两因素设计
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2,4列对调
A B C D
D A B C
C D A B
B C 1,3行对调 D A
C B A D
B A D C
A D C B
D C B A
规定方阵中字母表示某因素的各个水平,定 义行因素和列因素
一般3个因素中有一个最重要的称之为处理因素, 用字母表示 其它两个是需要加以控制的因素,分别用行和列 表示
概念
将三个因素按水平数r排列成一个r×r随机方阵
用r个拉丁字母排成r行r列 每行每列中,每个拉丁字母只出现一次
特点
三个因素 各个因素间无交互作用(或交互作用可忽略不计) 水平数相等,均为r
基本拉丁方
ABC BCA CAB
ABCD BCDA CDAB DABC
ABCDE BCDEA CDEAB DEABC EABCD
1.0
0.7
析因设计factorial desig实验因素的各水平进行组合,对各种 可能的组合都进行实验,探讨各实验因素的主效应 (main effect),以及各因素间的交互作用( interaction)的研究设计类型 不仅要考虑某一种或几种因素的效应,同时经常要 考虑多种因素的联合效应
FB=90.75,P值<0.05,B药的主效应也有统 计意义。
协同作用和拮抗作用
如果有交互作用,则
两个药都用的均数>A药的均数+B药的均数- 两个药都未用的均数(本例即:22>12+21- 11),则称协同作用。 两个药都用的均数<A药的均数+B药的均数- 两个药都未用的均数(本例即:22<12+21- 11),则称拮抗作用。
按上面的拉丁方设计去安排试验 统计分析
优缺点
节省实验单位数 双区组设计,可以减少或消除两个重要非处理 因素对实验结果的影响,比随机区组设计误差 更小,效率更高 应用有一定局限性
例 欲比较A、B、C、D四种加工方法对大鼠体 重的影响,已知窝别和食品种类为混杂因素。 用4窝大鼠进行实验,每窝4只,每只大鼠随机 喂养一种食品,随机采用一种加工方法,8周 后观察大鼠增体重(g)情况。观察值(x)分 组归纳如下表所示。问食品种类是否影响大鼠 增体重?食品加工方法是否影响大鼠增体重? 不同窝别(混杂因素)是否影响大鼠增体重?
结果说明
第1个假设检验 H0:没有交互作用并且A药和B药疗效的主效应 都没有差异 H1:有交互作用或A药主效应有差异或B药主 效应有差异 FModel=98.75,P值<0.05,认为模型是有效的 (或有交互作用或有主效应)。
第2个假设检验
H0:A药与B药的疗效没有交互作用 22-11=21-11+12-11或22- 21=12-11 或22- 12=2111 H1:A药与B药的疗效有交互作用 22-11≠21-11+12-11或22- 21≠12-11 或22- 12≠21-11 FA×B=36.75,P值=0.0003<0.05,A药与B药的疗效有交互 作用。
拉丁方设计(latin square design)
例:现想设计一项医学研究用于评价四种治疗 类型(放射、化疗、外科手术、基因治疗)治 疗四种癌症(肺、脑、乳腺和大肠癌)的疗效, 其中病人有白人、黑人、印地安人、亚洲人四 种种族。结果变量是生存时间。问如何设计?
