逻辑的,不允许出现漏洞和错误。

直接证明的优点在于它的证明过程清晰明了,逻辑性强,容易理解和接受。

对于一些简单的问题,直接证明是最常见和最有效的证明方法。

其次,直接证明适用于一些直观的、已知的情况。

例如,要证明一个三角形的三个内角之和等于180度,可以通过直接证明来达到目的。

我们可以利用平行线和同位角的性质,逐步推导出对应角相等,从而得出结论。

这种情况下,我们有直观的几何图形和一些已知的性质,通过推理和演绎可以直接得出结论。

然而,直接证明也有一定的局限性。

对于一些复杂的问题,直接证明可能会变得更加困难和繁琐。

有时候,问题本身的复杂性以及需要证明的结论的复杂性会导致直接证明的推理过程变得更加难以理解和掌握。

在这种情况下,间接证明就可以派上用场。

间接证明是一种通过反证法推导出结论的方法。

它假设待证命题的否定是成立的,然后通过推理和推导得出矛盾的结论,从而证明了原命题的正确性。

间接证明的优点在于它能够化复杂的问题为简单的矛盾,通过推理和演绎来证明原命题的正确性。

它可以避免直接证明中的复杂推理和繁琐的计算。

间接证明适用于一些复杂、难以直接证明的问题。

例如,欧几里得几何中的数学定理费马大定理就是一个典型的间接证明的例子。

费马大定理认为不存在任何正整数n大于2的整数解(x,y,z),使得x^n+y^n=z^n成立。

然而,这个定理的直接证明非常困难。

数学家费马通过间接证明的方法证明了该定理的正确性,从而为数学界做出了重大贡献。

总结起来,直接证明和间接证明是逻辑学中两种常见的证明方法。

2020届高考数学理一轮(新课标通用)考点测试38 直接证明与间接证明

2020届高考数学理一轮(新课标通用)考点测试38 直接证明与间接证明

考点测试38直接证明与间接证明高考概览高考在本考点的常考题型为解答题,分值12分,中、高等难度考纲研读1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点2.了解反证法的思考过程和特点一、基础小题1.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)·(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.间接证明法★答案★B解析因为证明过程是“从左往右”,即由条件⇒结论.2.用反证法证明结论“三角形内角至少有一个不大于60°”,应假设() A.三个内角至多有一个大于60°B.三个内角都不大于60°C.三个内角都大于60°D.三个内角至多有两个大于60°★答案★C解析“三角形内角至少有一个不大于60°”即“三个内角至少有一个小于等于60°”,其否定为“三角形内角都大于60°”.故选C.3.若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.证明过程如下:∵a,b,c∈R,∴a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac.又∵a,b,c不全相等,∴以上三式至少有一个“=”不成立.∴将以上三式相加得2(a2+b2+c2)>2(ab+bc+ac).∴a2+b2+c2>ab+bc+ca.此证法是()A.分析法B.综合法C.分析法与综合法并用D.反证法★答案★B解析由已知条件入手证明结论成立,满足综合法的定义.4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac<3a”索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0★答案★C解析b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2<0⇔-2a2+ac+c2<0⇔2a2-ac-c2>0⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.5.若P=a+a+7,Q=a+3+a+4,a≥0,则P,Q的大小关系是() A.P>Q B.P=QC.P<Q D.由a的取值确定★答案★C解析令a=0,则P=7≈2.6,Q=3+4≈3.7,∴P<Q.据此猜想a≥0时P<Q.证明如下:要证P<Q,只要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),只要证a2+7a<a2+7a+12,只要证0<12,∵0<12成立,∴P<Q成立.故选C.6.两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位如图所示,则下列座位号码符合要求的应当是()A.48,49★答案★D解析由已知图形中座位的排序规律可知,被5除余1的数和能被5整除的座位号靠窗,由于两旅客希望座位连在一起,且有一个靠窗,分析★答案★中的4组座位号知,只有D符合条件.7.有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是()A.甲B.乙C.丙D.丁解析 若1,2号得第一名,则乙丙丁都对,若3号得第一名,则只有丁对,若4,5号得第一名,则甲乙都对,若6号得第一名,则乙丙都对,因此只有丁猜对.故选D .8.记S =1210+1210+1+1210+2+…+1211-1,则S 与1的大小关系是________. ★答案★ S <1 解析 ∵1210+1<1210,1210+2<1210,…, 1211-1=1210+210-1<1210, ∴S =1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210=1. 二、高考小题9.(2014·山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 ★答案★ A解析 “方程x 3+ax +b =0至少有一个实根”的否定是“方程x 3+ax +b =0没有实根”.三、模拟小题10.(2019·山东济南模拟)用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数解析 “至少有一个”的否定为“都不是”,故选B .11.(2018·宁夏银川调研)设a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中正确判断的个数为( ) A .0 B .1 C .2 D .3 ★答案★ C解析 ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.12.(2018·长春模拟)设a ,b ,c 都是正数,则a +1b ,b +1c ,c +1a 三个数( ) A .都大于2 B .都小于2C .至少有一个不大于2D .至少有一个不小于2 ★答案★ D解析 假设a +1b ,b +1c ,c +1a 都小于2,则有a +1b +b +1c +c +1a <6. 因为a ,b ,c 都是正数, 所以a +1b +b +1c +c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥2a ·1a +2b ·1b +2c ·1c =6,这与a +1b +b +1c +c +1a <6矛盾,故假设不成立,所以a +1a ,b +1b ,c +1a 至少有一个不小于2.故选D . 13.(2018·山东烟台模拟)设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是________.★答案★ n >m解析解法一(取特殊值法):取a=2,b=1,则m<n.解法二(分析法):a-b<a-b⇐b+a-b>a⇐a<b+2b·a-b+a-b⇐2b·a-b>0,显然成立.一、高考大题1.(2018·北京高考)设n为正整数,集合A={α|α=(t1,t2,…,t n),t k∈{0,1},k=1,2,…,n}.对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…,y n),记M(α,β)=12[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(x n+y n-|x n-y n|)].(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.解(1)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=12[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,M(α,β)=12[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.(2)设α=(x1,x2,x3,x4)∈B,则M(α,α)=x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β均有M (α,β)=1. 所以每组中的两个元素不可能同时是集合B 的元素. 所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(3)设S k ={(x 1,x 2,…,x n )|(x 1,x 2,…,x n )∈A , x k =1,x 1=x 2=…=x k -1=0}(k =1,2,…,n ), S n +1={(x 1,x 2,…,x n )|x 1=x 2=…=x n =0}, 所以A =S 1∪S 2∪…∪S n +1.对于S k (k =1,2,…,n -1)中的不同元素α,β,经验证,M (α,β)≥1. 所以S k (k =1,2,…,n -1)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过n +1.取e k =(x 1,x 2,…,x n )∈S k 且x k +1=…=x n =0(k =1,2,…,n -1). 令B ={e 1,e 2,…,e n -1}∪S n ∪S n +1,则集合B 的元素个数为n +1,且满足条件.故B 是一个满足条件且元素个数最多的集合.2.(2018·江苏高考)记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数,若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”; (2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值; (3)已知函数f (x )=-x 2+a ,g (x )=b e xx ,对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.解 (1)证明:函数f (x )=x ,g (x )=x 2+2x -2, 则f ′(x )=1,g ′(x )=2x +2, 由f (x )=g (x )且f ′(x )=g ′(x ), 得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解. 因此,f (x )=x 与g (x )=x 2+2x -2不存在“S 点”.(2)函数f (x )=ax 2-1,g (x )=ln x , 则f ′(x )=2ax ,g ′(x )=1x ,设x 0为f (x )与g (x )的“S 点”,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 2-1=ln x 0,2ax 20=1,(*) 得ln x 0=-12,即x 0=e -12,则a =12(e -12)2=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”,因此,a 的值为e2. (3)f ′(x )=-2x ,g ′(x )=b e x (x -1)x 2,x ≠0,f ′(x 0)=g ′(x 0)⇒b e x 0=-2x 30x 0-1>0⇒x 0∈(0,1),f (x 0)=g (x 0)⇒-x 20+a =b e x 0x 0=-2x 2x 0-1⇒ a =x 20-2x 20x 0-1, 令h (x )=x 2-2x 2x -1-a =-x 3+3x 2+ax -a 1-x ,x ∈(0,1),a >0,设m (x )=-x 3+3x 2+ax -a ,x ∈(0,1),a >0, 则m (0)=-a <0,m (1)=2>0⇒m (0)·m (1)<0, 又m (x )的图象在(0,1)上连续不断,∴m (x )在(0,1)上有零点,则h (x )在(0,1)上有零点.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.二、模拟大题3.(2018·贵州安顺调研)已知函数f (x )=3x -2x ,求证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f x 1+x 22.证明 要证明f (x 1)+f (x 2)2≥f ⎝⎛⎭⎪⎫x 1+x 22, 即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2, 由于x 1,x 2∈R 时,3x 1>0,3x 2>0, 由基本不等式知3x 1+3x 22≥3x 1·3x 2(当且仅当x 1=x 2时等号成立)显然成立, 故原结论成立.4.(2018·山东临沂三校联考)已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. 解 (1)当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1. (2)证明(反证法):假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r+1(p <q <r ,且p ,q ,r ∈N *), 则2·12q =12p +12r , 所以2·2r -q =2r -p +1.①又因为p <q <r ,且p ,q ,r ∈N *,所以r -q ,r -p ∈N *. 所以①式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

