呼玛县二中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

呼玛县二中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()
A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}
2.已知集合M={1,4,7},M∪N=M,则集合N不可能是()
A.∅B.{1,4} C.M D.{2,7}
3.数列1,,,,,,,,,,…的前100项的和等于()
A.B.C.D.
4.等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()
A.6 B.5 C.3 D.4
5.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()
A.B.C.D.6
6.sin570°的值是()
A.B.﹣C.D.﹣
7.函数f(x)=的定义域为()
A.(﹣∞,﹣2)∪(1,+∞)B.(﹣2,1)C.(﹣∞,﹣1)∪(2,+∞)D.(1,2)
8.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()
A .6
B .9
C .12
D .18
9. 函数f (x )=1﹣xlnx 的零点所在区间是( )
A .(0,)
B .(,1)
C .(1,2)
D .(2,3)
10.下列结论正确的是( )
A .若直线l ∥平面α,直线l ∥平面β,则α∥β.
B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.
C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2
D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α
11.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( ) A .命题p ∨q 是假命题
B .命题p ∧(¬q )是真命题
C .命题p ∧q 是真命题
D .命题p ∨(¬q )是假命题
12.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =
A 、22
B 、23
C 、24
D 、25
二、填空题
13.若实数x ,y 满足x 2
+y 2
﹣2x+4y=0,则x ﹣2y 的最大值为 .
14.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .
15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
16.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量
在方向上的投影.
17.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数
()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和
()22,B x y ,则12x x +的值为__________.
18.给出下列命题:
(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题
(2)命题“若x 2
﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2
﹣4x+3<0”的必要不充分条件
(4)若命题p :∀x ∈R ,x 2
+4x+5≠0,则¬p :

其中叙述正确的是 .(填上所有正确命题的序号)
三、解答题
19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数
()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.
(1)求实数b 和c 的值;
(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()
00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.
20.已知曲线C 的极坐标方程为4ρ2cos 2θ+9ρ2sin 2θ=36,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系; (Ⅰ)求曲线C 的直角坐标方程;
(Ⅱ)若P (x ,y )是曲线C 上的一个动点,求3x+4y 的最大值.
21.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.
(I)求证:AD⊥PB;
(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?
(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.
22.求曲线y=x3的过(1,1)的切线方程.
23.已知函数f(x)=|x﹣5|+|x﹣3|.
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若正实数a,b足+=,求证:+≥m.
24.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)
(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.
呼玛县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},
所以(C U A)∩(C U B)={7,9}
故选B
2.【答案】D
【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
3.【答案】A
【解析】解:
=1×
故选A.
4.【答案】D
【解析】解:∵等比数列{a n}中a4=2,a5=5,
∴a4•a5=2×5=10,
∴数列{lga n}的前8项和S=lga1+lga2+…+lga8
=lg(a1•a2…a8)=lg(a4•a5)4
=4lg(a4•a5)=4lg10=4
故选:D.
【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.
5.【答案】B
【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,
设底面边长为a,则,∴a=6,
故三棱柱体积.
故选B
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
6.【答案】B
【解析】解:原式=sin(720°﹣150°)=﹣sin150°=﹣.
故选B
【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
7.【答案】D
【解析】解:由题意得:,
解得:1<x<2,
故选:D.
8.【答案】
【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.
法二:a=6 102,b=2 016,r=54,
a=2 016,b=54,r=18,
a=54,b=18,r=0.
∴输出a=18,故选D.
9.【答案】C
【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,
∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).
故选:C.
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
10.【答案】B
【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确; B 选项中,垂直于同一平面的两个平面平行,正确;
C 选项中,直线与直线相交、平行、异面都有可能,故不正确;
D 中选项也可能相交. 故选:B .
【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.
11.【答案】 B
【解析】解:∃x ∈R ,x ﹣2>0,即不等式x ﹣2>0有解,∴命题p 是真命题; x <0时,<x 无解,∴命题q 是假命题;
∴p ∨q 为真命题,p ∧q 是假命题,¬q 是真命题,p ∨(¬q )是真命题,p ∧(¬q )是真命题;
故选:B .
【点评】考查真命题,假命题的概念,以及p ∨q ,p ∧q ,¬q 的真假和p ,q 真假的关系.
12.【答案】A
【解析】1237k a a a a a =++++176
72
a d ⨯=+
121(221)d a d ==+-, ∴22k =.
二、填空题
13.【答案】10
【解析】
【分析】先配方为圆的标准方程再画出图形,设z=x ﹣2y ,再利用z 的几何意义求最值,只需求出直线z=x ﹣2y 过图形上的点A 的坐标,即可求解.
【解答】解:方程x 2+y 2﹣2x+4y=0可化为(x ﹣1)2+(y+2)2
=5, 即圆心为(1,﹣2),半径为的圆,(如图)
设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,
经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.
故答案为:10.
14.【答案】(﹣∞,3].
【解析】解:f′(x)=3x2﹣2ax+3,
∵f(x)在[1,+∞)上是增函数,
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2﹣2ax+3≥0在[1,+∞)上恒成立.
则必有≤1且f′(1)=﹣2a+6≥0,
∴a≤3;
实数a的取值范围是(﹣∞,3].
15.【答案】4+.
【解析】解:作出正四棱柱的对角面如图,
∵底面边长为6,∴BC=,
球O的半径为3,球O1的半径为1,
则,
在Rt△OMO1中,OO1=4,,
∴=,
∴正四棱柱容器的高的最小值为4+.
故答案为:4+.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.16.【答案】
【解析】解:∵点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),
∴向量=(1+1,2﹣1)=(2,1),
=(3+2,4+1)=(5,5);
∴向量在方向上的投影是
==.
17.【答案】56 27
【解析】
18.【答案】 (4)
【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,
(2)命题“若x 2
﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,
(3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2
﹣4x+3<0”的充要条件,故(3)错误,
(4)若命题p :∀x ∈R ,x 2
+4x+5≠0,则¬p :
.正确,
故答案为:(4)
【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.
三、解答题
19.【答案】(1)1
,14
b c =
=;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.
【解析】试题分析:
(1)由题意得到关于实数b,c的方程组,求解方程组可得1,1
4
b c
==;
(3)函数()
g x的导函数()()
2
1
3244
4
g x x a x a
⎛⎫
=+--+

