建设农场初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建设农场初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)设方程组的解是那么的值分别为()
A.
B.
C.
D.
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:解方程组,
由①×3+②×2得
19x=19
解之;x=1
把x=1代入方程①得
3+2y=1
解之:y=-1
∴
∵方程组的解也是方程组的解,
∴,
解之:
故答案为:A
【分析】利用加减消元法求出方程组的解,再将x、y的值分别代入第一个方程组,然后解出关于a、b的方程组,即可得出答案。
2.(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()
A. AB∥BC
B. BC∥CD
C. AB∥DC
D. AB与CD相交
【答案】C
【考点】平行线的判定
【解析】【解答】解:∵∠ABC=150°,∠BCD=30°
∴∠ABC+∠BCD=180°
∴AB∥DC
故答案为:C
【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。
3.(2分)已知a,b满足方程组则a+b的值为()
A. ﹣4
B. 4
C. ﹣2
D. 2
【答案】B
【考点】解二元一次方程组
【解析】【解答】,
①+②:4a+4b=16
则a+b=4,
故答案为:B.
【分析】观察方程组中的同一未知数的系数特点,因此将两方程相加除以4,就可求解。
4.(2分)下图是《都市晚报》一周中各版面所占比例情况统计.本周的《都市晚报》一共有206版.体育新闻约有()版.
A. 10版
B. 30版
C. 50版
D. 100版
【答案】B
【考点】扇形统计图,百分数的实际应用
【解析】【解答】观察扇形统计图可知,体育新闻约占全部的15左右,206×15%=30.9,选项B符合图意.
故答案为:B.
【分析】把本周的《都市晚报》的总量看作单位“1”,从统计图中可知,财经新闻占25%,体育新闻和生活共占25%,体育新闻约占15%,据此利用乘法计算出体育新闻的版面,再与选项对比即可.
5.(2分)3的算术平方根是()
A. ±
B.
C. ﹣
D. 9
【答案】B
【考点】算术平方根
【解析】【解答】解:3的算术平方根是,
故答案为:B
【分析】本题考察算术平方根的概念,根据概念进行判断。
6.(2分)如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()
A.2α
B.90°+2α
C.180°﹣2α
D.180°﹣3α
【答案】D
【考点】平行线的性质,翻折变换(折叠问题)
【解析】【解答】解:∵AD∥BC,
∴∠DEF=∠EFB=α
在图(2)中,∠GFC=180°-2EFG=180°-2α,
在图(3)中,∠CFE=∠GFC-∠EFC=180°-2α-α=180°-3α。
故答案为:D。
【分析】根据题意,分别在图2和图3中,根据∠DEF的度数,求出最终∠CFE的度数即可。
7.(2分)下列计算正确的是()
A. B. C. ±3 D.
【答案】B
【考点】算术平方根,有理数的乘方
【解析】【解答】解:A.∵-22=-4,故错误,A不符合题意;
B.∵-=-3,故正确,B符合题意;
C.∵=3,故错误,C不符合题意;
D.∵(-2)3=-8,故错误,D不符合题意;
故答案为:B.
【分析】A、D根据乘方的运算法则计算即可判断对错;B、C根据算术平方根或者平方根计算即可判断对错.
8.(2分)已知是方程组的解,则a+b+c的值是()
A. 3
B. 2
C. 1
D. 无法确定
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:将代入方程得
,
①+②+③得4(a+b+c)=12,
∴a+b+c=3,
故答案为:A.
【分析】将x、y、z的值代入方程组中,再观察方程组中各未知数的系数特点:相同字母的系数之和都为4,因此由(①+②+③)÷4,就可求得a+b+c的值。
9.(2分)下列条形中的哪一个能代表圆形图所表示的数据()
A. B. C. D. 【答案】C
【考点】条形统计图
【解析】【解答】解:从扇形图可以看出:
整个扇形的面积被分成了3分,其中
横斜杠阴影部分占总面积的,
斜杠阴影部分占总面积的,
非阴影部分占总面积的,
即三部分的数据之比为::=1:1:2,
在条形图中小长方形的高之比应为1:1:2,
故答案为:C
【分析】根据圆形图确定所占总体的比例,然后确定条形图的大小即可.
