新初中数学命题与证明的单元汇编附答案(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学命题与证明的单元汇编附答案(1)
一、选择题
1.下列说法正确的是( )
A.相等的角是对顶角
B.在平面内,经过一点有且只有一条直线与已知直线平行
C.两条直线被第三条直线所截,内错角相等
D.在平面内,经过一点有且只有一条直线与已知直线垂直
【答案】D
【解析】
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】
解:相等的角不一定是对顶角,故A错误;
在平面内,经过直线外一点有且只有一条直线与已知直线平行,故B错误;
两直线平行,内错角相等,故C错误;
在平面内,经过一点有且只有一条直线与已知直线垂直,故D正确;
故答案为D.
【点睛】
此题主要考查了命题的真假判断,掌握定理并灵活运用是解题的关键.
2.下列命题是假命题的是()
A.同角(或等角)的余角相等
B.三角形的任意两边之和大于第三边
C.三角形的内角和为180°
D.两直线平行,同旁内角相等
【答案】D
【解析】
【分析】
利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.
【详解】
A、同角(或等角)的余角相等,正确,是真命题;
B、三角形的任意两边之和大于第三边,正确,是真命题;
C、三角形的内角和为180°,正确,是真命题;
D、两直线平行,同旁内角互补,故错误,是假命题,
故选D.
【点睛】
考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.
3.“两条直线相交只有一个交点”的题设是()
A.两条直线 B.相交
C.只有一个交点 D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
4.下列命题中真命题是()
A2一定成立
B.位似图形不可能全等
C.正多边形都是轴对称图形
D.圆锥的主视图一定是等边三角形
【答案】C
【解析】
【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.
【详解】A)2,当a<0时不成立,假命题;
B、位似图形在位似比为1时全等,假命题;
C、正多边形都是轴对称图形,真命题;
D、圆锥的主视图不一定是等边三角形,假命题,
故选C.
【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.
5.下列命题是假命题的是()
A.有一个角为60︒的等腰三角形是等边三角形
B.等角的余角相等
C.钝角三角形一定有一个角大于90︒
D.同位角相等
【答案】D
【解析】
【分析】
【详解】
解:选项A、B、C都是真命题;
选项D,两直线平行,同位角相等,选项D错误,是假命题,
故选:D.
6.现给出下列四个命题:
①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;
③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()
A.1个 B.2个 C.3个 D.4个
【答案】C
【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;
②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;
③根据菱形的面积公式,错误;
④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.
综合以上分析,不正确的命题包括①②③.
故选C.
7.下列命题中是假命题的是()
A.一个锐角的补角大于这个角
B.凡能被2整除的数,末位数字必是偶数
C.两条直线被第三条直线所截,同旁内角互补
D.相反数等于它本身的数是0
【答案】C
【解析】
试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.
A、一个锐角的补角大于这个角,正确,是真命题,不符合题意;
B、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;
C、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;
D、相反数等于他本身的数是0,正确,是真命题,不符合题意
考点:命题与定理.
8.下列命题的逆命题成立的是()
A.对顶角相等
B.全等三角形的对应角相等
C.如果两个数相等,那么它们的绝对值相等
D.两直线平行,同位角相等
【答案】D
【解析】
【分析】
写出各个命题的逆命题,然后判断是否成立即可.
【详解】
解:A、逆命题为相等的角为对顶角,不成立;
B、逆命题为对应角相等的三角形全等,不成立;
C、逆命题为绝对值相等的两个数相等,不成立;
D、逆命题为同位角相等,两直线平行,成立,
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够正确的写出各个命题的逆命题,难度不大.
9.下列命题是真命题的是()
A.若两个数的平方相等,则这两个数相等B.同位角相等
C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角
【答案】C
【解析】
【分析】
根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】
A.若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A选项错误;
B.只有两直线平行的情况下,才有同位角相等,故B选项错误;
C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;
D.相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D选项错误,
故选C .
【点睛】
本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.
10.下列语句中不正确的是( )
A .同一平面内,不相交的两条直线叫做平行线
B .在同一平面内,过一点有且只有一条直线与己知直线垂直
C .如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等
D .角是轴对称图形,它的角平分线是对称轴
【答案】D
【解析】
【分析】
利用平行线的定义、垂直的定义、三角形的全等和轴对称图形分别判断后即可确定正确的选项.
【详解】
A 、在同一平面内不相交的两条直线叫做平行线,正确;
B 、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确;
C 、如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等,正确;
D 、角是轴对称图形,它的平分线所在直线是它的对称轴,故错误;
故选:D .
