备课资料 带电粒子在匀强磁场中运动轨迹的确定及多解问题教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课资料带电粒子在匀强磁场中运动轨迹的确定及多解问题教案备课资料带电粒子在匀强磁场中运动轨迹的确定及多解问题教案
(由宽甸二中物理组组织)使用说明:综合答案、教师备课材料和学生练习。

各级学生可以练习知识理解、方法应用、问题类型分类和亲子问题比较
2021年12月
一、带电粒子在磁场中运动轨迹的确定方法带电粒子在均匀磁场中的圆周运动问题是近年来高考的一个热点。

这些问题不仅涉及洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系有关。

对于学生来说,利用数字知识全面分析问题和解决物理问题变得更加困难。

然而,无论情况多么新颖,问题多么巧妙,关键是要以标准化和准确的方式绘制带电粒子的轨迹。

只要确定了带电粒子的轨迹,这个问题就会得到解决。

下面的例子介绍了几种确定带电粒子轨迹的方法。

一、对称法(单边界磁场的对称性、圆形边界匀强磁场的对称性、磁聚焦问题)
如果带电粒子进入和退出均匀磁场的线性边界,它们的轨迹围绕入射点的垂直线和出口点的线段对称,并且入射速度方向和出口速度方向与边界之间的夹角相等(如图1所示);如果一个带电粒子进入一个沿径向有圆形边界的均匀磁场,那么当它发射磁场时,速度延长线必须穿过圆心(如图2所示)。

圆形控制磁场中,进场时粒子与半径夹角与出场时粒子与半径夹角始终相同。

轨迹可能包络磁场圆心也可能不包络圆心,但是对称性不变。

磁聚焦问题,圆形边界匀强磁场的半径与洛伦兹力作用下圆周半径相同的条件下,从同一点进场的速度大小相同方向不同的同一种粒子一定从同一点平行射出磁场,且具有可逆性,即平行进入磁场的方向平行的速度大小相同的同一种粒子一定汇聚在同一点。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1。

如图3所示,在直线Mn上方有一个磁感应强度为B的均匀磁场。

正负电子都从同一点o以相同的速度V以与Mn(电子质量m,电荷e)成30°角进入磁场。

它们离磁场有多远?时间上有什么不同?
1
例2。

如图5所示,在半径为R的圆形区域中存在均匀磁场。

带电粒子以速度V0从点m沿径向进入磁场,并从点n发射,点o为圆心。

什么时候∠ mon=120°,计算磁场区域内带电粒子的偏转半径r和磁场区域内的运动时间。

例3.2021洛阳一练如图k24-3所示,在圆形区域内,存在垂直于纸面向外的匀强磁场,ab是圆的一条直径.一带正电的粒子从a点射入磁场,速度大小为2v,方向与ab成
30°角时恰好从b点飞出磁场,粒子在磁场中运动的时间为t;若仅将速度大小改为v,则粒子在磁场中运动的时间为(不计带电粒子所受的重力):()
图k24-3
31
a、 3tb。

tc。

td.2t
22
例4。

(2022年江西省重点中学联考)如图k24-7所示,半径为R的圆形区域充满了磁感应强度为B的均匀磁场,Mn为垂直放置的感光板。

以V垂直磁场的速度从圆形磁场的最高点P注入大量带正电的粒子,粒子携带的电荷量为Q,质量为m。

无论粒子之间的相互作用力如何,以下关于这些粒子运动的陈述是正确的:()
图k24-7
a、只要它入射在圆的中心,它就可以在发射后垂直击中Mn
b.即使是对着圆心入射的粒子,其出射方向的反向延长线也不一定过圆心c.对着圆心入射的粒子,速度越大,在磁场中通过的弧长越长,时间也越长qbr
d、只要速度满足v=,不同方向入射的粒子在发射后可以垂直撞击Mn
m

二、旋转圆法
当具有相同速度的带电粒子在垂直于磁场中磁场的所有方向上发射时,带电粒子的运动轨迹是一个具有相同半径的动态圆,围绕发射点旋转(如图7所示)。

该定律可用于快速确定粒子的运动轨迹。

例5.如图8所示,s为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q的电子(q<0),mn是一块足够大的竖直挡板,与s的水平距离为l,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/ql,求挡板被电子击中的范围为多大?
例6。

(2022年国家新课程卷)如图10所示≤ 十、≤ a、0≤ Y≤
范围内有垂
垂直于XY平面的均匀磁场的磁感应强度为B。

在坐标原点o处有一个粒子源,它在一定时间内发射大量质量为m、电荷为q的带正电粒子。

它们的速度相同,速度方向在XY平
面上,与Y轴正方向的夹角分布在0~90°范围内。

众所周知,粒子在磁场中的圆周运动半径介于
到a之间,从发射粒子到粒子全部离开
磁场的时间正好是粒子在磁场中循环的四分之一。

最后请离开磁铁
场的粒子从粒子源射出时的:

(1)速度大小;(2)速度方向与y轴正方向夹角正弦。

2022武汉第二次模拟考试在图K24—8中显示,其范围为0或小于x x或小于0 y或a的范围。

一磁感应强度大小为b的匀强磁场,磁场的方向垂直于xoy平面向外.o处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xoy平面内的第一象限内.已知粒子在磁场中做圆周运动的周期为t,最先从磁场上边tt
粒子飞出边界所经历的时间是,粒子最终飞出磁场所经历的时间与粒子重力无关
124及粒子间的相互作用,则:()
图k24-8
a.粒子射入磁场的速度大小v=
2qba
m
b、粒子的圆周运动半径r=2Ab
c.长方形区域的边长满足关系=3+1
ab
d.长方形区域的边长满足关系=2
A.
三、缩放圆法
带电粒子以不同大小、相同方向的速度垂直注入均匀磁场,圆周运动半径随速度的变
化而变化。

因此,它的轨迹是一个具有缩放半径的动态圆(如图12所示)。

利用定标动
态圆,可以探索临界点的轨迹,解决问题。

4
例7。

如图13所示,均匀磁场中的磁感应强度为B,宽度为d。

电子从垂直于均匀磁
场的左边界发射,入射方向和边界之间的角度为θ,假设电子的质量为m,电量为e,为
了使电子能够从轨道的另一侧发射,找到电子速度的范围?
例8.(2021全国ii卷)如图15所示,左边有一对平行金属板,两板的距离为d,
电压为u,两板间有匀强磁场,磁感应强度为b0,方面平行于板面并垂直纸面朝里。

图中
右边有一边长为a的正三角形区域efg(ef边与金属板垂直),在此区域内及其边界上也
有匀强磁场,磁感应强度大小为b,方向垂直纸面向里。

假设一系列电荷量为q的正离子
沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板间的区域,并经ef边中点h射入磁场区域。

不计重力。

(1)已知这些离子的离子铠装到达边界eg后,磁场通过边界EF来计算离子铠装的
质量;
(2)已知这些离子中的离子乙从eg边上的i点(图中未画出)穿出磁场,且gi长
为3a/4,求离子乙的质量;
(3)如果这些离子中最轻的离子的质量等于离子a质量的一半,而离子B的质量最大,那么这些离子会到达磁场边界上的哪个区域?
5。

相关文档
最新文档