9.3.1一元一次不等式组和它的解集

合集下载

人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)

人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)
新课引入 展示目标 精讲精练 归纳小结 强化训练
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.

一元一次不等式的解集

一元一次不等式的解集
详细描述
一元一次不等式的一般形式是 ax + b > c、ax + b < c 或 ax + b ≥ c,其中 a、b、c 是常数,a ≠ 0。
一元一次不等式的标准形式
总结词
一元一次不等式的标准形式是指将不 等式中的常数项移到右边,使左边只 包含未知数和其系数。
详细描述
一元一次不等式的标准形式是 ax > d、 ax < d 或 ax ≥ d,其中 a、d 是常数, a ≠ 0。
配问题等。
与一次函数的联系
01
02
03
定义
一次函数是形如y=kx+b 的函数,其中k、b为常数 且k≠0,x为自变量。
解法
在求解一次函数的值时, 常常需要利用一元一次不 等式的性质来求解,如求 解函数的定义域等。
应用
在实际问题中,一次函数 和一元一次不等式都可用 于解决实际问题,如最优 化问题、决策问题等。
02 将数轴上方的部分作为解集。
同样地,对于一元一次不等式 x 4 < 0,其解集可以通过区间表示 法表示为 (-∞, 4),也可以通过数 轴表示法在数轴上标出临界点4, 并将数轴下方的部分作为解集。
04 一元一次不等式在实际问 题中的应用
最大值最小值问题
总结词
一元一次不等式在解决最大值和最小值问题中具有广泛应用。
05 一元一次不等式与其他数 学知识的联系
与一元一次方程的联系
定义
一元一次不等式和一元一次方程 都是只含有一个未知数,并且未
知数的次数为1的代数式。
解法
一元一次不等式和一元一次方程的 解法有许多相似之处,如去分母、 去括号、移项、合并同类项等。
应用

人教版初一数学下册9.3 一元一次不等式组(第1课时)

人教版初一数学下册9.3 一元一次不等式组(第1课时)

9.3 一元一次不等式组(第1课时)巢湖三中徐巧珍教学设计思想准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。

本节教学的重点是一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。

难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。

在学习的过程中有问题引入新课,引导学生充分讨论,得出所要的不等式组,进而研究不等式组的解法及其用数轴的表示,通过练习来巩固如何解不等式组。

最后学习的是不等式组在现实生活中的简单应用。

教学目标1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集;2.使学生逐步学会用数形结合的观点去分析问题、解决问题.知识目标经历通过具体问题抽象出不等式组的过程;表述一元一次不等式组及其解集的意义,初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。

能力目标体会运用不等式组解决简单实际问题的过程,提高学习热情和积极性,进一步发展符号感与数学化的能力。

情感目标通过用数轴表示不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美,体会数形结合的思想。

重点:一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。

难点:求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。

解决办法:不等式组的解集通过数轴来表示简单明了,关于不等式组的应用要仔细审题以小组讨论的形式引导学生找出题中的不等关系,进而列出不等式组。

教学方法引导发现法、小组讨论交流。

教具准备多媒体,或投影仪教学设计过程(一)情境导入看,这头大象好大呀,体重肯定不少于3吨!嗨,我听管理员说,这头大象的体重不足5吨呢!问题:同学们,你能根据上图对话片断估计出这头大象的体重范围吗?请说说你的理由!(二)列一元一次不等式组若设大象的体重为x 吨,请用不等式的知识分别表示上{面两位同学所谈话的内容:x ≥3 ①x<5 ② {35≥<x x类似方程组,把这两个一元一次不等式合在一起,就得到一个一元一次不等式组.注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组。

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。

教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。

为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。

在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。

最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。

教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。

〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。

重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。

课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。

9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知

解用 决一

实元 际一

问次
题不

的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
3 − 7 ≤ 8, ②
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1

2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1

2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①

初中数学知识归纳一元一次不等式组

初中数学知识归纳一元一次不等式组

初中数学知识归纳一元一次不等式组初中数学知识归纳 - 一元一次不等式组一元一次不等式组是初中数学中的一个重要概念,它涉及到不等式的解与图像的表示。

本文将对一元一次不等式组进行归纳,以帮助读者加深对该知识点的理解。

一、一元一次不等式组的基本概念及表示方法一元一次不等式组是由若干个一元一次不等式组成的方程组。

一元一次不等式组一般以下列形式表示:⎧⎨⎩a₁x + b₁y + c₁z ... = d₁a₂x + b₂y + c₂z ... = d₂a₃x + b₃y + c₃z ... = d₃...aₙx + bₙy + cₙz ... = dₙ其中,a₁、b₁、c₁等为常数系数,x、y、z等为变量,d₁、d₂、d₃等为等式右边的常数。