高三数学考点-直接证明与间接证明

高三数学考点-直接证明与间接证明

12.3 直接证明与间接证明1.直接证明(1)综合法:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的____________,最后推导出所要证明的结论________,这种证明方法叫做综合法.综合法又叫顺推证法或__________法.(2)分析法:一般地,从要证明的________出发,逐步寻求使它成立的____________,直至最后,把要证明的__________归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.分析法又叫逆推证法或__________法.(3)综合法和分析法,是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式. 2.间接证明反证法:一般地,假设原命题____________(即在原命题的条件下,结论____________),经过______________,最后得出__________.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾.因此说明假设________,从而证明了原命题成立,这样的证明方法叫做反证法.反证法是间接证明的一种基本方法.自查自纠1.(1)推理论证 成立 由因导果 (2)结论 充分条件 结论 执果索因2.不成立 不成立 正确的推理 矛盾 错误要证明3+7<25,以下方法中最合理的是( ) A .分析法 B .综合法 C .反证法 D .数学归纳法 解:“执果索因”最佳,即分析法.故选A .(2015·黄冈高二检测)设a ,b ∈R ,且a ≠b ,a +b =2,则必有( )A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1 D.a 2+b 22<1<ab解:ab <⎝⎛⎭⎫a +b 22=1<a 2+b 22(a ≠b ).故选B .设a 、b 、c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .都小于2C .至少有一个大于2D .至少有一个不小于2 解:因为a ,b ,c >0,所以a +1b +b +1c +c +1a ≥6,举反例可排除A 、B 、C.或直接由a =b =c =1排除A ,B ,C.故选D .用反证法证明“如果a >b ,那么3a >3b ”,假设内容应是____________.解:原条件不变,假设结论不成立.故填3a =3b 或3a<3b.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,则∠A =∠B =90°不成立; ②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为____________.解:由反证法证明的步骤知,先反设,即③,再推出矛盾,即①,最后作出判断,肯定结论,即②,顺序应为③①②.故填③①②.类型一 直接证明已知a ,b ,c ∈R +,求证:a 2+b 2+c 23≥a +b +c3. 证法一:采用分析法.要证a 2+b 2+c 23≥a +b +c3,只需证a 2+b 2+c 23≥⎝⎛⎭⎫a +b +c 32,只需证3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ca , 只需证2(a 2+b 2+c 2)≥2ab +2bc +2ca ,只需证(a -b )2+(b -c )2+(c -a )2≥0,而这是显然成立的, 所以a 2+b 2+c 23≥a +b +c3成立(当且仅当a =b =c 时等号成立).证法二:采用综合法.因为a ,b ,c ∈R +,所以(a -b )2+(b -c )2+(c -a )2≥0, 所以2(a 2+b 2+c 2)≥2(ab +bc +ac ),所以3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ac ,所以3(a 2+b 2+c 2)≥(a +b +c )2, 所以a 2+b 2+c 23≥a +b +c3(当且仅当a =b =c 时等号成立).【点拨】分析法与综合法是直接证明常用的两种方法,前者是“执果索因”,后者是“由因导果”.常用分析法探索证明路径,再用综合法进行表述.已知:a >0,b >0,a +b =1. 求证:a +12+b +12≤2.证明:要证a +12+b +12≤2,只需证a +12+b +12+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4, 又a +b =1,故只需证⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤1, 只需证⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12=ab +12(a +b )+14≤1,只需证ab ≤14.因为a >0,b >0,1=a +b ≥2ab ,所以ab ≤14,故原不等式成立⎝⎛⎭⎫当且仅当a =b =12时取等号. 类型二 间接证明已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.证法一:假设三式同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,因为a ,b ,c ∈(0,1),所以三式同向相乘得(1-a )b (1-b )c (1-c )a >164.又(1-a )a ≤⎝⎛⎭⎫1-a +a 22=14,同理(1-b )b ≤14,(1-c )c ≤14,所以(1-a )a (1-b )b (1-c )c ≤164,这与假设矛盾,故原命题正确.证法二:假设三式同时大于14,因为0<a <1,所以1-a >0, (1-a )+b 2≥(1-a )b >14=12, 同理(1-b )+c 2>12,(1-c )+a 2>12,三式相加得32>32,这是矛盾的,故假设错误,所以原命题正确.【点拨】一般地,对于结论是“都是”“都不是”“至多”“至少”形式的数学问题,或直接从正面入手难以寻觅解题突破口的问题,宜考虑用反证法,这体现了“正难则反”的思想,用反证法解题时,推导出矛盾是关键一步,途径很多,可以与已知矛盾、与假设矛盾、与已知事实相违背等,但推导出的矛盾必须是明显的.(1)(2016·周口模拟)用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 中恰有1个或3个偶数”时正确反设为( ) A .自然数a ,b ,c 都是奇数 B .自然数a ,b ,c 都是偶数 C .自然数a ,b ,c 中恰有两个偶数D .自然数a ,b ,c 中都是奇数或恰有两个偶数解:由于“自然数a ,b ,c 中恰有1个或3个偶数”的否定是“自然数a ,b ,c 都是奇数或恰有两个偶数”,故选D .(2)已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.解:假设x 0是f (x )的负数根,则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,所以0<ax 0<1⇒0<-x 0-2x 0+1<1,解得12<x 0<2,这与x 0<0矛盾,故方程f (x )=0没有负数根.1.综合法又叫顺推证法或由因导果法,它是从“已知”看“可知”,逐步推向“未知”,其逐步推理是在寻求它的必要条件.综合法的解题步骤用符号表示是:P (已知)⇒Q 1⇒Q 2⇒Q 3⇒…⇒Q n ⇒Q (结论).2.分析法又叫逆推证法或执果索因法,它是从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理的实质是寻求使结论成立的充分条件.分析法的解题步骤用符号表示是:B (结论)⇐B 1⇐B 2⇐…⇐B n ⇐A (已知). 3.分析法与综合法的综合应用分析法和综合法是两种思路相反的推理证明方法,二者各有优缺点.分析法思考起来比较自然,容易找到解题的思路和方法,缺点是思路逆行,叙述较繁,且表述易错;综合法条理清晰,宜于表述,缺点是探路艰难,易生枝节.在证明数学问题的过程中分析法和综合法往往是相互结合的,先用分析法探索证明途径,然后再用综合法表述.4.用反证法证明命题的一般步骤: (1)分清命题的条件和结论; (2)做出与命题结论相矛盾的假设;(3)由假设出发,应用正确的推理方法,推出与已知条件,或与假设矛盾,或与定义、公理、定理、事实等矛盾的结果;(4)断定产生矛盾的原因是假设不真,于是原结论成立,从而间接地证明命题为真. 5.可用反证法证明的数学命题类型 (1)结论是否定形式的命题;(2)结论是以至多、至少、唯一等语句给出的命题; (3)结论的反面是较明显或较易证明的命题;(4)用直接法较难证明或需要分成多种情形进行分类讨论的命题. 6.常见的“结论词”与“反设词”原结论词 反设词 原结论词 反设词 至少有一个 没有一个 ∀x 成立 ∃x 0不成立 至多有一个 至少有两个 ∀x 不成立 ∃x 0成立 至少有n 个 至多有n -1个 p 或q p 且 q 至多有n 个至少有n +1个p 且qp 或 q1.用分析法证明:欲使①A >B ,只需②C <D .这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件解:分析法证明的本质是证明使结论成立的充分条件成立,即②⇒①,所以①是②的必要条件.