必修二第二章检测题2

合集下载

人教版高中化学必修二第2章《 化学反应与能量》检测题(含答案解析版)

人教版高中化学必修二第2章《 化学反应与能量》检测题(含答案解析版)

第2章《化学反应与能量》检测题一、单选题(每小题只有一个正确答案)1.核聚变是人类未来获取能源的理想方式之一。

人类从受控热核聚变反应中可得到无穷尽的清洁能源,相当于为自己制造了一个个小太阳。

下列关于能量转换的认识中不正确的是( )A.电解水生成氢气和氧气时,电能转化为化学能B.绿色植物进行光合作用时,太阳能转化为化学能C.煤燃烧时,化学能主要转化为热能D.白炽灯工作时,电能全部转化为光能2.下列各组实验中,过氧化氢分解最快的是( )A.答案A B.答案B C.答案C D.答案D3.某温度下,在密闭容器中浓度都为1.0 mol·L-1的两种气体X2和Y2,反应生成气体Z。

10min后,测得X2、Z的浓度分别为0.4 mol·L-1、0.6 mol·L-1。

该反应的化学方程式可能为( )A. X 2+2Y22XY2 B. 3X2+Y22X3YC. 2X 2+Y22X2Y D. X2+3Y22XY34.下列金属性质的比较中,能说明甲的金属性比乙强的是( )①甲与水反应比乙与水反应剧烈②单质甲能从乙的盐溶液中置换出单质乙③甲的最高价氧化物对应水化物的碱性比乙的最高价氧化物对应水化物的碱性强④以甲、乙金属为电极构成原电池,甲作负极A.①④B.③④C.①②③④D.①②③5.据报道,某国一集团拟在太空建造巨大的集光装置,把太阳光变成激光用于分解海水制氢:2H2O===2H2↑+O2↑。

下列说法正确的是( )A.水的分解反应是放热反应 B.此反应是把化学能转化为热能而储存起来C.使用氢气作燃料有助于控制温室效应 D.在这一反应中,热能转化为化学能6.锂电池是一代新型高能电池,它以质量轻、能量高而受到普遍重视,目前已研制成功多种锂电池。

某种锂电池的总反应方程式为Li+MnO2===LiMnO2,下列说法正确的是( ) A. Li作正极,电极反应为Li-e-===Li+B. Li作负极,电极反应为Li-e-===Li+C.该电池可以选用硫酸为电解质D.该电池使用一段时间后可以补充蒸馏水来补偿散失的水分7.下列过程中化学反应速率的加快对人类有益的是( )A.金属的腐蚀 B.食物的腐败 C.塑料的老化 D.氨的合成8.Mg—AgCl电池是一种能被海水激活的一次性贮备电池,电池反应方程式为2AgCl+Mg===Mg2++2Ag+2Cl-。

必修2 第二章 检测试卷(word版含答案)

必修2   第二章  检测试卷(word版含答案)

必修2 第二章检测试卷一、选择题(本题包括18小题,每小题3分,共54分,每小题只有一个选项符合题意)1.(2020·厦门双十中学期中)达康书记又追问环保局长:那么垃圾处理中,能随便焚烧吗?焚烧垃圾会降低GDP的。

在焚烧垃圾过程中发生了( )A.吸热的非氧化还原反应B.吸热的氧化还原反应C.放热的非氧化还原反应D.放热的氧化还原反应答案 D2.化学反应中必然伴随着物质变化和能量变化,下列说法正确的是( )A.浓硫酸溶于水共价键断裂并放出大量的热,所以该过程是放热反应B.吸热反应一定要在加热或高温条件下才能进行C.上图可表示放热反应中的能量变化D.焰色反应有能量变化,所以焰色反应是化学反应答案 C3.如图是化学课外活动小组设计的用化学电源使LED灯发光的装置示意图。

下列有关该装置的说法正确的是( )A.铜片为负极,其附近的溶液变蓝,溶液中有Cu2+产生B.如果将锌片换成铁片,电路中的电流方向将改变C.其能量转化的形式主要是“化学能→电能→光能”D.如果将稀硫酸换成柠檬汁,LED灯将不会发光答案 C4.如图所示的装置,在盛有水的烧杯中,铁圈和银圈的连接处吊着一根绝缘的细丝,使之平衡。

小心地往烧杯中央滴入CuSO4溶液。

片刻后可观察到的现象是(指悬吊的金属圈)( )A.铁圈和银圈左右摇摆不定B.保持平衡状态不变C.铁圈向下倾斜D.银圈向下倾斜答案 D5.甲:在试管中加入1 g粉末状大理石,加入4 mol·L-1盐酸20 mL(过量);乙:在试管中加入2 g颗粒状大理石,加入4 m ol·L-1盐酸20 mL(过量);下列CO2生成体积(折算成标准状况)V(CO2)同反应时间t的关系曲线图合理的是( )答案 D6.(2020·湖北恩施月考)一定条件下,将NO2与SO2以体积比1∶2置于密闭容器中发生NO2(g)+SO2(g)SO3(g)+NO(g)的可逆反应,下列能说明反应达到平衡状态的是( )A.体系压强保持不变B.混合气体颜色保持不变C.SO3和NO的体积比保持不变D.每消耗1 mol SO3的同时生成1 mol NO2答案 B7.(2020·铜陵市期中)根据如图所示示意图,下列说法不正确的是( )A.反应C(s)+H2O(g)===CO(g)+H2(g),能量增加(b-a) kJ·mol-1B.该反应过程反应物断键吸收的能量大于生成物成键放出的能量C.1 mol C(s)和1 mol H2O(l)反应生成1 mol CO(g)和1 mol H2(g)吸收的热量为131.3 kJD.1 mol C(s)、2 mol H、1 mol O转变成1 mol CO(g)和1 mol H2(g)放出的热量为a kJ答案 C8.根据下面的信息,下列叙述正确的是( )⎭⎬⎫H 2g 1 mol H 2的共价键断裂吸收436 kJ 能量2H g 12O 2g 12 mol O 2的共价键断裂吸收249 kJ 能量O g 形成1 mol H 2O 的共价键释放930 kJ 能量H 2O(g) A .2 mol H 2(g)跟1 mol O 2(g)反应生成2 mol H 2O(g)吸收能量为490 kJB .化学反应中能量变化的大小与反应物的质量多少无关C .1 mol H 2(g)跟0.5 mol O 2(g)反应生成1 mol H 2O(l)释放能量为245 kJD .2 mol H 2O(g)的能量比2 mol H 2(g)与1 mol O 2(g)的能量之和低答案 D9.纽扣电池可作计算器、电子表等的电源。

