中考数学一轮复习第五章 相交线与平行线知识归纳总结及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一轮复习第五章 相交线与平行线知识归纳总结及答案
一、选择题
1.下列命题是假命题的是( )
A .等腰三角形底边上的高是它的对称轴
B .有两个角相等的三角形是等腰三角形
C .等腰三角形底边上的中线平分顶角
D .等边三角形的每一个内角都等于60°
2.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px
(1px=0.04cm ),那么四边形ABFD 的周长是( )
A .16cm
B .18cm
C .20cm
D .21cm
3.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( )
A .70°
B .45°
C .110°
D .135°
4.给出下列命题:①平分弦的直径垂直于弦,且平分弦所对的弧;②平面上任意三点能确定一个圆;③图形经过旋转所得的图形和原图形全等;④三角形的外心到三个顶点的距离相等;⑤经过圆心的直线是圆的对称轴.正确的命题为( )
A .①③⑤
B .②④⑤
C .③④⑤
D .①②⑤ 5.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的
角度可能是是( )
A .第一次右拐60°,第二次左拐120°
B .第一次左拐60°,第二次右拐60°
C .第一次左拐60°,第二次左拐120°
D .第一次右拐60°,第二次右拐60° 6.如图,////OP QR ST 下列各式中正确的是( )
A .123180∠+∠+∠=
B .12390∠+∠-∠=
C .12390∠-∠+∠=
D .231180∠+∠-∠=
7.下列说法中,错误的有( )
①若a 与c 相交,b 与c 相交,则a 与b 相交;
②若a∥b,b∥c,那么a∥c;
③过直线外一点有且只有一条直线与已知直线平行;
④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.
A .3个
B .2个
C .1个
D .0个
8.下列语句是命题的是 ( )
(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?
A .(1)(2)
B .(3)(4)
C .(2)(3)
D .(1)(4)
9.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )
A .平行
B .相交
C .平行或相交
D .不能确定
10.交换下列命题的题设和结论,得到的新命题是假命题的是( )
A .两直线平行,同位角相等
B .相等的角是对顶角
C .所有的直角都是相等的
D .若a=b ,则a ﹣3=b ﹣3
二、填空题
11.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.
12.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.
13.如图,已知AD //BC ,BD 平分∠ABC ,∠A =112°,且BD ⊥CD ,则∠ADC =_____.
14.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.
15.如图,已知直线AB,CD 相交于点O,OE 平分∠COB,若∠EOB=55°,则∠BOD=_________.
16.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.
17.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12
∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.
18.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6 cm ,则AB =_________ cm .
19.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.
20.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.
三、解答题
21.如图1,在平面直角坐标系中,()()02A a C b ,,
,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B
(1)求三角形ABC 的面积.
(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.
(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.
22.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.
小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.
(1)按小明的思路,求APC ∠的度数;
(问题迁移)
(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由; (问题应用):
(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.
23.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.
(1)求出∠BEF 的度数;
(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;
(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)
24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.
小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,
BCP β∠=∠.
(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.
(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.
25.(1)方法感悟
如图①所示,求证:BCF B F ∠=∠+∠.
证明:过点C 作//CD EF
//AB EF (已知)
//CD AB ∴(平行于同一条直线的两条直线互相平行)
1,2B F ∴∠=∠∠=∠(两直线平行,内错角相等 )
12B F ∴∠+∠=∠+∠
即BCF B F ∠=∠+∠
(2)类比应用
如图②所示,//,AB EF 求证:360B BCF F ∠+∠+∠=︒.
证明:
(3)拓展探究
如图③所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可).
如图④所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可).
26.已知:∠1=∠2,EG 平分∠AEC .
(1)如图1,∠MAE =50°,∠FEG =15°,∠NCE =80°.试判断 EF 与 CD 的位置关系,并说明理由.
(2)如图2,∠MAE =135°,∠FEG =30°,当 AB ∥CD 时,求∠NCE 的度数;