故选B .2.用反证法证明命题:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数时,下列假设中正确的是( ) A .假设a ,b ,c 都是偶数 B .假设a ,b ,c 都不是偶数 C .假设a ,b ,c 中至多有一个偶数 D .假设a ,b ,c 中至多有两个偶数解:“a ,b ,c 中至少有一个是偶数”的否定为“a ,b ,c 都不是偶数”.故选B . 3.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是( ) A .a >b >c B .b >c >aC .c >a >bD .a >c >b解:因为a =3-2=13+2,b =6-5=16+5,c =7-6=17+6,且7+6>6+5>3+2>0,所以a >b >c .故选A .4.若a >b >0,且x =a +1b ,y =b +1a,则( )A .x >yB .x <yC .x ≥yD .x ≤y 解:因为a +1b -⎝⎛⎭⎫b +1a =(a -b )⎝⎛⎭⎫1+1ab >0.所以a +1b >b +1a.故选A . 5.已知a >b >0,且ab =1,若0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( ) A .p >q B .p <qC .p =qD .p ≥q解:因为a 2+b 22>ab =1,所以p =log c a 2+b 22<0.又q =log c ⎝ ⎛⎭⎪⎫1a +b 2=log c 1a +b +2ab >log c 14ab =log c 14>0,所以q >p .故选B .6.设[x ]表示不大于x 的最大整数,则对任意实数x ,y ,有( ) A .[-x ]=-[x ] B .[2x ]=2[x ] C .[x +y ]≤[x ]+[y ] D .[x -y ]≤[x ]-[y ]解:取x =1.6,y =2.7,则[x ]=[1.6]=1,[y ]=[2.7]=2,[2x ]=[3.2]=3,[-x ]=[-1.6]=-2,故A ,B 错误;[x +y ]=[1.6+2.7]=4,故C 错.故选D .7.设a >b >0,x =a a +b b ,y =a b +b a ,则x ,y 的大小关系是________.解:x -y =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b )>0.所以x >y .故填x>y. 8.(2015·河北保定高二期末)设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是__________.(填序号)解:若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,若a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.故填③.9.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R . (1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b ); (2)判断(1)中命题的逆命题是否成立,并证明你的结论.解:(1)证明:因为a +b ≥0,所以a ≥-b . 因为f (x )在R 上单调递增,所以f (a )≥f (-b ). 同理,a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ). 两式相加即得:f (a )+f (b )≥f (-a )+f (-b ). (2)(1)中命题的逆命题为:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0. 该命题成立,下面用反证法证之. 假设a +b <0,那么: a +b <0⇒a <-b ⇒f (a )<f (-b ), a +b <0⇒b <-a ⇒f (b )<f (-a ), 所以f (a )+f (b )<f (-a )+f (-b ).这与已知矛盾,故a +b ≥0.逆命题得证.10.已知a ,b 是不等正数,且a 3-b 3=a 2-b 2,求证:1<a +b <43.证明:因为a 3-b 3=a 2-b 2且a ≠b , 所以a 2+ab +b 2=a +b ,由(a +b )2=a 2+2ab +b 2>a 2+ab +b 2得 (a +b )2>a +b ,又a +b >0,所以a +b >1.要证a +b <43,即证3(a +b )<4,因为a +b >0,所以只需证明3(a +b )2<4(a +b ), 又a +b =a 2+ab +b 2, 即证3(a +b )2<4(a 2+ab +b 2), 也就是证明(a -b )2>0.因为a ,b 是不等正数,故(a -b )2>0成立.故a +b <43成立.综上,得1<a +b <43.11.已知a >0,b >0,且a +b =1,求证:⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254. 证明:要证⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254, 只需证ab +a 2+b 2+1ab ≥254,只需证4(ab )2+4(a 2+b 2)-25ab +4≥0, 只需证4(ab )2+8ab -25ab +4≥0,只需证4(ab )2-17ab +4≥0, 即证ab ≥4或ab ≤14,只需证ab ≤14,而由1=a +b ≥2ab ,所以ab ≤14显然成立,所以原不等式⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254成立. 已知α为锐角,且tan α=2-1,函数f (x )=x 2tan2α+x ·sin ⎝⎛⎭⎫2α+π4,数列{a n }的首项a 1=12,a n +1=f (a n ).(1)求函数f (x )的表达式;(2)求证:a n +1>a n ;(3)求证:1<11+a 1+11+a 2+…+11+a n<2(n ≥2,n ∈N *).解:(1)tan2α=2tan α1-tan 2α=2(2-1)1-(2-1)2=1,又因为α为锐角,所以2α=π4,所以sin ⎝⎛⎭⎫2α+π4=1,f (x )=x 2+x .(2)证明:a n +1=a 2n +a n ,因为a 1=12,所以a 2,a 3,…,a n 都大于0, 所以a 2n >0,所以a n +1>a n .(3)证明:1a n +1=1a 2n +a n =1a n (1+a n )=1a n -11+a n ,所以11+a n =1a n -1a n +1,所以11+a 1+11+a 2+…+11+a n =1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=2-1a n +1,因为a 2=⎝⎛⎭⎫122+12=34,a 3=⎝⎛⎭⎫342+34>1,又因为n ≥2,a n +1>a n ,所以n ≥2时,a n +1≥a 3>1,所以1<2-1a n +1<2,所以1<11+a 1+11+a 2+…+11+a n<2.。

高中数学知识点精讲精析 直接证明与间接证明

高中数学知识点精讲精析 直接证明与间接证明

2.2 直接证明与间接证明1.直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。

综合法 一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。

分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

2.间接证明是相对于直接证明说的,反证法是间接证明常用的方法。

3.反证法假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

1.用直接证法和反证法分别证明:如果a >b >0,那么;【解析】 (1)假设不大于,则或者<,或者=.∵a >0,b>0,∴<<,<, a <b ;=a =b .这些都同已知条件a > b >0矛盾,∴.证法二(直接证法),∵a >b>0,∴a - b >0 即,∴,∴.2.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,…. (Ⅰ)求a 1,a 2;(Ⅱ)猜想{a n }的通项公式. 【解析】(Ⅰ)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是(a 2-12)2-a 2(a 2-12)-a 2=0,解得a 1=16.(Ⅱ)由题设(S n -1)2-a n (S n -1)-a n =0,S n 2-2S n +1-a n S n =0.当n ≥2时,a n =S n -S n-1,代入上式得S n -1S n -2S n +1=0 ,①由(Ⅰ)知S 1=a 1=12,S 2=a 1+a 2=12+16=23.3. 已知0,,≠∈b a R b a 且,则在①ab b a ≥+222;②2≥+b aa b ; ③2)2(b a ab +≤;④2)2(222b a b a +≤+ 这四个式子中,恒成立的个数是 ( )A 1个B 2个C 3个D 4个 答案:C 。