人教版高中数学必修二第二章单元测试(二)- Word版含答案

人教版高中数学必修二第二章单元测试(二)- Word版含答案

2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。

高一数学必修2第二章测试题及答案解析

高一数学必修2第二章测试题及答案解析

高一数学必修2第二章测试题及答案解析第二章单元测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂α B.a⊂α,b∥α C.a⊥α,b⊥α D.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()A.-45 B. .35C.34D.-3511.已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为() A.33 B.13C.0D.-1212.如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(本小题满分12分)如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD 的中点.(1)证明:CD⊥平面PAE;(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20.(本小题满分12分)(2010·辽宁文,19)如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21.(12分)如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.22.(12分)如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a ∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析]如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.10[答案]35命题意图]本试题考查了正方体中异面直线的所成角的求解的运用.[解析]首先根据已知条件,连接DF,然后则角DFD1即为异面直线所成的角,设边长为2,则可以求解得到5=DF=D1F,DD1=2,结合余弦定理得到结论.11[答案] C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案] B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS 为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析] 如下图所示,连接AC ,BD ,则直线AB ,CD 确定一个平面ACBD .∵α∥β,∴AC ∥BD , 则AS SB =CS SD ,∴86=12SD ,解得SD =9. 16[答案] ①②④ [解析] 如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a . 由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确. ③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a , ME ∥CD ,且ME =12CD =12a , ∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a , ∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确. 17[证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F ,∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1,∴平面AB 1F 1⊥平面ACC 1A 1.18[解析](1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面PAE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BF PB ,所以PA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515. 19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3.∵平面PCD ⊥平面ABCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3,∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM .(2)解:由(1)可知EM ⊥AM ,PM ⊥AM ,∴∠PME 是二面角P -AM -D 的平面角.∴tan ∠PME =PE EM =33=1,∴∠PME =45°. ∴二面角P -AM -D 的大小为45°.20[解析](1)因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C⊂平面AB1C所以平面AB1C⊥平面A1BC1 .(2)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B⊂平面A1BC1,平面A1BC1∩平面B1CD =DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∵ADEB为正方形,∴AE∩BD=F,且F是AE的中点,又G是EC的中点,∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB,又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB ⊂平面ABED,∴BE⊥平面ABC,∴BE⊥AC.又∵AC=BC=22AB,∴CA2+CB2=AB2,∴AC⊥BC.又∵BC∩BE=B,∴AC⊥平面BCE.(3)取AB的中点H,连GH,∵BC=AC=22AB=22,∴CH⊥AB,且CH=12,又平面ABED⊥平面ABC∴GH⊥平面ABCD,∴V=13×1×12=16.22[解析](1)证明:在直三棱柱ABC-A1B1C1中,底面三边长AC=3,BC=4,AB=5,∴AC⊥BC.又∵C1C⊥AC.∴AC⊥平面BCC1B1.∵BC1⊂平面BCC1B,∴AC⊥BC1.(2)证明:设CB1与C1B的交点为E,连接DE,又四边形BCC1B1为正方形.∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1.(3)解:∵DE∥AC1,∴∠CED为AC1与B1C所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.。

高二数学必修2第二章测试题及答案解析

高二数学必修2第二章测试题及答案解析

高中数学必修高2第二章测试题试卷满分:150分 考试时间:120分钟班级___________ 姓名__________ 学号_________ 分数___________一、选择题(每小题5分,共60分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45o 角D 、11AC 与1B C 成60o角5、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取EFGH 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M , a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个9、点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC ,则点O 是ΔABC 的( ) A 、内心 B 、外心 C 、重心 D 、垂心10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45D 、5611、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于A 、34B 、35CD12、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2VB 、3VC 、4VD 、5V二、填空题(每小题5分,共20分)13、已知直线a ⊥直线b, a//平面β,则b 与β的位置关系为 .14、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 15、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形 ABCD 一定是 .16.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线, 给出四个论断:① m ⊥ n ②α⊥β ③ m ⊥β ④ n ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:______________________________________.三、解答题(共70分,要求写出主要的证明、解答过程)18、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (10分)17、如图,PA ⊥平面ABC ,平面PAB ⊥平面PBC 求证:AB ⊥BC (12分)QPC'B'A'CBAPABCH G FE D BA C19、已知ABC ∆中90ACB ∠=o,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)20.如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC ,AF ⊥PC,PA=AB=BC=2(1)求证:平面AEF ⊥平面PBC ; (2)求二面角P —BC —A 的大小;(3)求三棱锥P —AEF 的体积.(12分)S D CB AA B C P EF21、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.。

2020年人教版生物必修二第二章检测卷附答案

2020年人教版生物必修二第二章检测卷附答案

第二章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间90分钟。

第Ⅰ卷(选择题共55分)一、选择题(共11小题,每小题5分,共55分,在每小题给出的4个选项中,只有1项是符合题目要求的)1.在雄性果蝇的精巢中,下列细胞内一定含有2条Y染色体的是(A)A.精原细胞有丝分裂后期B.初级精母细胞四分体时期C.初级精母细胞减数第一次分裂后期D.次级精母细胞减数第二次分裂后期[解析]在精原细胞有丝分裂后期,由于着丝点分裂细胞中含有2条X染色体、2条Y 染色体;初级精母细胞中虽然DNA已经复制,但染色单体连在同一个着丝点上,故只有一条X染色体和一条Y染色体;次级精母细胞减数第二次分裂后期含有2条X染色体或2条Y染色体。

2.(2019·宁夏育才中学高二期末)下面是对高等动物通过减数分裂形成配子以及受精作用的描述,其中正确的是(C)A.每个卵细胞继承了初级卵母细胞1/4的细胞质B.等位基因进入卵细胞的机会并不相等,因为一次减数分裂只形成一个卵细胞C.进入卵细胞并与之融合的精子几乎不携带细胞质D.雌、雄配子彼此结合的机会相等,因为它们的数量相等[解析]卵细胞形成过程中,细胞质的分配是不均等的,一次减数分裂形成了三个小的极体和一个大的卵细胞,所以每个卵细胞继承了初级卵母细胞大部分的细胞质,A错误;减数分裂过程会发生同源染色体联会,同源染色体分离,随同源染色体分离,等位基因分离,因此等位基因进入卵细胞的机会均等,B错误;进入卵细胞并与之融合的精子几乎不携带细胞质,C正确;受精作用过程中雌、雄配子结合的机会均等,但不是因为它们的数量相等,正常情况下雌配子远远少于雄配子,D错误。

3.下列有关某生物体各细胞分裂示意图的叙述,正确的是(D)A.图①处于减数第一次分裂的中期,细胞内有2对姐妹染色单体B.图②处于减数第二次分裂的后期,细胞内有2对姐妹染色单体C.图③处于减数第二次分裂的中期,该生物体细胞中染色体数目恒定为8条D.四幅图可排序为①③②④,可出现在该生物体精子的形成过程中[解析]图①表示减数第一次分裂中期,细胞内含2对同源染色体;图②表示减数第二次分裂后期,细胞内无姐妹染色单体;图③表示减数第二次分裂中期,该生物体细胞内染色体数为4条,此分裂过程可能是精子的形成过程,A、B、C错误,D正确。

必修二第二章检查试卷及详细答案

必修二第二章检查试卷及详细答案

…………○…订…………………线……名:___________班级:_考号:_________…………○…订…………………线……必修二第二章检查试卷(选择题答案统一写在23题下面,谢谢配合!) 姓名: 一、单选题(每题3分,共48分) 班级: 1.如图所示,烧杯中盛的是水,铁圈和银圈直接相连,在接头处用一根绝缘细丝吊住,并使之平衡。