每一个不等式都可以表示为平面上的一条直线,而一元一次不等式组则可以表示为多条直线构成的图形。

二、一元一次不等式组的解集对于一元一次不等式组,可以有以下几种情况:情况一:无解当一元一次不等式组中的不等式互相矛盾时,即不等式组的解空间为空时,我们可以判断该不等式组无解。

情况二:唯一解当一元一次不等式组中的不等式互相兼容且形成一个可行区域时,我们可以通过求解相应的方程组,找到该不等式组的唯一解。

情况三:无数解当一元一次不等式组中的不等式互相兼容且形成一条线时,我们可以判断该不等式组有无数个解。

根据以上情况,我们可以通过解方程组、画图等方法来求解一元一次不等式组,并得到相应的解集。

三、一元一次不等式组的解集表示方法一元一次不等式组的解集可以用多种表示方法,主要有数学符号表示、图像表示和区间表示:1. 数学符号表示当一元一次不等式组存在唯一解时,我们可以用具体的数值来表示解集,例如{x=2, y=3}。

若不等式组有无数解,我们可以用参数的形式表示解集,例如{x=t, y=t+1}。

2. 图像表示我们可以将一元一次不等式组中的不等式转化为直线的形式,然后根据不等式的符号关系来确定线段的可行区域。

第6套人教初中数学七下 9.3 一元一次不等式组(第2课时)课件 【经典初中数学课件】

第6套人教初中数学七下 9.3 一元一次不等式组(第2课时)课件 【经典初中数学课件】
m 的 取 值 范 围 为 ____m_≥_2________
m+1≤ 2m - 1
(2)若 不 等 式 组x x 3 m ( (1较较小大的 ))解 集 为 x>3,
m 2 则 m 的 取 值 范 围 为 _______________
3m1
课堂小结:
1. 由几个一元一次不等式所组成的不等式组
( 2x-6) <3-x ① 例 : 求 不 等 式 组 2x315x511的 ②正 整 数 解 。
解:解不等式①得:x<5 解不等式②得:x≥1.4
∴原不等式组的解集为1.4≤x<5
∵满足1.4≤x<5的正整数为:2、3、4
∴原不等式组的正整数解:2、3、4
随堂练习
(1)若 不 等 式 组x x m 2m (1 (1较较小大)无 ) 解 , 则
2、在同一平面内,两条直线的位置关系 只有‗‗‗相‗‗交‗‗‗和‗‗平‗‗行‗‗‗‗两种情况.
3、两条直线相交(不重合),交点的个 数是 1 个;两条直线平行,交点 的个数 0 个.
三、研读课文
知平
识行
点 一
线 的


练一练
1.下列说法中,正确的是( C ).
A.若两直线不相交则平行
B.若两直线不平行则相交
里积存的污水,估计积存的污水超过 1200t而不足1500t,那么将污水抽完所用 时间的范围是什么?
设用x min将污水抽完,则x同时满 足不等式
30x>1200
30x<1500
像这样由几个同一未知数的一元一次不等 式所组成的不等式组叫做一元一次不等式组.
记作. x>2 x<3
30x>1200 30x<1500

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

一元一次不等式组和它的解法ppt

一元一次不等式组和它的解法ppt

(1)

x 1, x 3 x 2 (3) (4) (2) x 5 x7 x 4.


x0 x 4
解:(1)原不等式组的解集为x 3 (2)原不等式组的解集为x —5 (3)原不等式组的解集为x<-1 (4)原不等式组的解集为x≤-4

结论2:
若(a<b )
两小取较小
x ≥ -1 A x ≥ -1 A x< -1 A x ≥ -1 A x< -1 B x≥ 2 B x< 2 B x< 2 B x≥ 2 C -1≤ x≤ 2 C -1< x< 2 C -1≤ x< 2 C -1< x≥ 2 D 无解 D 无解 D 无解 D 无解
A B ⑤ a> b x> b b> a 若它的解集为x> b,则
。 a 。 b
x<a (同小取小)
x<a x<b的解集
3. 求下列不等式组的解集: x 3, x 2, (1) (3) (2) x 7. x 5.