2021年高考数学考点38直接证明与间接证明必刷题理含解析

2021年高考数学考点38直接证明与间接证明必刷题理含解析

考点38 直接证明与间接证明1.用反证法证明数学命题时,首先应该做出与命题结论相反的假设,否定“自然数中恰有一个偶数”时正确的反设为 ( )A.自然数都是奇数 B.自然数都是偶数C.自然数至少有两个偶数或都是奇数 D.自然数至少有两个偶数【答案】C【解析】命题的否定是命题本题反面的所有情况,所以“自然数中恰有一个偶数”的否定是“自然数至少有两个偶数或都是奇数”,选C.2.用反证法证明命题:“若整系数一元二次方程有有理根,那么,,中至少有一个是偶数”时,下列假设中正确的是().A.假设,,都是偶数B.假设,,都不是偶数C.假设,,至多有一个是偶数D.假设,,至多有两个是偶数【答案】B3.用反证法证明命题“等腰三角形的底角必是锐角”,下列假设正确的是()A.等腰三角形的顶角不是锐角 B.等腰三角形的底角为直角C.等腰三角形的底角为钝角 D.等腰三角形的底角为直角或钝角【答案】D【解析】分析:反证法的假设需要写出命题的反面,结合题意写出所给命题的反面即可.详解:反证法的假设需要写出命题的反面.“底角必是锐角”的反面是“底角不是锐角”,即底角为直角或钝角.本题选择D选项.4.用反证法证明命题“若都是正数,则三数中至少有一个不小于2”,提出的假设是()A.不全是正数 B.至少有一个小于2C.都是负数 D.都小于2【答案】D5.用反证法证明命题:“三角形的内角中至少有一个不大于”时,假设正确的是()A.假设三内角都不大于 B.假设三内角都大于C.假设三内角至多有一个大于 D.假设三内角至多有两个大于【答案】B【解析】根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B.6.①已知,是实数,若,则且,用反证法证明时,可假设且;②设为实数,,求证与中至少有一个不小于,用反证法证明时,可假设,且.则A.①的假设正确,②的假设错误 B.①的假设错误,②的假设正确C.①与②的假设都错误 D.①与②的假设都正确【答案】B7.用反证法证明“三角形中至少有两个锐角”,下列假设正确的是()A.三角形中至多有两个锐角 B.三角形中至多只有一个锐角C.三角形中三个角都是锐角 D.三角形中没有一个角是锐角【解析】用反证法证明“一个三角形中至少有两个锐角”时,应先假设“一个三角形中最多有一个锐角”.故选:B.8.用反证法证明命题“已知为整数,若不是偶数,则都不是偶数”时,下列假设中正确的是()A.假设都是偶数 B.假设中至多有一个偶数C.假设都不是奇数 D.假设中至少有一个偶数【答案】D【解析】由于“都不是”的否定是“不都是”,即“至少有一个”,所以应该假设中至少有一个偶数,故选D.9.已知实数满足,,用反证法证明:中至少有一个小于0.下列假设正确的是()A.假设至多有一个小于0B.假设中至多有两个大于0C.假设都大于0D.假设都是非负数【答案】D【解析】由于命题“若a,b,c,d中至少有一个小于0”的反面是“a,b,c,d都是非负数”,故用反证法证明时假设应为“a,b,c,d都是非负数”.故选D.10.对于命题:,若用反证法证明该命题,下列假设正确的是().A.假设,都不为0 B.假设,至少有一个不为0C.假设,都为0 D.假设,中至多有一个为0【答案】A11.用反证法证明“已知,求证:.”时,应假设( )A. B. C.且 D.或【解析】根据反证法证明数学命题的方法,应先假设要证命题的否定成立,而的否定为“不都为零”,故选D.12.用反证法证明命题“已知为非零实数,且,,求证中至少有两个为正数”时,要做的假设是()A.中至少有两个为负数 B.中至多有一个为负数C.中至多有两个为正数 D.中至多有两个为负数【答案】A【解析】用反证法证明某命题时,应先假设命题的否定成立,而:“中至少有二个为正数”的否定为:“中至少有二个为负数”.故选A.13.设函数,.(Ⅰ)讨论函数的单调性;(Ⅱ)当时,函数恰有两个零点,证明:【答案】(1) 当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减.(2)证明见解析.14.若无穷数列满足:是正实数,当时,,则称是“-数列”.已知数列是“-数列”.(Ⅰ)若,写出的所有可能值;(Ⅱ)证明:是等差数列当且仅当单调递减;(Ⅲ)若存在正整数,对任意正整数,都有,证明:是数列的最大项.【答案】(1)-2,0,2,8.(2)见解析(3)见解析15.已知集合{}128=,,...,X x x x 是集合{2001,2002,2003,,2016,S =2017}的一个含有8个元素的子集.(Ⅰ)当{}2001,2002,2005,2007,2011,2013,2016,2017X =时, 设(),1,8,i j x x X i j ∈≤≤(i )写出方程2i j x x -=的解(),i j x x ;(ii )若方程(0)i j x x k k -=>至少有三组不同的解,写出k 的所有可能取值.(Ⅱ)证明:对任意一个X ,存在正整数,k 使得方程(1,i j x x k i -=≤8)j ≤至少有三组不同的解. 【答案】(Ⅰ)(i )()()2007,2005,2013,2011,(ii )4,6;(Ⅱ)证明见解析.假设不存在满足条件的k ,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而()()()1271262126749a a a b b b ++⋅⋅⋅++++⋅⋅⋅+≥++⋅⋅⋅++=①又这与①矛盾,所以结论成立. 16.(1)(用综合法证明)已知△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且A 、B 、C 成等差数列,a ,b ,c 成等比数列,证明:△ABC 为等边三角形。