小心地从烧杯中央滴入CuSO 4溶液,反应一段时间后,观察到的现象是A .两圈仍保持平衡B .有气泡产生,两圈摇摆不定C .铁圈向下倾斜D .银圈向下倾斜 2.反应A(g)+3B(g)2C(g)+2D(g)在四种不同情况下的反应速率分别为①v(A)=0.45 mol·L -1·min -1 ②v(B)=0.6 mol·L -1·s -1 ③v(C)=0.4 mol·L -1·s -1 ④v(D)=0.45 mol·L -1·s -1,该反应进行的快慢顺序为 A .④>③=②>① B .④<③=②<① C .①>②>③>④D .④>③>②>①3.下列装置中,能构成原电池的是A .只有甲B .只有乙C .只有丙D .除乙均可以4.决定化学反应速率的主要因素是 A .参加反应物本身的性质 B .催化剂 C .温度和压强以及反应物的接触面 D .反应物的浓度5.下列措施能减慢化学反应速率的是A .用Zn 和2mol·L -1H 2SO 4反应制取H 2时,向溶液中滴加少量CuSO 4溶液B .日常生活中,将食物贮藏在冰箱中C .用过氧化氢溶液制氧气时添加少量二氧化锰粉末D .用相同质量的锌粉替代锌粒与同浓度、同体积的盐酸反应制氢气6.162S O 与182O 在高温条件下发生反应:2232SO O 2SO −−→+←−−,达到化学平衡后,混合物中含18O 的微粒是○……※○……7.氯化钠是一种重要的生活、生产必需品。

人教版高中数学必修2第二章单元测试(二)- Word版含答案

人教版高中数学必修2第二章单元测试(二)- Word版含答案

必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列推理错误的是()A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD -A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°3.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下面结论正确的是()A.E,F,G,H一定是各边的中点B.G,H一定是CD,DA的中点C.BE∶EA=BF∶FC,且DH∶HA=DG∶GCD.AE∶EB=AH∶HD,且BF∶FC=DG∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n 等于()A.8B.9C.10D.115.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.BD C.A1D D.A1D16.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,此时∠B′AC =60°,那么这个二面角大小是()A.90°B.60°C.45°D.30°7.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O 的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥m B .AC ⊥m C .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3πC .4πD .6π11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( )A .点H 是△A 1BD 的垂心B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,2BC =,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D-中,M、N分别为AB、A1D1的中点,判断MN与平面A1BC1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C-的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.19.(12分)如图,在三棱锥P—ABC中,PA⊥底面ABC,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面P AC.(2)是否存在点E使得二面角A DE P--为直二面角?并说明理由.20.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱111ABC A B C-的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,2B C AC a'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.13333sin 602ABC S =⨯⨯⨯︒=.1113394ABC A B C ABC V S OP OP -∴=⨯=⨯=,3OP ∴=.又32313OA =⨯⨯=,∴tan 3OP OAP OA ∠==,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB BE CE CD =,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2)21. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得34OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA ,且2274AD OD OA =+=,得2114OH =.又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217, 故三棱柱111ABC A B C -的高为217. 21.【答案】(1)见解析;(2)见解析;(3)3618P ABCD V a -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF 中,11224OF OC AC a ===,∴6·tan 30EF OF a =︒=,∴62OP EF a ==.∴231663P ABCD V a a a -=⨯⨯=. 22.【答案】(1)见解析;(2)见解析;(3)3V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC ,所以223AB AC BC =-= 所以三棱锥E -ABC 的体积11113·312332ABC V S AA ==⨯⨯=△.。

必修二数学第二章测试题

必修二数学第二章测试题

必修二数学第二章测试题一、选择题(每题3分,共15分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(2) \)的值。

A. 5B. 3C. 1D. 02. 已知\( a \)和\( b \)是方程\( x^2 + 5x - 6 = 0 \)的两个根,求\( a + b \)的值。

A. -6B. 5C. -5D. 63. 若\( \sin \alpha = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos \alpha \)的值。

A. \( \frac{4}{5} \)B. \( \frac{12}{13} \)C. \( \frac{3}{13} \)D. \( \frac{-4}{5} \)4. 已知\( \log_{10}100 = 2 \),求\( \log_{10}1000 \)的值。

A. 3B. 2C. 1D. 05. 若\( x \)和\( y \)满足\( x^2 + y^2 = 9 \),且\( x + y = 5 \),求\( x - y \)的值。

A. 4B. 2C. 1D. -1二、填空题(每题2分,共10分)6. 圆的标准方程为 \( (x - h)^2 + (y - k)^2 = r^2 \),若圆心为(3,4),半径为5,则圆的方程为________________。

7. 若\( \tan \theta = 2 \),求\( \sin \theta \)的值(用\( \tan \theta \)表示)。

8. 已知等差数列的首项为2,公差为3,求第5项的值。

9. 若\( \log_{2}8 = 3 \),求\( \log_{4}8 \)的值。

10. 已知\( \sin \alpha + \cos \alpha = \frac{1}{2} \),求\( \sin \alpha \cdot \cos \alpha \)的值。

(完整word版)数学必修二第二章经典测试题(含答案)

(完整word版)数学必修二第二章经典测试题(含答案)

必修二第二章综合检测题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为()①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()A.-45 B .35C.34D.-3511.已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为()A.33 B.13C.0D.-1212.如图所示,点P在正方形ABCD所在平面外,P A⊥平面ABCD,P A=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°二、填空题三、13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD =________.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A118.如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.22.如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.必修二第二章综合检测题1 D 2C AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3C当直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;当l⊂α时,在α内不存在直线与l异面,∴D错;当l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4 D 由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5B对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6 D异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7 D如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8 D选项A 中,a ,b 还可能相交或异面,所以A 是假命题;选项B 中,a ,b 还可能相交或异面,所以B 是假命题;选项C 中,α,β还可能相交,所以C 是假命题;选项D 中,由于a ⊥α,α⊥β,则a ∥β或a ⊂β,则β内存在直线l ∥a ,又b ⊥β,则b ⊥l ,所以a ⊥b .9 C如图所示:AB ∥l ∥m ;AC ⊥l ,m ∥l ⇒AC ⊥m ;AB ∥l ⇒AB ∥β.10、3511 C 取BC 中点E ,连AE 、DE ,可证BC ⊥AE ,BC ⊥DE ,∴∠AED 为二面角A -BC -D 的平面角又AE =ED =2,AD =2,∴∠AED =90°,故选C.12 B 将其还原成正方体ABCD -PQRS ,显见PB ∥SC ,△ACS 为正三角形,∴∠ACS =60°.13 α∩β=AB 14 45°如图所示,正方体ABCD -A 1B 1C 1D 1中,由于BC ⊥AB ,BC 1⊥AB ,则∠C 1BC 是二面角C 1-AB -C 的平面角.又△BCC 1是等腰直角三角形,则∠C 1BC =45°.15、 9如下图所示,连接AC ,BD ,则直线AB ,CD 确定一个平面ACBD .∵α∥β,∴AC ∥BD , 则AS SB =CS SD ,∴86=12SD ,解得SD =9.16 ①②④如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a .由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确.③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确. 17 (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F . 又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F ∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1 ∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1 ∴平面AB 1F 1⊥平面ACC 1A 1.18(1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC=5.又AD =5,E 是CD 的中点,所以CD ⊥AE .∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3 ∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°20(1)因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C⊂平面AB1C所以平面AB1C⊥平面A1BC1 .(2)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B⊂平面A1BC1,平面A1BC1∩平面B1CD =DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∵ADEB为正方形∴AE∩BD=F,且F是AE的中点,又G是EC的中点∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC .又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC .又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1∵BC 1⊂平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.。

