禹州市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

禹州市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 某几何体的三视图如图所示,则该几何体的表面积为( )
A .8+2
B .8+8
C .12+4
D .16+4
2. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )
A .3
B .
C .2
D .6
3. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )
A .
12 B .34 C. D
4. 已知在△ABC 中,a=
,b=
,B=60°,那么角C 等于( )
A .135°
B .90°
C .45°
D .75°
5. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )
A .2
B .3
C .7
D .9
6. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率
是( )
A .
B .
C .
D .
7. 已知函数f (x )=x 2﹣
,则函数y=f (x )的大致图象是( )
A .
B .
C .
D .
8. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥n
B .如果平面α内的两条直线都平行于平面β,那么平面α∥平面β
C .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥α
D.如果平面α⊥平面β,任取直线m⊂α,那么必有m⊥β
9.如图,AB是半圆O的直径,AB=2,点P从A点沿半圆弧运动至B点,设∠AOP=x,将动点P到A,B 两点的距离之和表示为x的函数f(x),则y=f(x)的图象大致为()
10.数列{a n}的通项公式为a n=﹣n+p,数列{b n}的通项公式为b n=2n﹣5,设
c n=,若在数列{c n}中c8>c n(n∈N*,n≠8),则实数p的取值范围是
()
A.(11,25)B.(12,16] C.(12,17)D.[16,17)
11.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。

A3
B4
C5
D6
12.若a=ln2,b=5,c=xdx,则a,b,c的大小关系()
A.a<b<cB B.b<a<cC C.b<c<a D.c<b<a
二、填空题
13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{
5
2128
lnx x x
f x m x mx x +>=-++≤,,
,,
若()()g x f x m =-有三个零点,则实数m 的取值范围是________.
14.以抛物线y 2
=20x 的焦点为圆心,且与双曲线:
的两条渐近线都相切的圆的方程为 .
15.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 . 16.若函数y=ln

﹣2x )为奇函数,则a= .
17
x 和所支出的维修费用y (万元)的统计资料如表:
根据上表数据可得
y 与x 之间的线性回归方程=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
18.抛物线C
1:y 2
=2px (p >0)与双曲线C
2

交于A ,B
两点,
C 1
与C 2的
两条渐近线分别交于异于原点的两点C ,D ,且AB ,CD 分别过C 2,C 1的焦点,则= .
三、解答题
19.已知向量=(x ,
y ),=(1,0),且(+
)•(﹣
)=0.
(1)求点Q (x ,y )的轨迹C 的方程;
(2)设曲线C 与直线y=kx+m 相交于不同的两点M 、N ,又点A (0,﹣1),当|AM|=|AN|时,求实数m 的取值范围.
20.已知函数f (x )=sin (ωx+φ)+1(ω>0
,﹣<φ
<)的最小正周期为π,图象过点P (0,1)
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)设函数 g (x )=f (x )+cos2x ﹣1,将函数 g (x
)图象上所有的点向右平行移动个单位长度后,所
得的图象在区间(0,m )内是单调函数,求实数m 的最大值.
21.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=
ρ,曲线2C 的参数方程是
θππθθ],2,6[,0(21
sin 2,
1∈>⎪⎩

⎨⎧+==t t y x 是参数). (Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;
(Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.
22.在ABC ∆中已知2a b c =+,2
sin sin sin A B C =,试判断ABC ∆的形状.
23.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.
(1)当1a =时,解不等式()211f x x <--;
(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.
24.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.
(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;
(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时).
禹州市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】D
【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA
1=2,AB=2,高为

根据三视图得出侧棱长度为=2,
∴该几何体的表面积为2×(2×+2×2+2×2)=16

故选:D
【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.
2. 【答案】C
【解析】解:∵椭圆的半焦距为2,离心率e=,
∴c=2,a=3,
∴b=
∴2b=2

故选:C .
【点评】本题主要考查了椭圆的简单性质.属基础题.
3. 【答案】B 【解析】
试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x
解得4
x =
,即菱形1BED F 44=,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为3
4
,故选B.
考点:平面图形的投影及其作法.
4.【答案】D
【解析】解:由正弦定理知=,
∴sinA==×=,
∵a<b,
∴A<B,
∴A=45°,
∴C=180°﹣A﹣B=75°,
故选:D.
5.【答案】C
【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,
∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).
再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,
则ω的可能值为7,
故选:C.
【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.
6.【答案】A
【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,
而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;
由古典概型公式可得⊥的概率是:;
故选:A.
【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.
7.【答案】A
【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.
∵当x>0时,t==在x=e时,t有最小值为
∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,
因此,当x>0时,函数图象恒在x轴上方,排除D选项
故选A
8.【答案】C
【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;
对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;
对于C,根据线面垂直的判定定理可得正确;
对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;
故选:C.
【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.
9.【答案】
【解析】选B.取AP的中点M,
则P A=2AM=2OA sin∠AOM
=2sin x
2