高考数学复习考点知识与题型精讲38---直接证明与间接证明

高考数学复习考点知识与题型精讲38---直接证明与间接证明

高考数学复习考点知识与题型精讲直接证明与间接证明[知识点与题型精讲] 1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点.1.直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件思维过程由因导果执果索因框图表示P⇒Q1→Q1⇒Q2→…→Q n⇒QQ⇐P1→P1⇐P2→…书写格式因为…,所以…或由…,得…要证…,只需证…,即证…反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)综合法的思维过程是由因导果,逐步寻找已知的必要条件. ( ) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明时,推出的矛盾不能与假设矛盾. ( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案] (1)√ (2)× (3)× (4)√2.要证a 2+b 2-1-a 2b 2≤0 ,只要证明( ) A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b42≤0C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0D [a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.]3.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根A [“方程x 2+ax +b =0至少有一个实根”的反面是“方程x 2+ax +b =0没有实根”,故选A.]4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +xa +x 的大小关系是________.b +x a +x >ba [∵b +x a +x -b a =x (a -b )(a +x )a >0,∴b +x a +x >b a.] 5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.等边 [由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3, ∴△ABC 为等边三角形.]综合法1.已知m >1,a =m +1-m ,b =m -m -1,则以下结论正确的是( ) A .a >bB .a <bC .a =bD .a ,b 大小不定B [∵a =m +1-m =1m +1+m,b =m -m -1=1m +m -1.而m +1+m >m +m -1>0(m >1),∴1m +1+m<1m +m -1,即a <b .]2.已知函数f (x )=-aa x +a(a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点⎝ ⎛⎭⎪⎫12,-12对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.[证明] (1)函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点⎝ ⎛⎭⎪⎫12,-12对称的点的坐标为(1-x ,-1-y ).由已知y =-aa x +a,则-1-y =-1+a a x +a =-a xa x +a,f (1-x )=-a a 1-x +a=-a a a x +a=-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点⎝ ⎛⎭⎪⎫12,-12对称.(2)由(1)知-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.∴f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1.则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3. [规律方法] 综合法证题的思路分析法1.若a ,b ∈(1,+∞),证明a +b <1+ab . [证明] 要证a +b <1+ab ,只需证(a+b)2<(1+ab)2,只需证a+b-1-ab<0,即证(a-1)(1-b)<0.因为a>1,b>1,所以a-1>0,1-b<0,即(a-1)(1-b)<0成立,所以原不等式成立.2.已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:1a+b +1b+c=3a+b+c.[证明]要证1a+b +1b+c=3a+b+c,即证a+b+ca+b+a+b+cb+c=3,也就是ca+b+ab+c=1,只需证c(b+c)+a(a+b)=(a+b)(b+c),需证c2+a2=ac+b2,又△ABC三内角A,B,C成等差数列,故B=60°,由余弦定理,得,b2=c2+a2-2ac cos 60°,即b2=c2+a2-ac,故c2+a2=ac+b2成立.于是原等式成立.(1)分析法的证题思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.反证法►考法1 证明否定性命题【例1】 设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n . 则S n =a 1+a 1q +a 1q 2+…+a 1q n -1, qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n , 两式相减得(1-q )S n =a 1-a 1q n =a 1(1-q n ), 当q ≠1时,S n =a 1(1-q n )1-q,当q =1时,S n =a 1+a 1+…+a 1=na 1,所以S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.(2)证明:假设数列{a n +1}是等比数列, 则(a 1+1)(a 3+1)=(a 2+1)2,即a 1a 3+a 1+a 3+1=a 22+2a 2+1,因为{a n }是等比数列,公比为q ,所以a 1a 3=a 22,a 2=a 1q ,a 3=a 1q 2,所以a 1(1+q 2)=2a 1q .即q 2-2q +1=0,(q -1)2=0,q =1, 这与已知q ≠1矛盾,所以假设不成立,故数列{a n +1}不是等比数列. ►考法2 证明“至多”“至少”命题【例2】 已知a ,b ,c 是互不相等的非零实数,用反证法证明三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0中至少有一个方程有两个相异实根.[证明] 假设三个方程都没有两个相异实根. 则Δ1=4b 2-4ac ≤0, Δ2=4c 2-4ab ≤0,Δ3=4a2-4bc≤0,上述三个式子相加得:a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,即(a-b)2+(b-c)2+(c-a)2≤0.所以a=b=c这与a,b,c是互不相等的实数相矛盾.因此假设不成立,故三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0中至少有一个方程有两个相异实根.[规律方法]用反证法证明数学命题需把握的三点(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的.(1)已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.(2)设a>0,b>0,且a+b=1a+1b.证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.[证明] 由a +b =1a +1b =a +bab ,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,当且仅当a =b =1时,等号成立,即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾. 故a 2+a <2与b 2+b <2不可能同时成立.。

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。

数学证明通常可以分为直接证明和间接证明两种形式。

本文将介绍直接证明和间接证明的含义、特点以及应用。

一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。

直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。

2. 列出已知条件和前提条件。

3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。

4. 分析并验证证明过程中的每一步是否严谨、正确。

5. 结束证明,得出所要证明的命题。

直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。

因此,直接证明在数学证明中广泛应用于各个领域。

例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。

定理:若a和b为偶数,则a+b为偶数。

证明:设a=2m,b=2n,其中m和n为整数。

则a+b=2m+2n=2(m+n)。

由于m和n为整数,所以m+n也是整数。

因此,a+b=2(m+n)为偶数。

证毕。

二、间接证明间接证明是一种通过反证法推导出结论的证明方法。

它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。

间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。

2. 假设所要证明的命题为假。

3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。

4. 推断出所要证明的命题为真。

5. 结束证明,得出所要证明的命题。

间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。

它常常用于证明一些与质数、无理数、等级等有关的命题。

例如,我们来证明一个著名的数学定理:根号2是一个无理数。

定理:根号2是一个无理数。

证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。

2019年高考文科数学题型秘籍【38】直接证明与间接证明(解析版)

2019年高考文科数学题型秘籍【38】直接证明与间接证明(解析版)

高考数学精品复习资料2019.5专题三十八直接证明与间接证明【高频考点解读】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.【热点题型】题型一直接证明例1、若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系为()A.P>Q B.P=QC.P<Q D.由a的取值确定【提分秘籍】综合法与分析法是直接证明的两种基本方法,综合法的特点是从已知看可知,逐步推出未知.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.分析法是从未知看需知,逐步靠拢已知.当命题的条件与结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体时,往往采用从结论出发,结合已知条件,逐步反推,寻求使当前命题成立的充分条件,把证明转化为判定这些条件是否具备的问题.【举一反三】p=ab+cd,q=ma+nc ·bm+dn(m,n, a,b,c,d均为正数),则p、q的大小为()A.p≥q B.p≤q C.p>q D.不确定【热点题型】题型二 间接证明——反证法例2、若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+yx<2中至少有一个成立.【提分秘籍】1.应用反证法证题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要是指:(1)与已知条件矛盾; (2)与假设矛盾;(3)与定义、公理、定理矛盾; (4)与公认的简单事实矛盾; (5)自相矛盾.2.反证法是解决某些“疑难”问题的有力工具,它的适用范围为: (1)否定性命题;(2)命题的结论中出现“至少”、“至多”、“唯一”等词语;(3)命题成立非常明显,直接证明所用的理论太少,且不容易证明,而其逆否命题非常容易证明;(4)要讨论的情况很复杂,而反面情况很少. 【举一反三】设{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?【热点题型】题型三 综合法的应用例3、已知a >0,b >0,c >0,且a ,b ,c 不全相等,求证:bc a +ac b +abc>a +b +c .【提分秘籍】用综合法证题是从已知条件出发,逐步推向结论,综合法的适应范围是:(1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式.(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.【热点题型】题型四 分析法的应用 例4、 已知a >0,证明a 2+1a 2-2≥a +1a-2.【提分秘籍】分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接,或证明过程中所需要用到的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法,注意用分析法证题时,一定要严格按照格式书写.【举一反三】已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2.【高考风向标】1.(20xx·湖南卷) 已知函数f (x )=x cos x -sin x +1(x >0). (1)求f (x )的单调区间;(2)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有1x21+1x22+…+1x2n<23.2.(20xx·北京卷)给定数列a1,a2,…,a n,对i=1,2,…,n-1,该数列前i项的最大值记为A i,后n-i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i-B i.(1)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,…,a n(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n-1是等比数列;(3)设d1,d2,…,d n-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,a n-1是等差数列.3.(20xx·北京卷)直线y =kx +m(m≠0)与椭圆W :x24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.4.(20xx·浙江卷)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =⎩⎪⎨⎪⎧a ,a≤b ,b ,a>b , a ∨b =⎩⎪⎨⎪⎧b ,a≤b ,a ,a>b.若正数a ,b ,c ,d 满足ab≥4,c +d≤4,则( ) A .a ∧b≥2,c ∧d≤2 B .a ∧b≥2,c ∨d≥2 C .a ∨b≥2,c ∧d≤2 D .a ∨b≥2,c ∨d≥2【随堂巩固】1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数2.若x ,y ∈R ,则下面四个式子中恒成立的是( ) A . log 2(1+2x 2)>0 B .x 2+y 2≥2(x -y -1)C .x 2+3xy >2y 2 D.x y <x +1y +13.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac< 3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<04.已知函数y =f (x )的定义域为D ,若对于任意的x 1,x 2∈D (x 1≠x 2),都有f ⎝⎛⎭⎫x 1+x 22<f x 1+f x 22,则称y =f (x )为D 上的凹函数.由此可得下列函数中为凹函数的是( )A .y =log 2xB .y =xC.y=x2D.y=x35.不相等的三个正数a,b,c成等差数列,并且x是a,b的等比中项,y是b,c的等比中项,则x2,b2,y2三数()A.成等比数列而非等差数列B.成等差数列而非等比数列C.既成等差数列又成等比数列D.既非等差数列又非等比数列故x2,b2,y2成等差数列.答案:B6.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A.恒为负值B.恒等于零C.恒为正值D.无法确定正负7.某同学准备用反证法证明如下一个问题:函数f(x)在[0,1]上有意义,且f(0)=f(1),如果对于不同的x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求证:|f(x1)-f(x2)|<12.那么他的反设应该是________.答案:“∃x1,x2∈[0,1],使得|f(x1)-f(x2) |<|x1-x2|则|f(x1)-f(x2)|≥1 2”8.设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是________.(填序号)9.已知a,b,μ∈(0,+∞)且1a+9b=1,则使得a+b≥μ恒成立的μ的取值范围是________.10.已知a1+a2+a3+a4>100,求证:a1,a2,a3,a4中至少有一个数大于25.11.已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .12.(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ; (2)设1≤a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .13.已知a ,b ,c 是互不相等的非零实数,用反证法证明三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.14.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若1a +b +1b +c =3a +b +c,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.。