必修二第2章测试卷

必修二第2章测试卷

第二章测试卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)1.若直线a 与b 是异面直线,b 与c 也是异面直线,则直线a 与c ( ) A .平行 B .异面 C .相交 D .都有可能【答案】D2.正方体ABCD-A 1B 1C 1D 1中,P ,Q ,R 分别是AB ,AD ,B 1C 1的中点.那么,正方体的过P ,Q ,R 的截面图形是( )A .三角形B .四边形C .五边形D .六边形 【答案】D3.平行六面体ABCD-A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6 【答案】C4.设m ,n 是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,其中为真命题的是( )①⎭⎪⎬⎪⎫m ⊥n n ⊂α⇒m ⊥α ②⎭⎪⎬⎪⎫m ⊥αm ⊂β⇒α⊥β ③⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ④⎭⎪⎬⎪⎫m ⊂αn ⊂βα∥β⇒m ∥n A .①② B .②③ C .③④ D .①④【答案】B5.对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥α D .a ⊂α,b ⊥α 【答案】B6.已知α-l-β是一个大小确定的二面角,若a ,b 是空间两条直线,则能使a ,b 所成的角为定值的一个条件是( )A .a ∥α且b ∥βB .a ∥α且b ⊥βC .a ⊥α且b ∥βD .a ⊥α且b ⊥β【答案】D7.已知直二面角α-l-β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( )A .2B . 3C . 2D .1【答案】C8.二面角α-A-B-β的平面角为锐角,C 是平面α内的一点(它不在棱AB 上),点D 是点C 在平面β内的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么( )A .∠CEB =∠DEB B .∠CEB >∠DEBC .∠CEB <∠DEBD .∠CEB 与∠DEB 的大小关系不定 【答案】B9.如图,在棱长均为2的正四棱锥P-ABCD 中,点E 为PC 的中点,则下列命题正确的是( )A .BE ∥平面P AD 且BE 到平面P AD 的距离为 3B .BE ∥平面P AD 且BE 到平面P AD 的距离为263C .BE 与平面P AD 不平行且BE 与平面P AD 所成的角大于30° D .BE 与平面P AD 不平行且BE 与平面P AD 所成的角小于30° 【答案】D【解析】在平面PBC 中,过P 作直线l ,使l ∥BC ,则l ∥AD ,所以l 是平面PBC 与平面P AD 的交线.显然BE 与l 相交,故BE 与平面P AD 不平行.由棱长都为2,可知∠CBE =30°,所以BE 与平面P AD 内的直线AD 所成的角为30°.所以BE 与平面P AD 所成的角不可能大于30°.故选D.10.在矩形ABCD 中,若AB =3,BC =4,P A ⊥平面AC 且P A =1,则点P 到对角线BD 的距离为( )A.292B .135C .175D .1195【答案】B【解析】在平面ABCD 中,过A 作AH ⊥BD 于D ,又P A ⊥BD ,所以BD ⊥平面P AH ,所以BD ⊥PH ,即PH 为点P 到对角线BD 的距离.在Rt △ABD 中,AB =3,AD =4,则BD =5,AH =AB ·AD BD =125.所以PH =P A 2+AH 2=135.11.(2015年福建模拟)如图,正方体ABCD-A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O ∥平面A 1BC 1B .MO ⊥平面A 1BC 1C .异面直线BC 1与AC 所成的角等于60°D .二面角MACB 等于90° 【答案】D【解析】连接B 1D 1交A 1C 1于E ,连接BO ,则四边形D 1OBE 为平行四边形,∴D 1O ∥BE ,故D 1O ∥平面A 1BC 1,A 正确.连接B 1D ,BD ,OM ,∵O 为底面ABCD 的中心,M 为棱BB 1的中点,∴MO ∥B 1D .∵B 1D ⊥平面A 1BC 1,∴MO ⊥平面A 1BC 1,B 正确.∵AC ∥A 1C 1,∴∠A 1C 1B 为异面直线BC 1与AC 所成的角.∵△A 1C 1B 为等边三角形,∴∠A 1C 1B =60°,C 正确.∵BO ⊥AC ,MO ⊥AC ,∴∠MOB 为二面角M -AC -B 的平面角,显然不等于90°,故D 不正确.12.(2015年山东模拟)如图在直三棱柱ABC-A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是( )A.63 B .22 C.33D .66【答案】D【解析】∵AC ∥A 1C 1,∴∠C 1A 1B 即为异面直线A 1B 与AC 所成角. 在直三棱柱ABC -A 1B 1C 1中,∴CC 1⊥AC, CC 1⊥BC .∵∠ACB =90°,即AC ⊥BC ,∴AC ⊥平面BCC 1B 1.∴AC ⊥BC 1.∴A 1B =4+1+1=6,cos ∠C 1A 1B =A 1C 1A 1B =66.二、填空题(本大题共4小题,每小题5分,满分20分)13.平面α过正方体ABCD-A1B1C1D1的三个顶点B,D,A1且α与底面A1B1C1D1的交线为l,则l与B1D1的位置关系是________.【答案】平行14.如图,已知ABCD是平行四边形,P A=PC,PD=PB,则平面P AC与平面ABCD 的关系是________.【答案】垂直15.已知α,β,γ是三个互不重合的平面,l是一条直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两个点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.【答案】②④16.将锐角A为60°,边长为a的菱形ABCD沿BD折成60°的二面角,则A与C之间的距离为________.【答案】3 2a【解析】设BD的中点为O,△ABD,△CBD都是边长为a的等边三角形,所以AO=CO=32a且AO⊥BD,CO⊥BD.所以∠AOC=60°.所以△AOC是等边三角形,AC=32a.三、解答题(本大题共6小题,满分70分)17.(10分)如右图,在三棱锥P ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△P AC是直角三角形,∠P AC=90°,∠ACP=30°,平面P AC⊥平面ABC.(1)求证:平面P AB⊥平面PBC;(2)若PC=2,求△PBC的面积.(1)证明:∵平面P AC⊥平面ABC,其交线为AC,P A⊥AC,P A⊂平面P AC,∴P A⊥平面ABC.∵BC⊂平面ABC,∴P A⊥BC.又AB ⊥BC ,AB ∩P A =A ,AB ⊂平面P AB ,P A ⊂平面P AB , ∴BC ⊥平面P AB . 而BC ⊂平面PBC , ∴平面P AB ⊥平面PBC .(2)【解析】由(1)得,BC ⊥平面P AB , ∴BC ⊥PB ,即∠PBC =90°. 由已知PC =2,得AC =3, BC =22AC =22×3=62. 在Rt △PBC 中,PB =PC 2-BC 2=22-⎝⎛⎭⎫622= 102. ∴Rt △PBC 的面积S =12PB ×BC =12×62×102=154. 18.(12分)在斜三棱柱ABC-A 1B 1C 1中,侧面ACC 1A 1⊥平面ABC ,∠ACB =90°.(1)求证:BC ⊥AA 1;(2)若M ,N 是棱BC 上的两个三等分点,求证:A 1N ∥平面AB 1M . 证明:(1)因为∠ACB =90°, 所以AC ⊥CB .又侧面ACC 1A 1⊥平面ABC 且平面ACC 1A 1∩平面ABC =AC ,BC ⊂平面ABC , 所以BC ⊥平面ACC 1A 1.又AA 1⊂平面ACC 1A 1,所以BC ⊥AA 1. (2)连接A 1B ,交AB 1于O 点,连接MO .在△A 1BN 中,O ,M 分别为A 1B ,BN 的中点,所以OM ∥A 1N . 又OM ⊂平面AB 1M ,A 1N ⊄平面AB 1M , 所以A 1N ∥平面AB 1M .19.(12分)如图,在三棱柱BCE-ADF 中,四边形ABCD 是正方形,DF ⊥平面ABCD ,M ,N 分别是AB ,AC 的中点,G 是DF 上的一点.(1)求证:GN⊥AC;(2)若FG=GD,求证:GA∥平面FMC.证明:(1)连接DN.∵四边形ABCD是正方形,∴DN⊥AC.∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC.又DN∩DF=D,∴AC⊥平面DNF.∵GN⊂平面DNF,∴GN⊥AC.(2)如图,取DC的中点S,连接AS,GS.∵G是DF的中点,∴GS∥FC,AS∥CM.又GS,AS⊄平面FMC,FM,CM⊂平面FMC,∴GS∥平面FMC.∴AS∥平面FMC.而AS∩GS=S,∴平面GSA∥平面FMC,∵GA⊂平面GSA,∴GA∥平面FMC.20.(12分)如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)求证:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点且A1B∥平面B1CD,求A1D∶DC1的值.(1)证明:因为侧面BCC1B1是菱形,所以B1C⊥BC1.又B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1.又B1C⊂平面AB1C,所以平面AB1C⊥平面A1BC1.(2)【解析】设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点,即A1D∶DC1=1.21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是P A,BC的中点且PD=AD=1.(1)求证:MN∥平面PCD;(2)求证:平面P AC⊥平面PBD;(3)求三棱锥P ABC的体积.(1)证明:取AD中点E,连接ME,NE,由已知M,N分别是P A,BC的中点,所以ME∥PD,NE∥CD.又ME,NE⊂平面MNE,ME∩NE=E,所以平面MNE∥平面PCD.又MN⊂平面MNE,所以MN∥平面PCD.(2)证明:因为ABCD 为正方形, 所以AC ⊥BD .又PD ⊥平面ABCD ,所以PD ⊥AC . 又PD ∩BD =D ,所以AC ⊥平面PBD ,AC ⊂平面P AC . 所以平面P AC ⊥平面PBD .(3)【解析】因为PD ⊥平面ABCD ,所以PD 为三棱锥P ABC 的高,三角形ABC 为等腰直角三角形,所以三棱锥P ABC 的体积V =13S △ABC ·PD =16.22.(12分)如图,在四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)求证:PB ∥平面ACM ; (2)求证:AD ⊥平面P AC ;(3)求直线AM 与平面ABCD 所成角的正切值. (1)证明:连接BD ,MO .在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点. 又M 为PD 的中点, 所以PB ∥MO .因为PB ⊄平面ACM ,MO ⊂平面ACM , 所以PB ∥平面ACM .(2)证明:因为∠ADC =45°且AD =AC =1, 所以∠DAC =90°,即AD ⊥AC .又PO ⊥平面ABCD ,AD ⊂平面ABCD , 所以PO ⊥AD .而AC ∩PO =O , 所以AD ⊥平面P AC .(3)解:取DO 中点N ,连接MN ,AN .因为M 为PD 的中点, 所以MN ∥PO 且MN =12PO =1.由PO ⊥平面ABCD , 得MN ⊥平面ABCD .所以∠MAN 是直线AM 与平面ABCD 所成的角. 在Rt △DAO 中,AD =1,AO =12,所以DO =52.从而AN =12DO =54. 在Rt △ANM 中,tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455.。