⎝⎭
',结合导函数的性质可得当1
a<-或0
a>时,()
g x在()
0,4有两个零点;当10
a
-≤≤时,()
g x在()
0,4有一个零点.
试题解析:
(1)由题意
()
()
01
{
440
f c
f b c
=+
=-+=
,解得
1
{4
1
b
c
=
=

(2)由(1)可知()()
32
4
f x x a x
=+--
1
41
4
a x
⎛⎫
++

⎝⎭

∴()()
2
1
3244
4
f x x a x a
⎛⎫
=+--+

⎝⎭
';
假设存在
x满足题意,则()()
2
000
1
3244
4
f x x a x a
⎛⎫
=+--+

⎝⎭
'是一个与a无关的定值,
即()2
000
1
2438
4
x a x x
-+--是一个与a无关的定值,

240
x-=,即
2
x=,平行直线的斜率为()17
2
4
k f
==-
';
(3)()()()
32
4
g x f x a x a x
=+=+-
1
41
4
a x a
⎛⎫
-+++

⎝⎭

∴()()
2
1
3244
4
g x x a x a
⎛⎫
=+--+

⎝⎭
',
其中()21
44124
4
a a
⎛⎫
∆=-++=

⎝⎭
()2
2
4166742510
a a a
++=++>,
设()0
g x'=两根为
1
x和()
212
x x x
<,考察()
g x在R上的单调性,如下表
1°当0a >时,()010g a =+>,()40g a =>,而()15
2302
g a =--
<, ∴()g x 在()0,2和()2,4上各有一个零点,即()g x 在()0,4有两个零点; 2°当0a =时,()010g =>,()40g a ==,而()15
202
g =-
<, ∴()g x 仅在()0,2上有一个零点,即()g x 在()0,4有一个零点;
3°当0a <时,()40g a =<,且13024g a ⎛⎫=->

⎝⎭
, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫
⎪⎝⎭
上各有一个零点,
即()g x 在()0,4有两个零点;
②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫
⎪⎝⎭
上有一个零点, 即()g x 在()0,4有一个零点;
综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.
点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.
20.【答案】
【解析】解:(Ⅰ)由4ρ2cos 2θ+9ρ2sin 2θ=36得4x 2+9y 2
=36,
化为

(Ⅱ)设P (3cos θ,2sin θ),
则3x+4y=

∵θ∈R ,∴当sin (θ+φ)=1时,3x+4y 的最大值为

【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.
21.【答案】
【解析】(I )证明:∵平面PAB ⊥平面ABCD ,AB ⊥AD ,平面PAB ∩平面ABCD=AB ,
∴AD ⊥平面PAB .又PB ⊂平面PAB ,
∴AD ⊥PB .
(II )解:由(I )可知,AD ⊥平面PAB ,又E 为PA 的中点,
当M为PD的中点时,EM∥AD,
∴EM⊥平面PAB,∵EM⊂平面BEM,
∴平面BEM⊥平面PAB.
此时,.
(III)设CD的中点为F,连接BF,FM
由(II)可知,M为PD的中点.
∴FM∥PC.
∵AB∥FD,FD=AB,
∴ABFD为平行四边形.
∴AD∥BF,又∵EM∥AD,
∴EM∥BF.
∴B,E,M,F四点共面.
∴FM⊂平面BEM,又PC⊄平面BEM,
∴PC∥平面BEM.
【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.22.【答案】
【解析】解:y=x3的导数y′=3x2,
①若(1,1)为切点,k=3•12=3,
∴切线l:y﹣1=3(x﹣1)即3x﹣y﹣2=0;
②若(1,1)不是切点,
设切点P(m,m3),k=3m2=,
即2m2﹣m﹣1=0,则m=1(舍)或﹣
∴切线l:y﹣1=(x﹣1)即3x﹣4y+1=0.
故切线方程为:3x﹣y﹣2=0或3x﹣4y+1=0.
【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.
23.【答案】
【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)
当且仅当x∈[3,5]时取最小值2,…(3分)
∴m=2.…(4分)
(Ⅱ)证明:∵(+)[]≥()2=3,
∴(+)×≥()2,
∴+≥2.…(7分)
【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.
24.【答案】
【解析】(1)解:赞成率为,
被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43
(2)解:由题意知ξ的可能取值为0,1,2,3,




∴ξ的分布列为:
0 1 3
∴.
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.。

相关文档
最新文档