高考数学考点突破——推理与证明:直接证明与间接证明含解析

高考数学考点突破——推理与证明:直接证明与间接证明含解析

高考数学考点突破——推理与证明:直接证明与间接证明含解

【考点梳理】
1.直接证明
2.间接证明
反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.
【考点突破】
考点一、综合法
【例1】在△ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin B+sin Bsin C+cos 2B=1.
(1)求证:a,b,c成等差数列.
(2)若C=,求证:5a=3b.
[解析] (1)由已知得sin Asin B+sin Bsin C=2sin2B,
因为sin B≠0,
所以sin A+sin C=2sin B,
由正弦定理,有a+c=2b,
即a,b,c成等差数列.
(2)由C=,c=2b-a及余弦定理得
(2b-a)2=a2+b2+ab,
即有5ab-3b2=0,
所以5a=3b.
【类题通法】
掌握综合法证明问题的思路
【对点训练】
已知数列{an}的前n项和Sn=,n∈N*.
(1)求数列{an}的通项公式;
(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.
[解析] (1)由Sn=,得a1=S1=1,。

高考数学 试题汇编 第三节 直接证明与间接证明 理(含解析)

高考数学 试题汇编 第三节 直接证明与间接证明 理(含解析)

第三节直接证明与间接证明直接证明考向聚焦证明方法是高考常考内容,一般不单独命题、主要以函数、三角函数、数列、向量、不等式、立体几何、解析几何等为载体,考查综合法、分析法、反证法等且以直接证明的综合法为重点.多以解答题的形式出现,具有一定的难度,属中高档题,所占分值12~14分备考指津综合法和分析法是两种不同的证明方法,分析法便于寻找解题思路,而综合法便于证题过程的叙述,两种方法各有所长,在解决具体的问题中,应注意两种方法的综合运用1.(2010年山东卷,理12)定义平面向量之间的一种运算“☉”如下:对任意的a=(m,n),b=(p,q),令a☉b=mq-np.下面说法错误的是( )(A)若a与b共线,则a☉b=0(B)a☉b=b☉a(C)对任意的λ∈R,有(λa)☉b=λ(a☉b)(D)(a☉b)2+(a·b)2=|a|2|b|2解析:若a=(m,n)与b=(p,q)共线,则mq-np=0,依运算“☉”知a☉b=0,故A正确.由于a☉b=mq-np,又b☉a=np-mq,因此a☉b=-b☉a,故B不正确.对于C,由于λa=(λm,λn),因此(λa)☉b=λmq-λnp,又λ(a☉b)=λ(mq-np)=λmq-λnp,故C正确.对于D,(a☉b)2+(a·b)2=m2q2-2mnpq+n2p2+(mp+nq)2=m2(p2+q2)+n2(p2+q2)=(m2+n2)(p2+q2)=|a|2|b|2,故D正确.答案:B.对此类给出一种新概念、新运算、新性质的题目,在准确理解、把握所给新概念、新运算、新性质的基础上,正确迁移,运用所学知识解决新问题.2.(2010年湖北卷,理15)设a>0,b>0,称为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D,连接OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段的长度是a,b的几何平均数,线段的长度是a,b的调和平均数.解析:在Rt△ABD中,CD是斜边AB上的高, 所以CD2=AC·CB,所以CD==,所以线段CD的长度是a,b的几何平均数. 在Rt△OCD中,因为CE⊥OD,所以=,所以线段DE 的长度为为=.所以线段DE的长度是a,b的调和平均数. 答案:CD DE间接证明考向聚焦间接证明体现了正难则反的思维方法,高考中一些选择题的解答常常举反例来判断选项的正误,解答题中时常会出现含有反面词语的证明,题目一般比较综合备考指津应加强反证法原理及证题步骤的理解训练,对于从正面不容易证明的问题,可考虑利用反证法来间接证明3.(2011年上海卷,理22)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,….(1)求c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.(1)解:由a1=9,a2=12,a3=15…b1=9,b2=11,b3=13…∴c1=9,c2=11,c3=12,c4=13.(2)证明:∵数列{c n}由{a n}、{b n}的项构成,∴只需讨论数列{a n}的项是否为数列{b n}的项.∵对于任意n∈N*,a2n-1=3(2n-1)+6=6n+3=2(3n-2)+7=b3n-2,∴a2n-1是{b n}的项.下面用反证法证明:a2n不是{b n}的项.假设a2n是数列{b n}的项,设a2n=b m,则3×2n+6=2m+7,m=3n-,与m∈N*矛盾.即a2n是{c n}中的项,但不在{b n}中.∴结论得证.(3)解:∵b3k-2=2(3k-2)+7=6k+3,a2k-1=6k+3,b3k-1=6k+5,a2k=6k+6,b3k=6k+7,∴b3k-2=a2k-1<b3k-1<a2k<b3k,k=1,2,3,….所以,c n=k∈N*.综上,c n=k∈N*.4.(2010年湖北卷,理20)已知数列{a n}满足:a1=,=,a n a n+1<0(n≥1),数列{b n}满足:b n=-(n≥1).(1)求数列{a n},{b n}的通项公式;(2)证明:数列{b n}中的任意三项不可能成等差数列.(1)解:由题意可知,1-=(1-).令c n=1-,则c n+1=c n.又c1=1-=,则数列{c n}是首项为c1=,公比为的等比数列,即c n=·()n-1,故1-=·()n-1,∴=1-·()n-1.又a1=>0,a n a n+1<0,故a n=(-1)n-1.b n=-=[1-·()n]-[1-·()n-1]=·()n-1.(2)证明:假设数列{b n}存在三项b r,b s,b t(r<s<t)按某种顺序成等差数列,由于数列{b n}是首项为,公比为的等比数列,于是有b r>b s>b t,则只能有2b s=b r+b t成立.∴2×·()s-1=·()r-1+·()t-1,两边同乘3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s.由于r<s<t,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{b n}中任意三项不可能成等差数列.(2011年大纲全国卷,理21,12分)已知O为坐标原点,F为椭圆C:x2+=1在y轴正半轴上的焦点,过F且斜率为-的直线l与C交于A、B两点,点P满足++=0.(1)证明:点P在C上;(2)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.证明:(1)焦点F(0,1),直线l的方程为y=-x+1.①1分将①代入到x2+=1中整理得4x2-2x-1=0.2分设A(x1,y1),B(x2,y2),P(x3,y3),则x1+x2=,y1+y2=-(x1+x2)+2=1.3分∵++=0,∴x3=-(x1+x2)=-,y3=-(y1+y2)=-1,∴P点的坐标为(-,-1).4分经验证,点P的坐标(-,-1)满足方程x2+=1,故点P在椭圆C上.5分第(1)问赋分细则:(1)写出焦点F的坐标及直线l的方程得1分;(2)将直线l的方程代入到椭圆C的方程中化简正确得1分;(3)将向量等式++=0坐标化,结合一元二次方程根与系数的关系求出P点的坐标得2分;(4)将P点坐标代入到椭圆C的方程中验证得1分.(2)由P(-,-1)得其关于原点的对称点Q(,1),∴线段PQ的垂直平分线l1的方程为y=-x.①6分设线段AB的中点为M,由(1)得M(,),∴线段AB的垂直平分线l2的方程为y=x+.②7分由①②得l1,l2的交点N(-,),∴|NP|==.8分∵|AB|=·=·=,∴|AM|=.9分又|MN|==,∴|NA|==,∴|NP|=|NA|.10分又|NP|=|NQ|,|NA|=|NB|,∴|NA|=|NP|=|NB|=|NQ|.11分由此知A、P、B、Q四点在以N为圆心,|NA|为半径的圆上.12分第(2)问赋分细则:(1)分别求出线段PQ、AB的垂直平分线l1、l2方程各得1分;(2)求出直线l1与l2交点N的坐标及|NP|得1分;(3)分别求出|AM|和|NA|各得1分;(4)通过计算得到|NA|=|NP|=|NB|=|NQ|,由此证出A、P、B、Q四点共圆,得2分.通过高考阅卷统计分析,造成失分的原因如下:(1)不知道将++=0坐标化,得到A、B、P三点坐标间的关系式,无从下手;(2)不知道利用整体代换求出P点坐标,不能得分;(3)缺少将P点坐标代入椭圆C的方程验证这一步,扣1分;(4)将直线l1、l2的方程或l1与l2的交点N的坐标求错,丢1分,并导致下面做错;(5)将|NP|或|NA|算错,得不出|NP|=|NA|,丢掉2分;(6)没有利用|NA|=|NP|=|NB|=|NQ|说明A、P、B、Q四点共圆,造成步骤不完整,扣2分.。