人教版高中数学必修二第二章单元测试(二)及参考答案

人教版高中数学必修二第二章单元测试(二)及参考答案

2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A.A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B.A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C.l ⊄α,A ∈l ⇒A ∉α D.A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A.30°B.45°C.60°D.90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A.E ,F ,G ,H 一定是各边的中点 B.G ,H 一定是CD ,DA 的中点C.BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD.AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于()A.8B.9C.10D.115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于()A.ACB.BDC.A 1DD.A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是()A.90°B.60°C.45°D.30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC此卷只装订不密封班级 姓名 准考证号 考场号 座位号的长,其中正确的是( ) A.①②B.①②③C.①D.②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是() 1与B 1E 是异面直线B.AC ⊥平面ABB 1A 1C.AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D.A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A.AB ∥mB.AC ⊥mC.AB ∥βD.AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.512π B.3π C.4π D.6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( )A.点H 是△A 1BD 的垂心B.AH ⊥平面CB 1D 1C.AH 的延长线经过点C 1D.直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC =将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC 与直线BD 垂直B.存在某个位置,使得直线AB 与直线CD 垂直C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC =1,E,F分别是A1C1,BC的中点. (1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】若直线l ∩α=A ,显然有l ⊄α,A ∈l ,但A ∈α.故选C.2.【答案】D【解析】由于AD ∥A 1D 1,则∠BAD 是异面直线AB ,A 1D 1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD ∥平面EFGH ,所以有BD ∥EH ,BD ∥FG ,则AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC .故选D.4.【答案】A【解析】如图,取CD 的中点H ,连接EH ,HF.在四面体CDEF 中,CD ⊥EH ,CD ⊥FH ,所以CD ⊥平面EFH ,所以AB ⊥平面EFH ,所以正方体的左、右两个侧面与EFH 平行,其余4个平面与EFH 相交,即n =4.又因为CE 与AB 在同一平面内,所以CE 与正方体下底面共面,与上底面平行,与其余四个面相交,即m =4,所以m +n =4+4=8.故选A. 5.【答案】B【解析】易证BD ⊥面CC 1E ,则BD ⊥CE .故选B. 6.【答案】A【解析】连接B ′C ,则△AB ′C 为等边三角形,设AD =a,则B ′D =DC =a,B C AC '=,所以∠B ′DC =90°.故选A.7.【答案】B【解析】对于①,∵P A ⊥平面ABC ,∴P A ⊥BC ,∵AB 为⊙O 的直径,∴BC ⊥AC ,∴BC ⊥平面P AC ,又PC ⊂平面P AC ,∴BC ⊥PC ;对于②,∵点M 为线段PB 的中点,∴OM ∥P A ,∵P A ⊂平面P AC ,∴OM ∥平面P AC ;对于③,由①知BC ⊥平面P AC ,∴线段BC 的长即是点B 到平面P AC 的距离.故①②③都正确.8.【答案】C【解析】由已知AC =AB ,E 为BC 中点,故AE ⊥BC , 又∵BC ∥B 1C 1,∴AE ⊥B 1C 1,故C 正确.故选C. 9.【答案】D【解析】∵m ∥α,m ∥β,α∩β=l ,∴m ∥l .∵AB ∥l ,∴AB ∥m .故A 一定正确. ∵AC ⊥l ,m ∥l ,∴AC ⊥m .故B 一定正确.∵A ∈α,AB ∥l ,l ⊂α,∴B ∈α.∴AB ⊄β,l ⊂β.∴AB ∥β.故C 也正确. ∵AC ⊥l ,当点C 在平面α内时,AC ⊥β成立,当点C 不在平面α内时,AC ⊥β不成立.故D 不一定成立.故选D. 10.【答案】B【解析】如图所示,作PO ⊥平面ABC ,则O 为△ABC 的中心,连接AP ,AO .1sin 602ABC S =︒=.11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=又213OA ==,∴tan OP OAP OA ∠=又02OAP π<∠<,∴3OAP π∠=.故选B.11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H.又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D. 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB ,故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB BE CE CD =,即33xa x =-.∴290x ax +=-,由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A DE P --为直二面角. 20.【答案】(1)见解析;. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA ,且AD ==得OH =.又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE . (3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF 中,1124OF OC AC ===,∴·tan 30EF OF =︒=,∴2OP EF ==.∴2313P ABCD V a -=⨯=. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。