(3)如图2,试写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.
【详解】
A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,
B.有两个角相等的三角形是等腰三角形,正确,是真命题,
C.等腰三角形底边上的中线平分顶角,正确,是真命题,
D.等边三角形的每一个内角都等于60°,正确,是真命题,
故选:A .
【点睛】
本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.
2.C
解析:C
【分析】
根据平移的性质可得DF=AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.注意:1px = 0.04cm .
【详解】
∵1px = 0.04cm ,
∴50px=2cm ,400px=16cm ,
∵△ABE向右平移2cm得到△DCF,
∴DF=AE,
∴四边形ABFD的周长=AB+BE+DF+AD+EF
=AB+BE+AE+AD+EF
=△ABE的周长+AD+EF.
∵平移距离为2cm,
∴AD=EF=2cm,
∵△ABE的周长是16cm,
∴四边形ABFD的周长=16+2+2=20cm.
故选:C.
【点睛】
本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.C
解析:C
【分析】
根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】
解:∵∠1与∠5是对顶角,
∴∠1=∠2=∠5=45°,
∴a∥b,
∴∠3+∠6=180°,
∵∠3=70°,
∴∠4=∠6=110°.
故答案为C.
【点睛】
本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.
4.C
解析:C
【分析】
①垂径定理的逆定理,注意有否有缺少什么;②如果三点共线;③旋转的性质;④三角形的外心的性质;⑤圆的性质.
【详解】
①平分弦(不是直径)的直径垂直于弦,且平分弦所对的弧,原命题错误;
②三点共线时不能确定一个圆,原命题错误;
③由旋转的性质可知,原命题正确;
④由三角形的外心的性质,原命题正确;
⑤由圆的性质,原命题正确;
本题的答案是:C.
【点睛】
考查垂径定理的逆定理、旋转的性质、三角形的外心的性质、圆的性质.
5.C
解析:C
【解析】
试题分析:两次拐弯以后方向相反,那么2次同方向拐弯之和是180°.
故选:C.
6.D
解析:D
【解析】
试题分析:延长TS,
∵OP∥QR∥ST,
∴∠2=∠4,
∵∠3与∠ESR互补,
∴∠ESR=180°﹣∠3,
∵∠4是△FSR的外角,
∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,
∴∠2+∠3﹣∠1=180°.
故选D.
考点:平行线的性质.
7.B
解析:B
【解析】①若a与b相交,b与c相交,则a与c相交或平行,故本小题错误;
②若a∥b,b∥c,则a∥c;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;
③过直线外一点有且只有一条直线与已知直线平行,故正确;
④在平面内,两条直线的位置关系有平行和相交两种,故不正确.
因此只有②③正确.
故选:B.
8.A
解析:A
【分析】
根据命题的定义对四句话进行判断.
【详解】
解:(1)两点之间,线段最短,它是命题;
(2)如果两个角的和是90度,那么这两个角互余,它是命题;
(3)请画出两条互相平行的直线,它不是命题;
(4)一个锐角与一个钝角互补吗?,它不是命题.
所以,是命题的为(1)(2),
故选:A.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
9.B
解析:B
【分析】
根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.
【详解】
解:假设b∥c,
∵a∥c,
∴a∥b,
而已知a与b相交于点O,
故假设b∥c不成立,
故b与c相交,
故选:B.
【点睛】
本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.
10.C
解析:C
【分析】
写出原命题的逆命题,根据相关的性质、定义判断即可.
【详解】
解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;
交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;
交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;
交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,
故选C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
二、填空题
11.【解析】
试题分析:如图:
∵△ABC是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35
解析:0
35
【解析】
试题分析:如图:
∵△ABC是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35°.
考点:1.平行线的性质;2.等边三角形的性质.
12.120°
【分析】
过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.
过点F作PT//AB,如图,
∴∠OFP=∠N
解析:120°
【分析】
过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.
【详解】
过点F作PT//AB,如图,
∴∠OFP=∠NOA
∵FN AB
∴∠NOA=90゜
∴∠OFP=90゜
∵AB//CD
∴CD//PT
∴∠DGF=∠GFP
∵∠DGF=∠1=30゜
∴∠GFP=30゜
∴∠2=∠OFP+∠GFP=90゜+30゜=120゜
故答案为:120゜
【点睛】
此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等,同位角相等.
13.124°
【分析】
先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD即可求得∠ADC.
【详解】
解:∵AD//BC
解析:124°
【分析】
先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD即可求得∠ADC.
【详解】
解:∵AD//BC
∴∠ABC=180°-∠A=180°-112°=68°,
∵BD平分∠ABC,
∠ABC=34°
∴∠DBC=1
2
∵AD//BC
∴∠ADB=∠DBC=34°
∵BD⊥CD,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=90°+34°=124°.
故答案为124°.
【点睛】
本题考查了平行线的性质、角平分线的性质、垂直的性质,其中掌握平行线的性质是解答本题的关键.
14.45°或135°
【分析】
根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.
【详解】
解:如图1,
过作,