X 1 (4) X 4

X 0 X 4
解(1)原不等式组的解集为3<x<7 (2)原不等式组的解集为-5<x<-2 (3)原不等式组的解集为-1≤x<4 (4)原不等式组的解集为-4≤x≤0
结论3:大小、小大取中间
若(a<b ) x>a x<b的解集为
。 a
。 b (大小、小大 取中间)
a<x<b
4、求下,
x 3, x 2, (1) (2) x 7. x 5.
(3)

x 0, X 1 (4) X 4 x 4.
结论4:大大小小解不了。
若(a<b ) x<a x> b的解集为 无解

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

分析:从跷跷板的两种状况可以得到的不等关系:
妈妈的体重+小宝的体重 <
爸爸的体重;
妈妈的体重+小宝的体重+6千克 > 爸爸的体重。
学习目标:1、会用一元一次不等式组解决实际问题
自学指导:阅读课本P139-134,例2 思考: 1、“不能完成任务”是什么意思 2、“提前完成任务”又是什么意思?
学习目标:1、会用一元一次不等式组解决实际问题
运用规律求下列不等式组的解集:
((((68(2571(3))4)))xx32xxxxxxxxxxx>>>><<<<><<><>>--37-20-5243-760.,4,-3,.4..1,4., .
学习目标:1、会用一元一次不等式组解决实际问题
1、若不等式组 x a 无解,求a的取值范围
2x -1 3
o
0
o
o
X
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (3) x<5
2 、若把以上(1)、(3)两个不等式合起来,这 个一元一次不等式组中x取值范围是多少呢?
o
o
X
X的取值范围是:2<X<5
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
我来说一说!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?

9.3.1一元一次不等式

9.3.1一元一次不等式
(1)求不等式 3x+1≥4x-5的正整数解.
(2)求不等式组
2 x 1 5 1 2 ( x 2) 3
的整数解.
(2)求不等式组
2 x 1 5 1 2 ( x 2) 3
的整数解.
解: 由不等式①得: x>2
由不等式②得: x≤4
-1 0 1 2 3 4 5 6 7 8
议一议:
比一比,看谁 又快又好
解: 解不等式①,得, x 8
2 x 3 x 11 2x 5 3 1 2 x
① ②
解不等式②,得, x
把不等式①和 ②的解集在数 轴上表示出来:
4 5
0
4 5
8
这两个不等式的解集没有公共 部分,所以不等式组无解。
例2:求不等式组的特殊解:
1
三角形的两边之和大于第三边, 两边之差小于第三边.
x>10-3
2
类似于方程组的概念,你能说出 一元一次不等式组的概念吗?
把两个或两个以上的含有同一个未知数 的一元一次不等式合起来,就组成一个一 元一次不等式组。
注意:
(1)每个不等式必须为一元一次不等式; (2)不等式必须是只含有同一个未知数; (3)不等式的数量至少是两个或者多个。
学习目标
1、理解有关不等式组的概念。

2、会解由两个一元一次不等式组成的不等 式组的解集以及求不等式组的特殊解。
问题:

能用你学过的知识分析一下吗?
现有两根木条a和b,a长10 cm,b 长3 cm.如果再找一根木条c,用这三 根木条钉成一个三角形木框,那么对 木条c的长度有什么要求?
解:设这根木条c的长度为Xcm.

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。

一元一次不等式组的解法及应用

一元一次不等式组的解法及应用

家庭作业
解答题 1.解不等式组
⑴⎩⎨⎧-≤+>+145321x x x x ⑵⎪⎩⎪
⎨⎧-≥-->+35663
4)1(513x x x x
2.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。

问刻录这批电脑光盘,该校如何选择,才能使费用较少?
3.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?
附加题:
1.如果不等式03<-a x 的正整数是1,2,3,那么a 的取值范围是多少?
2.已知不等式42213x a x +>-的解集为2>x ,求a x a ->-2)(3
1
的解集。

3.解不等式0412<--x
4.某宾馆底层客房比二楼少5间,一旅游团有48人,若全安排住底层,每间住4人,则房间不够,若每间安排住5人,则有房间没有住满5人。

又若全安排住在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,问该宾馆共有多少间客房?。

9.3.1一元一次不等式组(教案)