高中数学必修2第二章单元测试题(含答案)

高中数学必修2第二章单元测试题(含答案)

高一数学必修2第二章测试题【第七次周练】一、选择题(每小题4分,共48分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体111A B C D A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC与1B C 成60角5、若直线l 垂直平面α,直线a α⊂,则l 与a 的位置关系是A 、l 垂直aB 、l 与a 异面C 、l 与a 相交D 、以上三种 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取EFGH 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点P 不在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个 9、如图,是正方体的平面展开图,在这个正方体中有下列几个结论①BM//ED ②CN 与BE 是异面直线 ③CN 与BM 成600角 ④DM ⊥BN 其中正确的结论的序号是()B 1C 1A 1D 1BACDA ,①②③B ,②④C ,③④D ,②③④ 10、给出以下四个命题①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是A.4B.3C.2D.111、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45D 、5612、直线m,n 分别在两个互相垂直的平面α,β内,且α∩β= a ,m 和n 与 a 不垂直也不平行,那么m 和n 的位置关系是()A .可能垂直,但不一定平行,B ,可能平行,但一定不垂直C ,可能垂直,可能平行,D ,一定不垂直,也一定不平行。

数学必修二第二章测试题(含标准答案)

数学必修二第二章测试题(含标准答案)

第二章综合检测题时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线a和b没有公共点,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( )A .AB ∥m B .AC ⊥mC .AB ∥βD .AC ⊥β10.(2012·大纲版数学(文科))已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么直线AE 与D 1F 所成角的余弦值为( )A .-45 B. .35C .34D .-3511.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为( )A.33B.13 C .0 D .-1212.如图所示,点P 在正方形ABCD 所在平面外,P A ⊥平面ABCD ,P A =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D .30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD =________.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.[分析]本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.18.(本小题满分12分)如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20.(本小题满分12分)(2010·辽宁文,19)如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21.(12分)如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.[分析](1)转化为证明GF平行于平面ABC内的直线AC;(2)转化为证明AC垂直于平面EBC内的两条相交直线BC和BE;(3)几何体ADEBC是四棱锥C-ABED.22.(12分)如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a ∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析]如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.10[答案]35命题意图]本试题考查了正方体中异面直线的所成角的求解的运用.[解析]首先根据已知条件,连接DF,然后则角DFD1即为异面直线所成的角,设边长为2,则可以求解得到5=DF=D1F,DD1=2,结合余弦定理得到结论.11[答案] C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案] B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS 为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析]如下图所示,连接AC,BD,则直线AB ,CD 确定一个平面ACBD .∵α∥β,∴AC ∥BD , 则AS SB =CS SD ,∴86=12SD ,解得SD =9.16[答案] ①②④ [解析] 如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a .由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确. ③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确. 17[证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F ,∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1,∴平面AB 1F 1⊥平面ACC 1A 1.18[解析](1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3.∵平面PCD ⊥平面ABCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3,∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM .(2)解:由(1)可知EM ⊥AM ,PM ⊥AM ,∴∠PME 是二面角P -AM -D 的平面角.∴tan ∠PME =PE EM =33=1,∴∠PME =45°. ∴二面角P -AM -D 的大小为45°.20[解析](1)因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1,又已知B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1,又B 1C ⊂平面AB 1C所以平面AB 1C ⊥平面A 1BC 1 . (2)设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面 B 1CD 的交线.因为A 1B ∥平面B 1CD ,A 1B ⊂平面A 1BC 1,平面A 1BC 1∩平面B 1CD =DE ,所以A 1B ∥DE .又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∵ADEB为正方形,∴AE∩BD=F,且F是AE的中点,又G是EC的中点,∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB,又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB⊂平面ABED,∴BE⊥平面ABC,∴BE⊥AC.又∵AC=BC=22AB,∴CA2+CB2=AB2,∴AC⊥BC.又∵BC∩BE=B,∴AC⊥平面BCE.(3)取AB的中点H,连GH,∵BC=AC=22AB=22,∴CH⊥AB,且CH=12,又平面ABED⊥平面ABC。

人教版必修二第二章复习题含答案

人教版必修二第二章复习题含答案

章末检测卷(二)(时间:90分钟满分:100分)一、选择题(本题包括15小题,每小题3分,共45分;每小题只有一个选项符合题意)1.在西部大开发中,国家投巨资兴建“西气东输”工程,将西部蕴藏的丰富资源通过管道输送到东部地区。

这里所指的“西气”的主要成分是()A.CO B.CH4C.H2D.NH3答案 B激光2.据报道,某国一集团拟在太空建造巨大的集光装置,把太阳光变成激光用于分解海水制氢:2H2O=====2H2↑+O2↑,下列说法正确的是()A.水的分解反应是放热反应B.氢气是一次能源C.使用氢气作燃料将会增加温室效应D.在这一反应中,光能转化为化学能答案 D解析水的分解反应是吸热反应;H2是二次能源;H2是清洁能源,不会增加温室效应。

3.太阳能的开发和利用是21世纪一个重要课题。

利用储能介质储存太阳能的原理是:白天在太阳照射下某种盐熔化,吸收热量,晚间熔盐固化释放出相应的能量,已知数据:其中最适宜作为储能介质的是()A.CaCl2·6H2O B.Na2SO4·10H2O C.Na2HPO4·12H2O D.Na2S2O3·5H2O答案 B 解析该盐应是熔点不能太高,熔化吸热应较高,价格适中。

