EPON 概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EPON 资料
EPON具有同时传输TDM、IP数据和视频广播的能力,其中TDM和IP数据采用IEEE 802.3以太网的格式进行传输,辅以电信级的网管系统,足以保证传输质量。

通过扩展第三个波长(通常为1550nm)即可实现视频业务广播传输。

在物理层,IEEE 802.3-2005规定采用单纤波分复用技术(下行1490 nm,上行1310 nm)实现单纤双向传输,同时定义了1000 BASE-PX-10 U/D和1000 BASE-PX-20 U/D两种PON 光接口,分别支持10 km和20 km的最大距离传输。

在物理编码子层,EPON系统继承了吉比特以太网的原有标准,采用8B/10B线路编码和标准的上下行对称1 Gbit/s数据速率(线路速率为1.25 Gbit/s)。

1000-1000M(传输速度);
base-基带传输即传输速率的单位就是千兆基带传输双绞线
类似的还有1000Base-T (t-twisted pair 双绞线),1000Base-F(光纤)等。

在数据链路层,多点MAC控制协议(MPCP)的功能是在一个点到多点的EPON系统中实现点到点的仿真,支持点到多点网络中多个MAC客户层实体,并支持对额外MAC的控制功能。

MPCP主要处理ONU的发现和注册,多个ONU之间上行传输资源的分配、动态带宽分配,统计复用的ONU本地拥塞状态的汇报等。

利用其下行广播的传输方式,EPON定义了广播LLID(LLID=0xFF)作为单拷贝广播(SCB)信道,用于高效传输下行视频广播/组播业务。

EPON还提供了一种可选的OAM功能,提供一种诸如远端故障指示和远端环回控制等管理链路的运行机制,用于管理、测试和诊断已激活OAM功能的链路。

此外,IEEE 802.3-2005还定义了特定的机构扩展机制,以实现对OAM功能的扩展,并用于其他链路层或高层应用的远程管理和控制。

EPON协议中有三个时间是很重要的一个是系统最大RTT,一个是注册开窗时间还有一个是DBA轮询周期。

当加长传输距离后,距离OLT最远的那个ONU的RTT最大,假设最远ONU为70km,则RTT为2×(70000/2*108)=700us(光信号在真空中速度为
3×108m/s,在光纤中速度按照2×108计),因此该情形下EPON系统的注册开窗时间至少应该在700us以上。

由上分析可见随着传输距离的加长,注册时间将不可避免的加长。

另外需要考虑的是DBA的轮询周期,从图6可以看出DBA轮询周期至少应该大于系统最大的RTT(即最远ONU的往返时间),可见在长距离情形下,DBA的效率是较低的,在大多数情况下,建议采用SBA(静态带宽分配)算法来代替DBA。

[2]
多点控制协议功能
MPCP定义了点到多点光网络的MAC控制机制。

MPCP功能在测试方面体现于OLT对ONU的认证功能,包括对单个ONU的认证、认证拒绝,对多个ONU的认证、认证拒绝及对特定ONU的强制解注册功能。

要求正确序列号(或MAC地址)/密码的ONU能正常注册并收发数据,非法ONU 注册失败、不能收发数据,且OLT可以强制去激活某个特定的ONU。

测试需要使用数据流量发生、分析仪,以验证正常注册后的ONU是否能收发数据。

(4)动态带宽分配功能
DBA(动态带宽分配)功能主要验证OLT到各ONU的动态带宽分配功能、带宽控制精度。

DBA功能是使EPON系统链路带宽得到有效利用的保证,要求系统支持DBA功能且带宽控制粒度不大于256kbit/s。

测试需要使用数据流量发生、分析仪以确保DBA功能的正常支持和带宽控制粒度符合要求。

EPON
EPON(Ethernet Passive Optical Network 以太网无源光网络)
无源光网络(PON)的概念由来已久,它具有节省光纤资源、对网络协议透明的的特点,在光接入网中扮演着越来越重要的角色。

同时,以太网(Ethernet)技术经过二十年的发展,以其简便实用,价格低廉的特性,几乎已经完全统治了局域网,并在事实上被证明是承载IP数据包的最佳载体。

随着IP业务在城域和干线传输中所占的比例不断攀升,以太网也在通过传输速率、可管理性等方面的改进,逐渐向接入、城域甚至骨干网上渗透。

而以太网与PON的结合,便产生了以太网无源光网络(EPON)。

它同时具备了以太网和PON的优点,正成为光接入网领域中的热门技术。

PON技术的发展:
APON(ATM PON)
1995年提出,1996年由13家大型网络运营商同它们的主要设备供应商组成了FSAN (Full Service Access Network)联盟,155Mb/s的PON系统技术规范,ATM传输协议,ITU-T G.983系列标准;
BPON(Broadband PON)宽频带['brɔ:d'bænd]
2001年,APON标准后来得到了加强,可支持622Mb/s的传输速率,同时加上了动态带宽分配、保护等功能,能提供以太网接入、视频发送、高速租用线路等业务,宽带的PON;
GPON(Gigabit PON)
FSAN联盟进行1Gb/s以上速率的PON标准研究,希望提出一种方案,除了能运行在更高的速率外,还要在多业务、OAM&P、可扩缩性等方面较之其它的PON效率更高。