r阶拉丁方(r×r拉丁方)及其特点
四种食品及四种加工方法喂养大鼠所增体重(g)
区组号 甲组 乙组 丙组 丁组
1
2 3 4
80 (D)
47 (A) 48 (B) 46 (C)
70 (B)
75 (C) 80 (D) 81(A)
51 (C)
78 (D) 47 (A) 49 (B)
48 (A)
45 (B) 52 (C) 77 (D)
概述
研究两个因素
每个因素有两个或多个水平 需要了解协同或拮抗作用——交互作用
无重复:往往是限于人力、物力、时间或只能得到有 限个观察数而设计,不可分析交互作用 有重复:重复实验,非重复测量,可分析交互作用
重复数相等 重复数成比例 重复数不等也不成比例
各组合计数与总合计数
B药 A药 不用 不用 用 合计 2.4 3.6 6.0 用 3.0 6.3 9.3 5.4 9.9 15.3 合计
两因素设计
例1 欲研究A药和B药两种药物治疗缺铁性贫血的情况, 用了以下四种疗法去治疗病人,然后观察红细胞增加 数,结果如下表(服用A药,则A=2,否则A=1;服用B 药,则B=2,否则B=1 )
疗法 疗法 1(一般疗法) 疗法 2(一般疗法+A 药) 疗法 3(一般疗法+B 药) 疗法 4(一般疗法+A 药+B 药) X 0.8 ,0.9 ,0.7 1.3,1.2,1.1 0.9,1.1,1.0 2.1,2.2,2.0
( xi j ) C
ij
2
S S甲
5 .4 9 .9 6
6 .0 9 .3 6
2
C
1 2 7 .1 7 6
1 2 2 .4 9 6
N
1 9 .5 1
1 9 .5 1 1 .6 9
2
S S乙
C
1 9 .5 1 0 .9 1
结果
Number of obs = Root MSE = 12 .10 R-squared = 0.9737 Adj R-squared = 0.9638
判断何种交互作用
组别 第1组 不用 B 药 不用 A 药 样本均数 0.8 第4组 用B药 用A药 2.1 第2组 不用 B 药 用A药 1.2 第3组 用B药 不用 A 药 1.0
0.8+2.1=2.9> 2.2=1.2+1.0
结合两因素方差分析的结果说明A药和B药的 疗效构成协同作用。 结果小结:A药和B药均能使红细胞增加数提 高。若仅用一个药的情况下,A药优于B药, 但用两个药的疗效已经超过单独使用其中一个 药的疗效之和(有协同作用)。
总体 A B 均数
11 21 12 22
1 1 2 1 1 2 2 2
数据表达
第1组 第2组 第3组 第4组 一般 一般+A 药 一般+B 药 一般+A 药+B 药 0.8 1.3 0.9 2.1 0.9 1.2 1.1 2.2 0.7 1.1 1.0 2.0
换一种数据表达形式
B药 用 用 A 药 2.1 2.2 2.0 不用 0.9 1.1 不用 1.3 1.2 1.1 0.8 0.9
两因素设计(最简单的析 因设计)及其方差分析
复旦大学生物统计学教研室 2015/11/30
概念 方法与设计 无重复和有重复实验设计 数据分析 交互作用的概念和分析方法
例:如果需要研究A药和B药两种药物治疗缺 铁性贫血的效果,共有12例病人分别给予不同 的药物治疗,其中A药和B药用与不用均要考 虑到,结果变量是红细胞增加数,如何设计?
Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------Model | 2.96249994 3 .98749998 98.75 0.0000 | a | 1.6875 1 1.6875 168.75 0.0000 b | .907499974 1 .907499974 90.75 0.0000 a*b | .367499967 1 .367499967 36.75 0.0003 | Residual | .080000002 8 .01 -----------+---------------------------------------------------Total | 3.04249994 11 .276590904
结果
总处理 A药 B药 交互作用 误差 总变异
2 2
SS 2.96 1.69 0.91 0.36 0.08 3.04
2 2
3 1 1 1 8 11
MS 1.69 0.91 0.36 0.01
F 169 91 36
SS
处理
2 .4 3 .6 3 .0 6 .3 3
2 2
19 . 51 2 . 96
22
步骤
选择合适的拉丁方,例题每个因素为4个水平, 选择一个4阶拉丁方
A B C D B C D A C D A B D A B C 实现随机分配,将所选拉丁方随机化
将任意整行、整列之间对调 根据随机数字确定行、列、字母的次序
步骤
A B C D
B C D A
C D A B
D A B C
第3、4个假设检验
H0:A药没有疗效11+ 12 =21+22
H1:A药有疗效11 + 12 ≠21+ 22
FA=168.75,P值<0.05,A药的主效应有统 计意义 H0:B药没有疗效11 + 21 = 12 + 22 H1:B药有疗效11 + 21≠12 + 22
目的
析因设计factorial design
例1中,有两个因素A药和B药,对于A药而 言,可以有2种选择:不用A药,用A药, 故称为A药因素有两个水平,同理用B药也 有2种选择,故B药因素也有两个水平,如 果按照析因设计的规范去设计,则可以称 为两因素两水平的析因设计,是一种最简 单的析因设计,记为2×2析因设计
交互作用(Interaction)概念
一个因素的水平改变时,一个或几个因素的效 应也相应有所改变。也就是说,如果一个因素 的效应大小在另一个因素不同水平下明显不同, 则称为两因素间存在交互作用。当存在交互作 用时,单纯研究某个因素的作用是没有意义的, 必须分另一个因素的不同水平研究该因素的作 用大小。