,,


同理可得,
由折叠可
解析:45°或135°
【分析】
根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.
【详解】
解:如图1,
过M 作//MN AB ,
//AB CD ,
////AB CD NM ∴,
AEM EMN ∴∠=∠,NMF MFC ∠=∠,
90EMF ∠=︒,
90AEM CFM ∴∠+∠=︒,
同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12
PFC PFM CFM ∠=∠=∠, 1()452
P AEM CFM ∴∠=∠+∠=︒, 如图2,
过M 作//MN AB ,
//AB CD , ////AB CD NM ∴,
180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,
360AEM EMF CFM ∴∠+∠+∠=︒,
90EMF ∠=︒,
36090270AEM CFM ∴∠+∠=︒-︒=︒,
由折叠可得:12AEP PEM AEM ∠=∠=∠,12
PFC PFM CFM ∠=∠=∠, 12701352
P ∴∠=︒⨯=︒,
综上所述:EPF ∠的度数为45︒或135︒,
故答案为:45°或135°.
【点睛】
本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.
15.70°
【解析】
【分析】
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,根据,因与互为邻补角,则+=180°,从而求出∠BOD 的大小.
【详解】
∵OE 平
解析:70°
【解析】
【分析】
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,根据2COB EOB ∠=∠,因AOC ∠与COB ∠互为邻补角,则
AOC ∠+COB ∠=180°,从而求出∠BOD 的大小.
【详解】
∵OE 平分∠COB ,
∴∠COB=2∠EOB (角平分线的定义),
∵∠EOB=55°,
∴∠COB=110°,
∵AOC ∠+COB ∠=180°,
∴∠BOD=180°−110°=70°.
故答案是:70°
【点睛】
此题主要考查了邻补角、角平分线的性质,关键是掌握邻补角互补.
16.130°或50°
【解析】
【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.
【详解】如图∵β的两边与α的两边分别垂直,
∴α+β=180°
故β=130°,
在上述情
解析:130°或50°
【解析】
【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,
∴α+β=180°
故β=130°,
在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;
综上可知:∠β=50°或130°,
故正确答案为:
【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.
17.①②③
【解析】
①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,则①正确;
②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴
解析:①②③
【解析】
①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,则①正确;
②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+1 2
(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=1
2
∠CGE,则②
正确;
③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠ADC+∠BCD=90°.∵EG∥BC,且EG⊥CG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,则③正确;
④无法证明CA平分∠BCG,则④错误.
故答案为①②③.
18.12
【解析】
如图,∵M、N是线段AB的三等分点,C是BN的中点,
∴AM=MN,CN=CB,
∴AM+CB=MN+CN=MC=6,
∴AB=AM+MN+CN+CB=(AM+CB)+(MN+CN)
解析:12
【解析】
如图,∵M、N是线段AB的三等分点,C是BN的中点,
∴AM=MN,CN=CB,
∴AM+CB=MN+CN=MC=6,
∴AB=AM+MN+CN+CB=(AM+CB)+(MN+CN)=6+6=12(cm).
19.45°,60°,105°,135°.
【解析】
分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,
当AC∥DE时,∠BAD=∠DAE=45°;
当BC∥AD时,∠DAE=∠
解析:45°,60°,105°,135°.
【解析】
分析:根据题意画出图形,再由平行线的判定定理即可得出结论.
详解:如图,
当AC∥DE时,∠BAD=∠DAE=45°;
当BC∥AD时,∠DAE=∠B=60°;
当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;
当AB∥DE时,∵∠E=∠EAB=90°,
∴∠BAD=∠DAE+∠EAB=45°+90°=135°.
故答案为45°,60°,105°,135°.
点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).
20.40°
【分析】
本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.
【详解】
∵AD∥BC,
∴∠BCD=180°-∠D=80°,
又∵CA平分∠BCD,