9.3.1一元一次不等式组(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次不等式组的基本概念。一元一次不等式组是由几个含有同一个未知数的一元一次不等式组合而成的。它在解决实际问题中起着重要作用,帮助我们确定未知数的取值范围。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过解一元一次不等式组来确定某个学生在数学和英语两门课程中的最低及格分数要求。
其次,在新课讲授环节,我发现学生们对一元一次不等式组的理解还存在一些困难。在讲解重点难点时,我应该更加注意用简洁明了的语言和具体的例子来阐述,让学生更容易理解。此外,我还可以尝试用图表、动画等辅助教学手段,使抽象的知识更加直观。
在实践活动环节,学生们分组讨论和实验操作的积极性很高,但我发现部分学生在讨论过程中还是过于依赖同学,缺乏独立思考。在今后的教学中,我应该鼓励学生们独立思考,培养他们解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解一元一次不等式组的定义及解的概念;
(2)掌握一元一次不等式组的解法步骤,包括同大取大、同小取小、大小小大中间找、大大小小无解了;
(3)能够将一元一次不等式组应用于解决实际问题;
(4)了解一元一次不等式组的解与方程组的解之间的关系。
举例:对于一元一次不等式组如:x>-2和x<5,学生需要理解其解集为-2<x<5。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式组的解法和其在实际问题中的应用这两个重点。对于难点部分,如“同大取大、同小取小”的原则,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过比较不等式组中的不等式来求解。

9.3 一元一次不等式组 课件(人教版七年级下)

9.3 一元一次不等式组 课件(人教版七年级下)

受了8折.应先算出原价,然后除以单价, 方案一: 购进甲种商品48件, 乙种商品52件; 得出数量. (1)设该商场能购进甲种商品x件,
方案二: 购进甲种商品49件, 乙种商品51件; 方案三: 购进甲种商品50件, 乙种商品50件.
根据题意,得15x+35(100-x)=2700, (3)根据题意,得 解得x=40. 乙种商品:100-40=60(件). (2)设该商场购进甲种商品a件,则购进 乙种商品(100-a)件. 根据题意,得
第一天只购买甲种商品不享受优惠条件,故 200÷20=10(件); 第二天只购买乙种商品有以下两种情况: 情况一:购买乙种商品打九折,324÷90% ÷45=8(件); 情况二:购买乙种商品打八折,324÷80% ÷45=9(件). 故一共可购买甲、乙两种商品10+8=18 (件)或10+9=19(件).
10x+8y<7000, x=60, (1) 解得 2x+5y>4120, y=800,
所以每台电脑机箱和液晶显示器进价分别是60 元、800元. (2)设购机箱z台,则显示器(50-z)台,
60z+800(50 - z)<22240, ∴24≤z≤26. 10z+160(50 z)>4100,
组.
3x - 2>0, 1 D. x + 1 < x
答案:A
例2.解集在数轴上表示为如图所 示的不等式组的是( ).
例3.解下列一元一次不等式组:
3( x - 2)+8>2 x, x -1 (1) x+1 x . 3 2 2( x+2)>3x+3, (2) x x+1 > . 3 4
x - a 0, 1.已知关于x的不等式组 只有 5 2x > 1
四个整数解, 则a的取值范围是_______.

一元一次不等式组解集

一元一次不等式组解集

一元一次不等式组解集
解集是一个数学概念,用于表示一个方程或者一个方程组的所有符合条件的解的集合。

解集可以很直观地反映出一个方程或者不等式的解的分布状况。

通过解集,我们可以很清楚地了解到一个方程或者不等式的解的集中趋势,以及解的分散程度等信息。

对于一元一次不等式组,其解集通常被表示为一个区间或者多个区间的并集。

如何求解一元一次不等式组的解集呢?通常我们采用的是分别解各个不等式,然后取解的交集的方式。

例如,给定一元一次不等式组{x+3>2, 2x-1<3},我们首先解第一个不等式,得到解x>-1,然后解第二个不等式,得到解x<2,最后取这两个解的交集,即{-1<x<2},这就是这个不等式组的解集。

在求解一元一次不等式组的解集的过程中,需要注意的是,如果不等式组中有多个不等式,那么需要分别解每一个不等式,然后取所有解的交集。

如果不等式组中的不等式之间存在“或”的关系,那么需要取所有解的并集。

在解不等式的过程中,如果不等式中有负数,那么在两边同时乘以负数的时候,需要注意,不等号的方向是需要发生变化的。

总的来说,一元一次不等式组的解集是通过解不等式组中的每一个不等式,然后根据不等式之间的关系,取这些解的交集或者并集得到的。

这个过程需要掌握解不等式的基本方法,以及处理不等式组中多个不等式之间关系的技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 3
A、
x