这一研究使得Gigabit PON(GPON)出现。

2003年1月,ITU-T批准确立了GPON标准G.984.1、G.984.2和G.984.3;
EPON(Ethernet PON)
2000年11月,IEEE成立了802.3 EFM(Ethernet in the First Mile)研究组,业界有21个网络设备制造商发起成立了EFMA,实现Gb/s以太网点到多点的光传送方案,所以又称GEPON(GigabitEthernet PON)。

EFM标准IEEE802.3ah;
EPON 就是一种新兴的宽带接入技术,它通过一个单一的光纤接入系统,实现数据、语音及视频的综合业务接入,并具有良好的经济性。

业内人士普遍认为,FTTH 是宽带接入的最终解决方式,而EPON 也将成为一种主流宽带接入技术。

由于EPON网络结构的特点,宽带入户的特殊优越性,以及与计算机网络天然的有机结合,使得全世界的专家都一致认为,无源光网络是实现“三网合一”和解决信息高速公路“最后一公里”的最佳传输媒介。

EPON接入系统具有如下特点:
局端(OLT)与用户(ONU)之间仅有光纤、光分路器等光无源器件,无需租用机房、无需配备电源、无需有源设备维护人员,因此,可有效节省建设和运营维护成本;
EPON采用以太网的传输格式同时也是用户局域网/驻地网的主流技术,二者具有天然的融合性,消除了复杂的传输协议转换带来的成本因素;
采用单纤波分复用技术(下行1490nm,上行1310nm),仅需一根主干光纤和一个OLT,传输距离可达20公里。

在ONU侧通过光分路器分送给最多32个用户,因此可大大降低OLT和主干光纤的成本压力;
上下行均为千兆速率,下行采用针对不同用户加密广播传输的方式共享带宽,上行利用时分复用(TDMA)共享带宽。

高速宽带,充分满足接入网客户的带宽需求,并可方便灵活的根据用户需求的变化动态分配带宽;
点对多点的结构,只需增加ONU数量和少量用户侧光纤即可方便地对系统进行扩容升级,充分保护运营商的投资;
EPON具有同时传输TDM、IP数据和视频广播的能力,其中TDM和IP数据采用IEEE 802.3以太网的格式进行传输,辅以电信级的网管系统,足以保证传输质量。

通过扩展第三个波长(通常为1550nm)即可实现视频业务广播传输。

由于EPON的众多优点,它越来越受到人们的青睐,即将成为宽带接入网一种最有效的通信方法。

为了保证EPON网络能够稳定、高效、准确的运行,为EPON提供一个有效的网络管理系统显得尤为重要。

在网络管理领域,随着基于TCP/IP体系的网络管理技术的不断发展,SNMP已经成为事实上的标准。

基于SNMP的EPON网络管理系统是指采用SNMP管理协议框架,对EPON网络实体的资源实现有效管理的系统。

二、SNMP的介绍
SNMP(简单网络管理协议)是一种基于TCP/IP的网络管理协议,它使用UDP作为传输层协议,能管理支持代理进程的网络设备。

SNMP主要包括SMI(管理信息结构)、MIB(管理信息库)和SNMP协议几部分。

SMI给出了管理对象定义的一般框架。

MIB是设备所维护的全部被管理对象的结构集合。

SNMP 协议包括SNMP操作、SNMP信息的格式以及如何在应用程序和设备间交换消息。

SNMP采用代理/管理站模型进行网络管理。

SNMP有5种消息类型,分别为Get-Request、
Get-Response、Get-Next-Request、Set-Request和Trap。

代理和管理站之间通过这几种消息报文进行相互通信,以获取网络设备的各种信息,从而控制网络设备的正常运行。

三、EPON网管系统结构
本EPON系统的管理对象为1个OLT(光线路终端)和32个ONU(光网络单元)。

基于SNMP的EPON网管系统结构如图2所示。

EMS网管系统安装在工作站,与OLT设备之间通过带外网管接口(F接口)相连。

EMS网管系统和OLT、ONU设备之间采用SNMP协议进行通信,实现在EMS中对OLT、ONU的统一管理。

通信的方式有2种:
(1)轮询。

管理站每隔一段时间对所有OLT和ONU代理站的MIB进行主动查询,各代理站返回被查询的结点值。

(2)告警(trap)。

当某些指定事件发生时,代理进程向管理站发送trap报文。

管理站接收、显示告警事件,并做相应处理。

同时OLT设备和ONU设备具备本地Console接口,可以实现本地操作管理维护。

四、EPON网管系统的设计
EPON网管系统按照网管功能分为四大模块:配置管理、性能管理、故障管理和安全管理。

1. 配置管理
配置管理主要是组织EPON网内运转所需要的资源和数据,构造和维护网络系统的配置,识别各网元,保证网元的基本配置,监控当前配置和按照具体情况改变配置,设置系统参数,收集并存储各参数,报告与基本配置值的偏差,启动和关闭资源等。