高中数学知识点精讲精析 直接证明与间接证明 (2)

高中数学知识点精讲精析 直接证明与间接证明 (2)

2.2 直接证明与间接证明1. 直接从原命题的条件逐步推得命题成立的。

这种方法称为直接证明2. 直接证明的一般形式3.直接证明的两种方法:(1) 综合法从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止(2) 分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件吻合为止4.间接证明的证明方法.反证法是一种常用的间接证明方法.5.反证法的过程包括以下三个步骤:(1) 反设——假设命题的结论不成立,即假定原命题的反面为真;(2) 归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3) 存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.求证:若一个整数的平方是偶数,则这个数也是偶数.证:假设这个整数是奇数,可以设为2k+1,则有本题结论已知定理已知公理已知定义本题条件⇒⇒⎪⎪⎭⎪⎪⎬⎫ 144)12(22++=+k k k而不是偶数。

这与原命题条件矛盾.2.用反证法证明:圆的两条不是直径的相交弦不能互相平分.已知:如图,在⊙O 中,弦 AB 、CD 相交于 P 点,且 AB 、CD 不是直径. 求证:弦AB 、CD 不被P 点平分.【解析】“弦AB 、CD 不被P 点平分”的反面是“弦AB 、CD 被P 点平分”,因而反设 是“假设弦AB 、CD 被P 点平分”.由于P 点不是圆心O ,连结OP ,由垂径定理的推论得OP AB ⊥,OP CD ⊥,这样过P 点有两条直线与OP 都垂直,与垂线的性质矛盾.结论是“弦AB 、CD 不被P 点平分”成立.3 . 已知,,,,求证:,,。

证:假设不同时为正不妨先考虑不是正数,有和两种情形(1)若则与矛盾 ∴ 不成立(2)若 ∵ ∴ 又 ∵ ∴∴ 与矛盾∴ 也不成立)(Z k k k ∈++1442R c b a ∈,,0>++c b a 0>++ac bc ab 0>abc 0>a 0>b 0>c c b a ,,a 0=a 0<a 0=a 0=abc 0>abc 0<a 0>abc 0<bc 0>++c b a 0>->+a c b 0)(<++=++bc c b a ac bc ab 0>++ac bc ab 0<a∴成立同理可证,成立4【解析】mn=(m,n为自然数,且互质)两边平方,得222mn=222n m=①由①知2m必是2的倍数,进而m必是2的倍数.令2m p=代入①式,得222n p=②由②知,n必是2的倍数,m和n都是2的倍数,则m、n不互质,与假定m、n互5.用反证法证明:如果0a b>>>【解析】<=<0,0a b>>0.>><<a<<<b<>a>b0>c所以 .a b <这与假设a b >=a b =,这与假设a b >矛盾.>6.已知:锐角三角形ABC 中2.B C ∠=∠求证:45.A ∠>︒【解析】假设45A ∠≤︒,则135.B C ∠+∠≥︒因为2B C ∠=∠,所以45C ∠≥︒,90B ∠≥︒.这样可推出ABC ∆是钝角三角形或直角三角形,这与假设ABC ∆是锐角三角形矛盾.所以45.A ∠>︒7.用反证法证明:在ABC ∆中,AB 、BC 、AC 不全相等,那么A ∠、B ∠、C ∠中至少有一个大于60.︒【解析】假设A ∠、B ∠、C ∠都大于60︒,即60A ∠≤︒,60B ∠≤︒,60.C ∠≤︒因为AB 、BC 、AC 不全相等,所以上面三式中不能同时取等号,这样有180A B C ∠+∠+∠<︒.与定理“三角形内角和为180︒”矛盾,因此结论A ∠、B ∠、C ∠中至少有一个大于60︒成立。

2019届高三数学一轮复习:第38讲 直接证明与间接证明

2019届高三数学一轮复习:第38讲 直接证明与间接证明
■ [2017-2013]课标全国真题再现
1.[2017·全国卷Ⅱ] 已知
a>0,b>0,a3+b3=2,证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2.
证明:(1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4.
9
课前双基巩固
对点演练
题组一 常识题
1.[教材改编] 利用反证法证明“ 2,2 3,3 2不可能
成等比数列”时,正确的假设

.
[答案] 2,2 3,3 2成等比数列
[解析] 易知应假设 为: 2,2 3,3 2成等比数列.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
10
课前双基巩固
2.[教材改编] 要证明 3+ 7<2 5,可选择的方法有
4.利用反证法证明“已知 a>0,b>0,且
a+b>2,证明1+������,1+������中至少有一个小于 2”
������ ������
时的反设是
.
[答案] 1+������ ������≥2 且1+������������ ≥2
[解析]
假设1+������
������
,1+������ ������
都不小于
2,即1+������ ������≥2
且1+������
������
≥2.
2019年7月10日