PB=2OM=2OA·cos∠AOM=2cos x
2,
∴y=f(x)=P A+PB=2sin x
2+2cos x
2
=22sin(x
2

π
4
),x∈[0,π],根据解析式可知,只有B选项符合要求,
故选B.
10.【答案】C
【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,
∵b n=2n﹣5,∴{b n}是递增数列,
∵c8>c n(n≠8),∴c8是c n的最大者,
则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,
∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,
当n=7时,27﹣5<﹣7+p,∴p>11,
n=9,10,11,…时,2n﹣5>﹣n+p总成立,
当n=9时,29﹣5>﹣9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p﹣8,∴p≤16,
则c8=a8=p﹣8,
∴p﹣8>b7=27﹣5,∴p>12,
故12<p≤16,
若a8>b8,即p﹣8>28﹣5,∴p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p﹣9,
∴p<17,
故16<p<17,
综上,12<p<17.
故选:C.
11.【答案】B
【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 12.【答案】C
【解析】解:∵a=ln2<lne即,
b=5=,
c=xdx=,
∴a,b,c的大小关系为:b<c<a.
故选:C.
【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.
二、填空题
13.【答案】
7 1
4⎛⎤ ⎥⎝⎦,
【解析】
14.【答案】(x﹣5)2+y2=9.
【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0
由题意,r=3,则所求方程为(x﹣5)2+y2=9
故答案为:(x﹣5)2+y2=9.
【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.
15.【答案】.
【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:

故答案为:.
16.【答案】4.
【解析】解:函数y=ln(﹣2x)为奇函数,
可得f(﹣x)=﹣f(x),
ln(+2x)=﹣ln(﹣2x).
ln(+2x)=ln()=ln().
可得1+ax2﹣4x2=1,
解得a=4.
故答案为:4.
17.【答案】7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
18.【答案】.
【解析】解:由题意,CD过C1的焦点,根据,得x C=,∴b=2a;
由AB过C2的焦点,得A(c,),即A(c,4a),
∵A(c,4a)在C1上,
∴16a2=2pc,
又c=a,
∴a=,
∴==.
故答案为:.
【点评】本题考查双曲线、抛物线的简单性质,考查学生的计算能力,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,
∴,
化简得,
∴Q点的轨迹C的方程为.…
(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,
由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…
(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,
从而,,…
又|AM|=|AN|,∴AP⊥MN.
则,即2m=3k2+1,②
将②代入①得2m>m2,解得0<m<2,由②得,解得,
故所求的m的取值范围是(,2).…
(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,
解得﹣1<m<1.…
综上,当k≠0时,m的取值范围是(,2),
当k=0时,m的取值范围是(﹣1,1).…
【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.20.【答案】
【解析】解:(Ⅰ)∵函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,
∴ω==2,
又由函数f(x)的图象过点P(0,1),
∴sinφ=0,
∴φ=0,
∴函数f (x )=sin2x+1;
(Ⅱ)∵函数 g (x )=f (x )+cos2x ﹣
1=sin2x+cos2x=sin (
2x+
),
将函数 g (x
)图象上所有的点向右平行移动个单位长度后, 所得函数的解析式是:h (x )
=sin[2(x


+
]=
sin (2x

),
∵x ∈(0,m ), ∴2x


(﹣
,2m

),
又由h (x )在区间(0,m )内是单调函数, ∴2m


,即m

, 即实数m
的最大值为.
【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和
性质,是解答的关键.
21.【答案】
【解析】 【解析】(Ⅰ)曲线1C 的直角坐标方程是22
2=+y x ,
曲线2C 的普通方程是)2
1
221(1+≤≤+
=t y t x …………5分 (Ⅱ)对于曲线1:C 22
2=+y x ,令1x =,则有1y =±.
故当且仅当0011
12-122t t t t >>⎧⎧⎪⎪
⎨⎨+>+<⎪⎪⎩⎩或时,1C ,2C 没有公共点, 解得1
2
t >.……10分
22.【答案】ABC ∆为等边三角形.
【解析】
试题分析:由2
sin sin sin A B C =,根据正弦定理得出2
a bc =,在结合2a
b
c =+,可推理得到a b c ==,即可可判定三角形的形状.
考点:正弦定理;三角形形状的判定.
23.【答案】(1){}
11x x x ><-或;(2)(,2]-∞-. 【解析】

题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,
当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;

1
12x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当1
2
x <时,1211x x -+-<-,∴1x <-,从而1x <-;
综上,不等式的解集为{}11x x x ><-或.
(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,
所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--
记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.
考点:1.含绝对值的不等式;2.分类讨论. 24.【答案】
【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b
再由已知得,解得
故函数v(x)的表达式为.
(Ⅱ)依题并由(Ⅰ)可得
当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200
当20≤x≤200时,
当且仅当x=200﹣x,即x=100时,等号成立.
所以,当x=100时,f(x)在区间(20,200]上取得最大值.
综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,
即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
答:(Ⅰ)函数v(x)的表达式
(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.。

相关文档
最新文档