晋州市二中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晋州市二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1}
2. 已知a=
,b=20.5,c=0.50.2
,则a ,b ,c 三者的大小关系是( )
A .b >c >a
B .b >a >c
C .a >b >c
D .c >b >a
3. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥α
C .l ⊂α
D .l 与α相交但不垂直 4. 已知是虚数单位,若复数22ai
Z i
+=
+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 5. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是6
6. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( ) A .4320 B .2400 C .2160 D .1320
7. 已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )
A .
B .
C .
D .
8. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥β
D .若α⊥β,m ⊥β,m ⊄α,则m ∥α
9. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
10.用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( )
A .a ,b 都能被5整除
B .a ,b 都不能被5整除
C .a ,b 不能被5整除
D .a ,b 有1个不能被5整除
11.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01
()sin ,12x x x f x x x ì-#ï=íp <?ïî
,则
1741
()()46f f +=( ) A .716 B .916 C .1116 D .1316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
12.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数
()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数
()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫
++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
( )
A .2013
B .2014
C .2015
D .20161111]
二、填空题
13.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC .
14.若全集
,集合
,则
15.给出下列命题:
①把函数y=sin (x ﹣
)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣
);
②若α,β是第一象限角且α<β,则cos α>cos β;
③x=﹣
是函数y=cos (2x+π)的一条对称轴;
④函数y=4sin (2x+)与函数y=4cos (2x ﹣
)相同;
⑤y=2sin (2x ﹣
)在是增函数;
则正确命题的序号 .
16.在数列
中,则实数a= ,b= .
17.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2
132n n S S n n ++=+,若对n N *∀∈,1n n a a +<
恒成立,则m 的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
18.如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是.
三、解答题
19.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.
20.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:
[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;
(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.
21.设函数f (x )=e mx +x 2﹣mx .
(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围.
22.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位
(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.
参考公式:22
()K ()()()()
n ad bc a b c d a c b d -=++++,()n a b c d =+++
23.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2
ABD π
∠=
,AD =22AB DC ==,F
为PA 的中点.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PB PD ===
P BDF -的体积.
24
.已知
,其中e 是自然常数,a ∈R
(Ⅰ)讨论a=1时,函数f (x )的单调性、极值;
A
B
C
D
P
F
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.
晋州市二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
2.【答案】A
【解析】解:∵a=0.50.5,c=0.50.2,
∴0<a<c<1,b=20.5>1,
∴b>c>a,
故选:A.
3.【答案】B
【解析】解:∵=(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥,
因此l⊥α.
故选:B.
4.【答案】A
【解析】
试题分析:
()()
()()
22
24(22)
2225
ai i
ai a a i
i i i
+-
+++-
==
++-
,对应点在第四象限,故
40
220
a
a
+>
⎧
⎨
-<
⎩
,A选项正确.
考点:复数运算.
5.【答案】D
【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数,∴函数f(x)在x=7时,函数取得最大值f(7)=6,
∵函数f(x)是偶函数,
∴在[﹣7,0]上是减函数,且最大值是6,
故选:D
6. 【答案】D
【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•
=388,
第二组(1,1,2,2),利用间接法,有(﹣
)•
=932
根据分类计数原理,可得388+932=1320种, 故选D .
【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.
7. 【答案】A
【解析】解:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23) 且3+log 23>4
∴f (2+log 23)=f (3+log 23)
=
故选A .
8. 【答案】D
【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;
C 不对,由面面垂直的性质定理知,m 必须垂直交线; 故选:
D .
9. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A.
10.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.
命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”的否定是“a ,b 都不能被5整除”.
故应选B .
【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.
11.【答案】C
12.【答案】D 【解析】
1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫
⎛⎫⎛⎫⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=
++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦
()1
2201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.
【方法点睛】本题通过 “三次函数()()3
2
0f x ax bx cx d a =+++≠都有对称中心()
(
)00,x f x ”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()3115
33212
f x x x x =-+-的对称中心后再利用对称性和的.
第Ⅱ卷(非选择题共90分)
二、填空题
13.【答案】 60° °.