4.绿色能源是指使用过程中不排放或排放极少污染物的能源,如一次能源中的水能、地热能、天然气等;二次能源中的电能、氢能等。

下列能源属于绿色能源的是()①太阳能②风能③石油④煤⑤潮汐能⑥木材A.①②③B.③④⑤C.④⑤⑥D.①②⑤答案 D 解析石油、煤、木材在使用过程中排放出污染物(如二氧化硫等)。

5.下列措施不符合节能减排的是()A.大力发展火力发电,解决电力紧张问题B.在屋顶安装太阳能热水器为居民提供生活用热水C.用石灰对煤燃烧后形成的烟气脱硫,并回收石膏D.用杂草、生活垃圾等有机废弃物在沼气池中发酵产生沼气,作家庭燃气答案 A 解析 火力发电,必须使用外界的能源,不节能,故A 项不符;太阳能热水器,使用太阳能,是节能的,B 项符合;回收石膏,是充分利用原料的一种表现,C 项符合;沼气作为燃气,是节能的,D 项符合。

(word完整版)数学必修二第二章经典测试题(含答案)(2),推荐文档

(word完整版)数学必修二第二章经典测试题(含答案)(2),推荐文档

必修二第二章综合检测题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为()①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()A.-45 B .35C.34D.-3511.已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为()A.33 B.13C.0D.-1212.如图所示,点P在正方形ABCD所在平面外,P A⊥平面ABCD,P A=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°二、填空题三、13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD =________.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A118.如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.22.如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.必修二第二章综合检测题1 D 2C AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3C当直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;当l⊂α时,在α内不存在直线与l异面,∴D错;当l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4 D 由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5B对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6 D异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7 D如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8 D选项A 中,a ,b 还可能相交或异面,所以A 是假命题;选项B 中,a ,b 还可能相交或异面,所以B 是假命题;选项C 中,α,β还可能相交,所以C 是假命题;选项D 中,由于a ⊥α,α⊥β,则a ∥β或a ⊂β,则β内存在直线l ∥a ,又b ⊥β,则b ⊥l ,所以a ⊥b .9 C如图所示:AB ∥l ∥m ;AC ⊥l ,m ∥l ⇒AC ⊥m ;AB ∥l ⇒AB ∥β.10、3511 C 取BC 中点E ,连AE 、DE ,可证BC ⊥AE ,BC ⊥DE ,∴∠AED 为二面角A -BC -D 的平面角又AE =ED =2,AD =2,∴∠AED =90°,故选C.12 B 将其还原成正方体ABCD -PQRS ,显见PB ∥SC ,△ACS 为正三角形,∴∠ACS =60°.13 α∩β=AB 14 45°如图所示,正方体ABCD -A 1B 1C 1D 1中,由于BC ⊥AB ,BC 1⊥AB ,则∠C 1BC 是二面角C 1-AB -C 的平面角.又△BCC 1是等腰直角三角形,则∠C 1BC =45°.15、 9如下图所示,连接AC ,BD ,则直线AB,CD确定一个平面ACBD. ∵α∥β,∴AC∥BD,则ASSB=CSSD,∴86=12SD,解得SD=9.16①②④如图所示,①取BD中点,E连接AE,CE,则BD⊥AE,BD ⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC⊥BD,故①正确.②设正方形的边长为a,则AE=CE=2 2a.由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC =90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD 所成的角,而∠ABE=45°,所以③不正确.④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=12AB=12a,ME∥CD,且ME=12CD=12a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=22a,AC=a,∴NE=12AC=12a.∴△MEN是正三角形,∴∠EMN=60°,故④正确.17(1)在正三棱柱ABC-A1B1C1中,∵F、F1分别是AC、A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F ∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1 ∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1 ∴平面AB1F1⊥平面ACC1A1.18(1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC=5.又AD =5,E 是CD 的中点,所以CD ⊥AE .∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3 ∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°20(1)因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C⊂平面AB1C所以平面AB1C⊥平面A1BC1 .(2)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B⊂平面A1BC1,平面A1BC1∩平面B1CD =DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∵ADEB为正方形∴AE∩BD=F,且F是AE的中点,又G是EC的中点∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC .又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC .又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1∵BC 1⊂平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.。

人教版必修二第二章测试题

人教版必修二第二章测试题

第二章测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列语句:①桌面就是一个平面;②一个平面长3 m,宽2 m;③平面内有无数个点,平面可以看成点的集合;④空间图形是由空间的点,线,面所构成的.其中正确的个数为()A。

1B. 2C。

3D. 42。

已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是()A。

1B。

4C. 1或3D。

1或43.空间四边形ABCD(如右图)中,若AD⊥BC,BD⊥AD,则有()A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBC D。

平面ADC⊥平面DBC4。

若a∥b,a⊥α,b∥β,则( )A。

α∥βB。

b∥α C。

α⊥βD。

a⊥β5.在空间四边形ABCD(如右下图)各边AB、B C、CD、DA上分别取E、F、G、H四点,如果EF与GH相交于点P,那么()A。

点P必在直线AC上B.点P必在直线BD上C。

点P必在平面DBC内D。

点P必在平面ABC外6。

下面四个命题:①若直线a与b异面,b与c异面,则a与c异面;②若直线a与b相交,b与c相交,则a与c相交;③若直线a∥b,b∥c,则a∥b∥c;④若直线a∥b,则a,b与直线c所成的角相等.其中真命题的个数是( )A .4B .3C .2D .17。

在正方体中(如右下图),与平面所成的角的大小是( )A . 90°B . 60°C . 45°D .30° 8.如下图,设四面体各棱长均相等,分别为AC 、AD 中点,则在该四面体的面上的射影是下图中的( ).9。

如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使面ABD ⊥面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为( ).A . 1B 。