解析:40°
【分析】
本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.
【详解】
∵AD∥BC,
∴∠BCD=180°-∠D=80°,
又∵CA平分∠BCD,
∴∠ACB=1
2
∠BCD=40°,
∴∠DAC=∠ACB=40°.
【点睛】
本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.
三、解答题
21.(1)4;(2)45°;(3)P(0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;
(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=
∠2,所以∠AED=∠1+∠2=1
2
×90°=45°;
(3)先根据待定系数法确定直线AC的解析式为y=1
2
x+1,则G点坐标为(0,1),然
后利用S△PAC=S△APG+S△CPG进行计算.【详解】
解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,
∴ A(−2,0),B(2,0),C(2,2),
∴S△ABC

1
AB BC=4
2


(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠ABD,
∴∠3+∠4+∠5+∠6=90°,
过E作EF∥AC,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED=∠1+∠2=
1
2
×90°=45°;
(3)存在.理由如下:
设P点坐标为(0,t),直线AC的解析式为y=kx+b,
把A(−2,0)、C(2,2)代入得:
-2k+b=0
2k+b=2



,解得
1
k=
2
b=1



⎪⎩

∴直线AC的解析式为y=
1
2
x+1,
∴G点坐标为(0,1),
∴S△PAC=S△APG+S△CPG=
1
2
|t−1|•2+
1
2
|t−1|•2=4,解得t=3或−1,∴P点坐标为(0,3)或(0,−1).
【点睛】
本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.
22.(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α
【分析】
(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入
∠PAB=130°,∠PCD=120°可求∠APC即可;
(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;
(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.
【详解】
解:(1)过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
(2)∠APC=∠α+∠β,
理由:如图2,过P作PE∥AB交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠α=∠APE,∠β=∠CPE,
∴∠APC=∠APE+∠CPE=∠α+∠β;
(3)如图所示,当P在BD延长线上时,
∠CPA=∠α-∠β;
如图所示,当P在DB延长线上时,
∠CPA=∠β-∠α.
【点睛】
本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.
23.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠
【分析】
(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;
(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;
(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.
【详解】
(1)过点F 作//FN AB ,如图:
∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°
∴55,905535NFG EFN ∠=︒∠=︒-︒=︒
∴180145BEF EFN ∠=︒-∠=︒
(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:
由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒
∴35AEF EHL ∠=∠=︒
又∵90EHM M ∠=∠+︒,设M x ∠=︒
∴90EHM x ∠=︒+︒
∴903555MHL x x ∠=︒+︒-︒=︒+︒
∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒
(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:
设SNP x ∠=︒ ,则NPI x ∠=︒
设IPG y ∠=︒ ,则PGT y ∠=︒
又∵125FGD ∠=︒
∴125PGN y ∠=︒-︒
∴2125PGN SNP NPG ∠+∠-︒=∠
【点睛】
本题考查平行线的性质综合,转化相关的角度是解题关键.
24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.
【分析】
问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .
(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到
ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到
CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠
(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.
【详解】
解:问题情境:
∵AB ∥CD ,PE AB
∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=50°+60°=110°;
(1)CPD αβ∠=∠+∠
过点P 作PQ AD .
又因为AD BC ∥,所以PQ AD BC
则ADP DPQ ∠=∠,BCP CPQ ∠=∠
所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠
(2)情况1:如图所示,当点P 在B 、O 两点之间时
过P 作PE ∥AD ,交ON 于E ,
∵AD ∥BC ,
∴AD ∥BC ∥PE ,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠DPE-∠CPE=∠α-∠β
情况2:如图所示,当点P 在射线AM 上时,
过P 作PE ∥AD ,交ON 于E ,
∵AD ∥BC ,
∴AD ∥BC ∥PE ,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠CPE-∠DPE=∠β-∠α
【点睛】
本题主要借助辅助线构造平行线,利用平行线的性质进行推理.
25.(2)见解析;(2)BCF F B ∠=∠-∠,BCF B F ∠=∠-∠.
【分析】
(2)过点C 作CD ∥AB ,由平行线的性质,得到180B BCD ∠+∠=︒,
180DCF F ∠+∠=︒,即可得到结论成立;
(3)①过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案; ②过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案;
【详解】
()2证明:过点C 作//CD AB
//AB EF (已知)
//CD EF ∴(平行于同一条直线的两条直线互相平行)
180,180B BCD DCF F ∴∠+∠=︒∠+∠=︒(两相线平行,同旁内角补),
∵BCF BCD DCF ∠=∠+∠,
∴360B BCF F ∠+∠+∠=︒;
(3)①过点C 作//CD AB ,如图:
∵AB ∥CD ∥EF ,
∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,
∵BCD BCF DCF ∠=∠+∠,
∴BCF F B ∠=∠-∠;
故答案为:BCF F B ∠=∠-∠;
②过点C 作//CD AB ,如图:
∵AB ∥CD ∥EF ,
∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,
∵BCD BCF DCF ∠+∠=∠,
∴BCF B F ∠=∠-∠.
故答案为:BCF B F ∠=∠-∠.
【点睛】
本题考查了平行线的判定和性质,解题的关键是熟练掌握题意,以及掌握平行线的判定和性质进行证明.
26.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析
【分析】
(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;
(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;
(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得
180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得
2FEG NCE MAE +=∠∠∠.
【详解】
(1)//EF CD
∵12∠=∠
∴//MB EF
∴50AEF MAE ==︒∠∠
∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠
∵EG 平分∠AEC
∴65CEG AEG ==︒∠∠
∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠
∴80CEF NCE ==︒∠∠
∴//EF CD ;
(2)∵12∠=∠
∴//MB EF
∵∠MAE =135°
∴18045AEF MAE =︒-=︒∠∠
∵∠FEG =30°
∴75AEG AEF FEG =+=︒∠∠∠
∵EG 平分∠AEC
∴75GEC =︒∠
∵//AB CD
∴18075NCE GEC FEG =︒--=︒∠∠∠;
(3)2FEG NCE MAE +=∠∠∠
∵12∠=∠
∴//MB EF
∴180MAE FEA +=︒∠∠
∴180FEA MAE =︒-∠∠
∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠
∵EG 平分∠AEC
∴GEC AEG =∠∠
∴FEC GEC FEG =+∠∠∠
∴180FEC MAE FEG FEG =︒-++∠∠∠∠
∴1802FEC MAE FEG =︒-+∠∠∠
∵//,//AB CD AB EF
∴//EF CD
∴180FEC NCE +=︒∠∠
∴1802180MAE FEG NCE ︒-++=︒∠∠∠
∴2FEG NCE MAE +=∠∠∠.
【点睛】
本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.。

相关文档
最新文档