高考数学 9.2 直接证明与间接证明

高考数学 9.2 直接证明与间接证明

9.2 直接证明与间接证明【知识网络】1、了解直接证明的两种基本方法——分析法和综合法,了解分析法和综合法的思考过程和特点;2、了解反证法是间接证明的一种基本方法,了解反证法的思考过程和特点;3、了解数学归纳法原理,能用数学归纳法证明一些简单命题。

【典型例题】例1:(1)已知0,,≠∈b a R b a 且,则在①ab b a ≥+222;②2≥+baa b ; ③2)2(b a ab +≤;④2)2(222b a b a +≤+ 这四个式子中,恒成立的个数是 ( )A 1个B 2个C 3个D 4个 答案:C 。

解析:①③④恒成立。

(2)利用数学归纳法证明“*),12(312)()2)(1(N n n n n n n n∈-⨯⋅⋅⋅⨯⨯⨯=+⋅⋅⋅++ ”时,从“k n =”变到 “1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B112++k k C 1)22)(12(+++k k k D 132++k k 答案:C 。

(3)命题“关于x 的方程)0(0≠=a ax 的解是唯一的”的结论的否定是 ( ) A 、无解 B 、两解 C 、至少两解 D 、无解或至少两解答案:D 。

解析:“否定”必须包括所有的反面情形。

(4)定义运算 ()()a a b a b b a b ≤⎧*=⎨>⎩,例如,121*=,则函数2()(1)f x x x =*-的最大值为_________________.答案:2。

(5)若c b a >>,*N n ∈,且ca nc b b a -≥-+-11恒成立,则n 的最大值是 。

答案:4。

解析:因c b a >>,*N n ∈,所以c a n c b b a -≥-+-11同解于n cb ca b a c a ≥--+-- 又42≥--+--+=--+-+--+-=--+--cb ba b a c b c b c b b a b a c b b a c b c a b a c a 所以4≤n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三十八直接证明与间接证明
【高频考点解读】
1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.
2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
【热点题型】
题型一直接证明
例1、若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系为()
A.P>Q B.P=Q
C.P<Q D.由a的取值确定
【提分秘籍】
综合法与分析法是直接证明的两种基本方法,综合法的特点是从已知看可知,逐步推出未知.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.分析法是从未知看需知,逐步靠拢已知.当命题的条件与结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体时,往往采用从结论出发,结合已知条件,逐步反推,寻求使当前
命题成立的充分条件,把证明转化为判定这些条件是否具备的问题.
【举一反三】
p=ab+cd,q=ma+nc ·b
m+
d
n(m,n, a,b,c,d均为正数),则p、q的大小为()
A.p≥q B.p≤q
C.p>q D.不确定
【热点题型】
题型二间接证明——反证法
例2、若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y
x
<2中至少有一个成立.
【提分秘籍】
1.应用反证法证题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要是指:
(1)与已知条件矛盾; (2)与假设矛盾;
(3)与定义、公理、定理矛盾; (4)与公认的简单事实矛盾; (5)自相矛盾.
2.
反证法是解决某些“疑难”问题的有力工具,它的适用范围为: (1)否定性命题;
(2)命题的结论中出现“至少”、“至多”、“唯一”等词语;
(3)命题成立非常明显,直接证明所用的理论太少,且不容易证明,而其逆否命题非常容易证明;
(4)要讨论的情况很复杂,而反面情况很少. 【举一反三】
设{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?
【热点题型】
题型三 综合法的应用
例3、已知a >0,b >0,c >0,且a ,b ,c 不全相等,求证:bc a +ac b +ab
c
>a +b +c .
【提分秘籍】
用综合法证题是从已知条件出发,逐步推向结论,综合法的适应范围是:(1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式.(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.
【热点题型】
题型四 分析法的应用 例4、 已知a >0,证明
a 2+1a 2-2≥a +1a
-2.
【提分秘籍】
分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接,或证明过程中所需要用到的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法,注意用分析法证题时,一定要严格按照格式书写.
【举一反三】
已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b |
|a +b |
≤ 2.
【高考风向标】
1.(2014·湖南卷) 已知函数f (x )=x cos x -sin x +1(x >0). (1)求f (x )的单调区间;
(2)记x i 为f (x )的从小到大的第i (i ∈N *)个零点,证明:对一切n ∈N *,有1x 21+1x 22+…+1x 2n

2
3
.
2.(2013·北京卷)给定数列a1,a2,…,a n,对i=1,2,…,n-1,该数列前i项的最大值记为A i,后n-i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i-B i.
(1)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;
(2)设a1,a2,…,a n(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n-1是等比数列;
(3)设d1,d2,…,d n-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,a n-1是等差数列.
3.(2013·北京卷)直线y =kx +m(m≠0)与椭圆W :x
2
4+y 2=1相交于A ,C 两点,O 是坐
标原点.
(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.
4.(2013·浙江卷)设a ,b ∈R ,定义运算“∧”和“∨”如下:
a ∧
b =⎩⎪⎨⎪⎧a ,a≤b ,b ,a>b , a ∨b =⎩
⎪⎨⎪⎧b ,a≤b ,a ,a>b.
若正数a ,b ,c ,d 满足ab≥4,c +d≤4,则( ) A .a ∧b≥2,c ∧d≤2 B .a ∧b≥2,c ∨d≥2 C .a ∨b≥2,c ∧d≤2 D .a ∨b≥2,c ∨d≥2
【随堂巩固】
1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数
B .a ,b ,c 中至少有两个偶数或都是奇数
C .a ,b ,c 都是奇数
D .a ,b ,c 都是偶数
2.若x ,y ∈R ,则下面四个式子中恒成立的是( ) A . log 2(1+2x 2)>0 B .x 2+y 2≥2(x -y -1)
C .x 2+3xy >2y 2 D.x y <x +1y +1
3.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac
< 3a ”索的因应是( )
A .a -b >0
B .a -c >0
C .(a -b )(a -c )>0
D .(a -b )(a -c )<0
4.已知函数y =f (x )的定义域为D ,若对于任意的x 1,x 2∈D (x 1≠x 2),都有f ⎝⎛⎭
⎫x 1+x 22<
f x 1
+f x 2
2
,则称y =f (x )为D 上的凹函数.由此可得下列函数中为凹函数的是( )
A .y =log 2x
B .y =x
C .y =x 2
D .y =x 3
5.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )
A .成等比数列而非等差数列
B.成等差数列而非等比数列
C.既成等差数列又成等比数列
D.既非等差数列又非等比数列
故x2,b2,y2成等差数列.
答案:B
6.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()
A.恒为负值B.恒等于零
C.恒为正值D.无法确定正负
7.某同学准备用反证法证明如下一个问题:函数f(x)在[0,1]上有意义,且f(0)=f(1),如
果对于不同的x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求证:|f(x1)-f(x2)|<1
2.那么他的反设应
该是________.
答案:“∃x1,x2∈[0,1],使得|f(x1)-f(x2) |<|x1-x2|则|f(x1)-f(x2)|≥1 2”
8.设a,b是两个实数,给出下列条件:
①a+b>1;②a+b=2;③a+b>2;
④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一个大于1”的条件是________.(填序号)
9.已知a ,b ,μ∈(0,+∞)且1a +9
b
=1,则使得a +b ≥μ恒成立的μ的取值范围是________.
10.已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25.
11.已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪
⎫a +mb 1+m 2≤a 2+mb 2
1+m
.
12.(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y
+xy ; (2)设1≤a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .
13.已知a ,b ,c 是互不相等的非零实数,用反证法证明三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.
14.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若1a +b +1b +c =3a +b +c
,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.。

相关文档
最新文档