【点睛】
此题考查命题与定理的知识,解题的关键是了解平行线的定义、垂直的定义、三角形的全等和轴对称图形,难度不大.
11.下面说法正确的个数有( )
①方程329x y +=的非负整数解只有1
3x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122
A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.
A .0个
B .1个
C .2个
D .3个
【答案】A
【解析】
【分析】
根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.
【详解】
解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;
②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;
③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.
⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,
故选A.
【点睛】
此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.
12.下列命题是真命题的是( )
A .若x >y ,则x 2>y 2
B .若|a|=|b|,则a=b
C .若a >|b|,则a 2>b 2
D .若a <1,则a >1a
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【详解】A. x >y ,如x=0,y=-1,02<(-1)2,此时x 2<y 2 ,故A 选项错误;
B. |a|=|b|,如a=2,b=-2,此时a≠b ,故B 选项错误;
C. 若a >|b|,则a 2>b 2 ,正确;
D. a <1,如a=-1,此时a=
1a
,故D 选项错误, 故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.
13.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是( ) A .在三角形中,至少有一个内角是直角
B .在三角形中,至少有两个内角是直角
C .在三角形中,没有一个内角是直角
D .在三角形中,至多有两个内角是直角
【答案】B
【解析】
【分析】
反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.
【详解】
解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,
∴应假设:在三角形中,至少有两个内角是直角.
故选:B.
【点睛】
此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.
14.下列命题的逆命题是真命题的是( )
A .若a b =,则a b =
B .AB
C ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆
C .若0a =,则0ab =
D .四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;
B 、该命题的逆命题为:若△AB
C 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;
C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;
D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;
故选:D .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
15.下列命题中,假命题是( )
A .同旁内角互补,两直线平行
B .如果a b =,则22a b =
C .对应角相等的两个三角形全等
D .两边及夹角对应相等的两个三角形全等
【答案】C
【解析】
【分析】
根据平行线的判定、等式的性质、三角形的全等的判定判断即可.
【详解】
A 、同旁内角互补,两直线平行,是真命题;
B 、如果a b =,则22a b =,是真命题;
C 、对应角相等的两个三角形不一定全等,原命题是假命题;
D 、两边及夹角对应相等的两个三角形全等,是真命题;
故选:C .
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
16.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( ) A .1a =-,2b =
B .2a =,1b =-
C .1a =,2b =-
D .2a =-,1b =
【答案】D
【解析】
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.
【详解】
A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;
B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;
C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;
D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,
故选:D .
【点睛】
本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.
17.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( )
A .a =3,b =2
B .a =﹣3,b =2
C .a =3,b =﹣1
D .a =﹣1,b =3
【答案】B
【解析】
试题解析:在A 中,a 2=9,b 2=4,且3>2,满足“若a 2>b 2,则a >b”,故A 选项中a 、b 的值不能说明命题为假命题;
在B 中,a 2=9,b 2=4,且﹣3<2,此时虽然满足a 2>b 2,但a >b 不成立,故B 选项中a 、b 的值可以说明命题为假命题;
在C 中,a 2=9,b 2=1,且3>﹣1,满足“若a 2>b 2,则a >b ”,故C 选项中a 、b 的值不能
说明命题为假命题;
在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;
故选B.
考点:命题与定理.
18.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
③正确;
④反例:两个无理数π和-π,和是0,④错误;
⑤坐标平面内的点与有序数对是一一对应的,正确;
故选:B.
【点睛】
本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.
19.下列四个命题中,其正确命题的个数是()
①若ac>bc,则a>b;
②平分弦的直径垂直于弦;
③一组对角相等一组对边平行的四边形是平行四边形;
④反比例函数y=k
x
.当k<0时,y随x的增大而增大
A.1 B.2 C.3 D.4【答案】A
【解析】
【分析】
根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.
【详解】
解:①若ac>bc,如果c>0,则a>b,故原题说法错误;
②平分弦(不是直径)的直径垂直于弦,故原题说法错误;
③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;
④反比例函数y=k
x
.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;
正确命题有1个,
故选:A.
【点睛】
本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.
20.下列命题中,是真命题的是()
A.将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x
B.若一个数的平方根等于其本身,则这个数是0和1
C.对函数y=2
x
,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行
【答案】A
【解析】
【分析】
利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x,正确,符合题
意;
B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;
C、对函数y=2
x
,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命
题,不符合题意;
D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,
故选:A.
【点睛】
本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.。