10.(2分)是二元一次方程的一个解,则a的值为()A.1
B.
C.3
D.-1
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,
解得:a= .
故答案为:B.
【分析】方程的解就是能使方程的左边和右边相等的未知数的值,根据定义将将x=1,y=3代入2x+ay=3即可得出关于字母a的方程,求解即可得出a的值。
11.(2分)下列说法:
①两个无理数的和一定是无理数;②两个无理数的积一定是无理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积一定是无理数。
其中正确的个数是()
A. 0
B. 1
C. 2
D. 3
【答案】B
【考点】无理数的认识
【解析】【解答】解:①两个无理数的和不一定是无理数,如互为相反数的两个无理数的和为0;②两个无理数的积可能是无理数,也可能是有理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积可能是无理数,也可能是有理数.
故正确的序号为:③,
故答案为:B.
【分析】无限不循环的小数就是无理数,根据无理数的定义,用举例子的方法即可一一判断。
12.(2分)下列命题:
①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;
④如果一个数的立方根等于它本身,那么它一定是1或0.
其中正确有()个.
A. 1
B. 2
C. 3
D. 4
【答案】A
【考点】立方根及开立方
【解析】【解答】解:①负数没有立方根,错误;
②一个实数的立方根不是正数就是负数或0,故原命题错误;
③一个正数或负数的立方根与这个数的符号一致,正确;
④如果一个数的立方根等于它本身,那么它一定是±1或0,故原命题错误;
其中正确的是③,有1个;
故答案为:A
【分析】根据立方根的定义与性质,我们可知:1.正数、负数、0都有立方根;2.正数的立方根为正数,负数的立方根为负数;0的立方根仍为0;
与0的立方根都为它本身。
二、填空题
13.( 1分 ) 若
则x +y +z =________.
【答案】3 【考点】三元一次方程组解法及应用
【解析】【解答】解:在
中,由①+②+③得: ,
∴ . 【分析】方程组中的三个方的x 、y 、z 的系数都是1,因此由(①+②+③)÷2,就可求出结果。
14.( 2分 ) 若方程组
与 有相同的解,则a=________,b=________。
【答案】 3;2
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:
由
得:11x=22 解之:x=2
把x=2代入
得:4-y=5 解之:y=-1
∴
由题意得:把代入
得
解之:
故答案为:
【分析】利用加减消元法解方程组
, 求出x 、y 的值,再将x 、y 的值代入 ,
建立关于a、b的方程组,解方程组求出a、b的值即可。
15.(1分)若x+y+z≠0且,则k=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵,
∴,
∴,即.
又∵,
∴.
【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。
16.(1分)如果a4=81,那么a=________.
【答案】3或﹣3
【考点】平方根
【解析】【解答】∵a4=81,∴(a2)2=81,
∴a2=9或a2=﹣9(舍),
则a=3或a=﹣3.
故答案为3或﹣3.
【分析】将已知条件转化为(a2)2=81,平方等于81的数是±9,就可得出a2(a2≥0)的值,再求出a的值即可。
17.(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
18.(1分)若方程组的解也是方程2x-ay=18的解,则a=________.
【答案】4
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:,
∵①×3﹣②得:8x=40,
解得:x=5,
把x=5代入①得:25+6y=13,
解得:y=﹣2,
∴方程组的解为:,
∵方程组的解是方程2x﹣ay=18的解,
∴代入得:10+2a=18,解得:a=4,
故答案为:4.
【分析】利用加减消元法求出方程组的解,再将方程组的解代入方程2x-ay=18,建立关于a的方程,求解即可。
三、解答题
19.(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
20.(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。
21.(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。
22.(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP =∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.
23.(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:(…);
整数集合:(…);
负分数集合:(…);
无理数集合:(…).
【答案】解:正有理数集合:(3,,-(-2.28), 3.14 …);
整数集合:(3,0,-∣-4∣…);
负分数集合:(-2.4,- ,,…);
无理数集合:(,-2.1010010001………).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。
逐一填写即可。
24.(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
25.(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1=
∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
26.(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.。