【解析】解:连结BC 1、A 1C 1,
∵在正方体ABCD ﹣A 1B 1C 1D 1中,A 1A 平行且等于C 1C ,
∴四边形AA1C1C为平行四边形,可得A1C1∥AC,
因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,
设正方体的棱长为a,则△A
B1C中A1B=BC1=C1A1=a,
1
∴△A1B1C是等边三角形,可得∠BA1C1=60°,
即异面直线A1B与AC所成的角等于60°.
故答案为:60°.
【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.
14.【答案】{|0<<1}
【解析】∵,∴{|0<<1}。
15.【答案】
【解析】解:对于①,把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得
到函数y=sin(2x﹣),故①正确.
对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cosα=cosβ=,故②错误.
对于③,当x=﹣时,2x+π=π,函数y=cos(2x+π)=﹣1,为函数的最小值,故x=﹣是函
数y=cos(2x+π)的一条对称轴,故③正确.
对于④,函数y=4sin(2x+)=4cos[﹣(2x+)]=4cos(﹣2)=4cos(2x﹣),
故函数y=4sin(2x+)与函数y=4cos(2x﹣)相同,故④正确.
对于⑤,在上,2x﹣∈,函数y=2sin(2x﹣)在上没有单调性,故⑤错误,
故答案为:①③④.
16.【答案】a=,b=.
【解析】解:由5,10,17,a﹣b,37知,
a﹣b=26,
由3,8,a+b,24,35知,
a+b=15,
解得,a=,b=;
故答案为:,.
【点评】本题考查了数列的性质的判断与归纳法的应用.
17.【答案】
15 (,)
43
18.【答案】x+4y﹣5=0.
【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),
由中点坐标公式知x1+x2=2,y1+y2=2,
把P(x1,y1),Q(x2,y2)代入x2+4y2=36,
得,
①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,
∴k==﹣,
∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),
即为x+4y﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.
故答案为:x+4y﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
三、解答题
19.【答案】
【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,
∴B1C1⊥平面ABB1A1;
∵A1B⊂平面ABB1A1,
∴B1C1⊥A1B.
又∵A1B⊥AB1,B1C1∩AB1=B1,
∴A1B⊥平面ADC1B1,
∵A1B⊂平面A1BE,
∴平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:连接EF,EF∥,且EF=,
设AB1∩A1B=O,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B1F∥OE.
又∵B1F⊄平面A1BE,OE⊂平面A1BE,
∴B1F∥平面A1BE,
(Ⅲ)解:====.
20.【答案】
【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,
前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.
(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,
∴这2人成绩均不低于90分的概率P==.
【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.
21.【答案】
【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.
若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.
(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.
所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是
即
设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.
当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.
又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.
当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;
当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.
当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.
综上,m的取值范围是
22.【答案】
【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.
X 的分布列为:
X 的数学期望为
()5151519
0123282856568
E X =⨯+⨯+⨯+⨯= (12)
分
23.【答案】(本小题满分13分)
解:(Ⅰ)当E 为PB 的中点时,//CE 平面PAD . (1分) 连结EF 、EC ,那么//EF AB ,1
2
EF AB =. ∵//DC AB ,1
2
DC AB =
,∴//EF DC ,EF DC =,∴//EC FD . (3分) 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 为AD 的中点,连结OP 、OB ,∵PA PD =,∴OP AD ⊥,
在直角三角形ABD 中,1
2
OB AD OA ==, 又∵PA PB =,∴PAO PBO ∆≅∆,∴POA POB ∠=∠,∴
OP OB ⊥,
∴OP ⊥平面ABD . (10分)
2PO ===
,2BD ==
∴三棱锥P BDF -的体积1112
222233
P BDF P ABD V V --==⨯⨯⨯=. (13分)
24.【答案】
【解析】解:(1)a=1时,因为f (x )=x ﹣lnx ,f ′(x )=1
﹣, ∴当0<x <1时,f ′(x )<0,此时函数f (x )单调递减. 当1<x ≤e 时,f ′(x )>0,此时函数f (x )单调递增.
所以函数f (x )的极小值为f (1)=1.
(2)因为函数f (x )的极小值为1,即函数f (x )在(0,e]上的最小值为1. 又g ′(x )=
,所以当0<x <e 时,g ′(x )>0,此时g (x )单调递增.
所以g (x )的最大值为g (e )
=, 所以f (x )min ﹣g (x )max
>,
所以在(1)的条件下,f (x )>g (x )
+.
【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..
A
B
C
D
P
O
E F。