2C . 3D 。

410。

异面直线a 与b 分别在平面α,β内,α与β交于直线l ,则直线l 与a ,b 的位置关B A 1D D BB 11ABCD F E 、BEF ABC AB C DEFADC B系一定是( )A . l 至少与a ,b 中的一条相交B .l 至多与a ,b 中的一条相交C . l 至少与a ,b 中的一条平行D . l 与a,b 都相交 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修二第二章检测题2
第Ⅰ卷
一、选择题:(每题只有一个选项)
1、下列关于化学键的叙述正确的是()
A. 化学键既存在于相邻原子之间,又存在与相邻分子之间
B. 两个原子之间的相互作用叫化学键
C. 化学键通常指的是相邻的两个或多个原子之间的强相互作用
D. 阴阳离子之间有强烈的吸引作用而没有排斥作用,所以离子键的核间距相当小
2. 下列化合物分子内只有共价键的是()
A. BaCl2
B. NaOH
C. (NH4)2SO4
D. H2SO4
3. 下列说法中正确的是()
A. 物质发生化学反应不一定都伴随着能量变化
B. 伴有能量变化的物质变化都是化学变化
C. 在一个确定的化学反应关系中,反应物的总能量与生成物的总能量一定不同
D. 一个确定的化学反应关系中,反应物的总能量总是高于生成物的总能量
4. 下列反应中属于吸收热量的反应是()
①液态水汽化②将明矾加热变为白色粉末③浓硫酸稀释
④氯酸钾分解制氧气⑤生石灰跟水反应生成熟石灰
A. ①④
B. ②③
C. ①④⑤
D. ②④
5.下列物质放入水中,显著放热的是()
A. 固体氯化钠
B. 固体氢氧化钠
C. 无水乙醇
D. 固体硝酸铵
6、关于如图所示的装置的叙述,正确的是()
A. 铜是阳极,铜片上有气泡产生
B. 铜片质量逐渐减少
C. 电流从锌片经导线流向铜片
D. 氢离子在铜片表面被还原
7、用向上排空气法收集氯气和氯化氢时,可用于检验瓶中
是否已充满又可区别两种气体的是()
A. 湿润的淀粉碘化钾试纸
B. 湿润的蓝色石蕊试纸
C. 蘸有浓氨水的玻璃棒
D. 湿润的红色石蕊试纸
8、将8.7gMnO2与含HCl14.6g的浓盐酸共热制取Cl2,可制得Cl2质量m为()。

A. m=7.1g
B. 7.1g<m<14.2g
C. m<7.1g
D. m>14.2g
9、将铁棒和锌棒用导线连接插入CuSO4溶液中,当电池中有0.2mol 电子通过时,负极质量的变化是()
A. 增加6.5g
B. 减少6.5g
C. 减少5.6g
D. 增加6.4g
10、将铝片和铜片用导线连接,一组插入浓HNO3溶液中,一组插入稀NaOH溶液中,分别形成了原电池,则这两个原电池中,正极分别为()
A. 铝片铜片
B. 铜片铝片
C. 铝片铝片
D. 铜片铜片
11、关于能源的开发和节约,你认为下列哪个观点是错误的()
A. 根据能量守恒定律,担心能量枯竭实在是杞人忧天的表现
B. 能源是有限的,无节制地利用常规能源如石油、煤、天然气等是一种短期的盲目行为
C. 能源的开发和利用,必须要同时考虑对环境的影响
D. 通过核聚变和平利用核能是目前开发新能源的一项有效途径
12.一定温度下,可逆反应A2(g)+3B2(g) 2AB3(g)达到平衡的标志是( )
A.容器内每减少1molA2,同时生成2molAB3
B.容器内每减少1molA2,同时生成3molB2
C.容器内A2、B2、AB3的物质的量之比为1:3:2
D.容器内A2、B2、AB3的物质的量浓度之比为1:1:1
13. 二氧化氮存在下列平衡:2NO2(g) N2O4(g) △H<0,在测定NO2的相对分子质量时,
下列条件中较为适宜的是( )
A.温度130℃、压强3.03×105Pa B.温度25℃、压强1.01×105Pa
C.温度130℃、压强5.05×104Pa D.温度0℃、压强5.05×104P
14.在2L密闭容器中加入4molA和6molB,发生以下反应:4A(g)+6B(g) 4C(g) +5D(g)。

若经5s后,剩下的A是2.5mol,则B的反应速率是()
A.0.45 mol / (L·s)B.0.15 mol / (L·s)C.0.225 mol / (L·s)D.0.9 mol / (L·s)
15.现有反应X(g)+Y(g) 2Z(g),△H<0。

右图表示从反应开始到t1 s时
达到平衡,在t2 s时由于条件变化使平衡破坏,到t3 s时又达平衡。

则在图中
t2 s时改变的条件可能是
A .增大压强
B .使用了催化剂
C .降低温度
D .减小了X 或Y 的浓度 16.反应2X(g)+Y(g) 2Z(g)+Q ,在不同温度(T 1和T 2)及压强(p 1和p 2)下,产物Z 的物质的
量n 与反应时间t 的关系如图所示。

下列判断正确的是
( )
A .T 1<T 2,p 1<p 2
B .T 1<T 2,p 1>p 2
C .T 1>T 2,p 1>p 2
D .T 1>T 2,p 1<p 2
17.一定温度下,在2 L 的密闭容器中,X 、Y 、Z 三种气体的物质的量随时间变化的曲线如
下图所示:下列描述正确的是( )
A 、反应开始到10s ,用Z 表示的反应速率为0.158mol/(L·s)
B 、反应开始到10s ,X 的物质的量浓度减少了0.79mol/L
C 、反应开始到10s 时,Y 的物质的量浓度减少了
0.395mol/L
D 、反应的化学方程式为:X(g)+ Y(g)
Z(g) 18. 在2A +B 3C +4D 反应中,表示该反应速率最快的是( )
A.v (A )=0.5 mol·L-1·s-1
B.v (B )=0.3 mol·L-1·s-1
C.v (C )=0.8 mol·L-1·s-1
D.v (D )=1 mol·L-1·s-1 第Ⅱ卷
19、下面是你熟悉的物质:
O 2 金刚石 NaBr H 2SO 4 Na 2CO 3 Na 2S NaHSO 4
(1)这些物质中,只含共价键的是_______________;只含离子键的是_______________;既含共价键又含离子键的是________________。

(2)将NaHSO 4 溶于水,破坏了NaHSO 4 中的____________(填
化学键类型),写出其电离方程式________________________________。

20.(6分)某温度下,在体积为5L的容器中,A、B、C三种物质物
质的量随着时间变化的关系如图所示,则该反应的化学方程式为
_________

2s内用A的浓度变化和用B的浓度变化表示的平均反应速
率分别为_________、_________。

21.(6分)化学平衡移动原理,同样也适用于其他平衡,已知在氨水中存在下列平衡:
NH
3+H 2O NH 3·H 2O NH 4
+OH - (1)向氨水中加入MgCl 2固体时,平衡向______移动,OH -的浓度_____,NH 4+的浓度_______。

(2)向氨水中加入浓盐酸,平衡向______移动;
(3)向浓氨水中加入少量NaOH 固体,平衡向_____移动,此时发生的现象是__________。

22.任何一个自发的氧化还原反应都可以设计为原电池,下列化学反应也不例外
Fe+2FeCl 3=3FeCl 2
该电池的负极材料为 ,电极反应式为
该电池的正极材料为 ,电极反应式为
23.(10分)对于,△H<0。

在一定条件下达到平衡后,改变下列条件,请回答:
(1)A 量的增减,平衡不移动,则A 为________态。

(2)增压,平衡不移动,当n=2时,A 为____态;当n=3时,A 为______态。

(3)若A 为固态,增大压强,C 的组分含量减少,则n_________。

(4)升温,平衡向右移动,则该反应的逆反应为_______热反应。

24. (8分) 对于2X(g)Y(g)的体系,在压强一定时,平衡体系中Y 的质量分数w(Y)随温度的变化情况如图所示(实线上的任何一点为对应温度下的平衡状态)。

(1)该反应的正反应方向是一个 反应(填“吸热”或“放热”)。

(2)A 、B 、C 、D 、E 各状态中,υ正<υ逆的是 。

相关文档
最新文档