2
B、

x x

3 2
x 3
C、
x

2
D、
x x

3 2
4
(4)不等式组 x ≥ - 2 的解集在数轴上表示为(
)
x< - 5
A、 -5
-2
B、
-5
-2
C、 -5 -2
D、 -5
-2
5
(5)如图
1
2.5 4
则其解集是( )
A、1< x ≤ 4
3
5
7
1
2
4
6
1
(1)不等式组 A、x ≥ 2
x≥2 的解集是( )
x≤ 2 B、 x ≤ 2 C、 无解
D、x =2
2
(2)在平面直角坐标系内, P(2x-6,x-5)在第四象限, 则x的取值范围为( )
A、3<x<5 C、-5<x<3
B、-3<x<5 D、-5<x<-3
3
(3)下列不等式组中,解集是2<x<3的不等式组是( )
人教2011课标版七年级下册第九章 《不等式与不等式组》
9.3.1 一元一次不等式组 和它的解集
单 位:彭阳县红河镇初级中学 授课人:杨凡
看,这头大象好大呀, 体重肯定不少于3吨!
嗨,我听管理员说, 这头大象的体重不 足5吨呢!
听对话,请用不等式的知识分别表示上面两位同学所谈话的内容,
假设大象的体重为x吨
x≥3 ① x<5 ②
由两个或两个以上含有相同未知数的一元一次不等式,组合起
来叫做一元一次不等式组.
x 3① x 5②
在同一数轴上表示不等式①,②的解集:
3
5
①,②的解集的公共部分记作: 3 ≤ x < 5
几个一元一次不等式的解集的公共部分,叫做一 元一次不等式组的解集.
例1:观察数轴,写出不等式组的解集并总结规律:
解:在数轴上表示出其解集

x 3
(7)
x

7
0 1 2 3 45 6 7 89
大 小
即:原不等式组无解.

x 0 (8)x 4
解:在数轴上表示出其解集

-6 -5 -4 -3 -2 -1 0 1

即:原不等式组无解.

1. 同大取大, 2.同小取小; 3.大小小大中间找, 4.大大小小解不了。 运用规律求下列不等式组的解集:
(1) xx
2 3
解:在数轴上表示出其解集

-3 -2 -1 0 1 2 3 4
即:原不等式组的解集为 x > 2

x (2) x
0 4
解:在数轴上表示其解集
取 大
-5 -4 -3 -2 -1 0 1 2
即:原不等式组的解集为 x > 0
例1:观察数轴,写出不等式组的解集并总结规律:
x 1 解:在数轴上表示出其解集
(3)x 4

-3 -2 -1 0 1 2 3 4 5

即:原不等式组的解集为 x < -1
(4) xx

0 4
解:在数轴上表示出其解集
取 小
-6 -5 -4 -3 -2 -1 0 1 即:原不等式组的解集为x < - 4
例1:观察数轴,写出不等式组的解集并总结规律:
(5) xx

3, 7.
第二组
(2)xx

2, 3.
x 2, (6)x 5.
第三组
(3)xx

2, 5.
x 1, (7)x 4.
第四组
(4)xx

0, 4.
x 0, (8)x 4.
(9)
x x

((((((213987456))))))xxxxxxxxxxxxxx3725,.37041,.,03,73.,.412,.4.,. .
7个金蛋你可以任选一个,如果出现“恭喜 你”的字样,你将直接过关;否则将要考验你 的数学知识,当然你可以自己作答,也可以求 助你的同学.
B、1< x ≤ 4
C、2.5 < x≤ 4
D、2.5 < x < 4
6
X≤2
(6)不等式组
的负整数解是
X>-3
(
)
A、 -2, 0,
B、 -2 、- 1
C、-2、-1、0
D、不能确定.
7
恭喜你,过关了!
小结:
1.由两个或两个以上含有相同未知数的一元一次不等 式,组合起叫做一元一次不等式组.
2. 几个一元一次不等式的解集的公共部分,叫做由它 们所组成的一元一次不等式组的解集。
3. 解简单一元一次不等式组的方法:
(1)利用数轴找几个解集的公共部分:
(2)利用规律: 同大取大,同小取小; 大小小大中间找,大大小小解不了。
作业:1. 求下列不等式组的解集并在数轴上表示出其解集
第一组
x 3, (1)x 7.
3, 7.
(10)xx

2, 5.
x 3, (13)x 7.
(14)xx

2, 5.
x 1, (11)x 4.
(12)xx

0, 4.
x 1,
(15)
x

4.
x 0, (16)x 4.
谢谢大家

x 3 (5)x 7
解:在数轴上表示出其解集

0 1 2 3 45 6 7 89

即 :原不等式组的解集为3<x<7

(6)
x x

1 4
解:在数轴上表示出其解集

-3 -2 -1 0 1 2 3 4 5

即:原不等式组的解集为-1<x<4

例1:观察数轴,写出不等式组的解集并总结规律:
相关文档
最新文档