EPON配置管理包括系统初次启动时的配置管理和系统正常运行时的配置管理。

启动时,针对EPON网络,可自动或手动生成OLT、ONU设备拓扑图,显示当前网络中各OLT、ONU 设备的状态。

在网络拓扑图生成后,SNMP 管理进程采用轮询的方式定期查询SNMP 代理进程,收集设备信息用于更新数据库,以实现配置信息的实时性。

系统正常运行后,网管可根据需要随时手动设置其各项配置参数。

如可以设置各OLT、ONU代理的标识信息和系统信息,启用、禁用某个端口,配置各端口的工作状态,配置网桥的工作参数,配置VLAN,重启设备等。

还提供基于用户的动态带宽管理。

2. 性能管理
性能管理功能对EPON网络性能进行监视、检测,采集相关性能统计数据,进行分析、诊断,从而为网络进一步规划与调整提供依据,以保证网络的业务质量。

EPON的性能管理功能分为性能监测、性能管理控制和性能统计分析。

性能监测是连续的收集OLT、ONU上与性能相关的数据,根据性能数据确定网元的性能,从而掌握设备单元因不太频繁或间断的差错导
致业务质量变差的性能情况。

性能管理控制的目的是支持管理人员发出控制命令或网管软件自动发出控制命令,以改善OLT、ONU性能。

它可以设置性能管理数据采集周期、设置性能监测数据存储过滤条件,并对门限值进行管理。

性能统计分析是对收集到的性能数据做进一步的处理,以分析表或分析图的形式报告分析结果。

如计算接口利用率、接口的输入错误率、接口输出错误率、吞吐率等。

3. 故障管理
故障管理功能提供对EPON网络故障监测、故障定位,保护切换与恢复,并存储故障信息供以后查询。

对来自硬件设备或路径结点的报警进行监控、报告和存储,对故障进行诊断、定位和处理,是故障管理的重要工作。

当监测到网络、设备故障或异常时,网管系统实时产生报警。

一些故障、异常是由网管程序通过查询代理站MIB发现的,而另一些是代理站通过Trap通知管理站发现的。

可以设置各种告警事件的告警等级。

不同等级的告警事件采取不同的告警指示和处理措施。

网管系统收到告警信息后,进行分析和提示,然后针对不同等级的告警,进行不同的处理。

对于严重影响网络运行的故障,需要进行故障定位和测试。

启动故障定位过程,试图从这些过程中获取相关信息。

进行故障定位后,网管系统会尽快做出响应,采取故障修复措施,使EPON网络恢复正常。

告警信息被存储到本地数据库。

可以按照告警时间、告警设备、告警等级等关键字查询历史告警信息。

根据全部告警信息,进行告警统计分析,绘制出统计图表。

4. 安全管理
安全管理功能通过访问操作控制策略等方法保证管理应用程序和管理信息不被非法访问和破坏。

用户标识和鉴定,是网管系统提供的最外层的安全保护措施。

网管用户在启动程序前必须输入用户名和登陆密码,系统在核实鉴定了用户身份以后才能提供网管系统的使用权。

用户被分为3个等级,不同等级的用户设置不同的管理权限,第一级用户拥有最高管理权限,可以使用网管系统提供的所有功能;低级用户在设置参数、操作设备等权限上被限制;高级用户拥有低级用户的所有权限,并能对低级用户进行管理。

系统还提供安全日志,登陆者的所有操作将被录入数据库,以便维护和检查使用。

五、EPON网管系统的实现
EPON网管系统的实现包括管理站网管软件的实现和代理站软件的实现。

1. 管理站网管软件的实现
管理站网管系统是为用户提供友好的交互式界面,利用SNMP协议对代理进程实现管理的控制实体,它的结构如图3所示。

通信模块的功能是按照SNMP协议,对网络中的代理站(OLT和ONU)发送、接收SNMP报文,从而获取或设置代理站中MIB库的相应信息。

一方面,它将上层的操作、信息封装成对应的PDU(协议数据单元),向网络中发送。

另一方面,它接收代理发给自己的PDU,并解析成上层可识别的信息,向上传递。

对应于5种消息类型,SNMP有5种类型
数据采集、处理模块负责将采集的数据分析、处理、储存或者送往上层。

对各种采集到的数据,要按照配置、性能、故障几个模块的需求进行转换,向上传送。

一些数据直接可以给上层显示使用;一些采集到的数据需要处理后,再送往上层显示。

如通过访问接口MIB,可以得到每个接口在每个时刻的总流量。

可以设置每隔一秒钟取一次值,然后计算秒间总流量差值,得到接口每秒钟的流量。

有些数据暂时不需要显示,需要储存在数据库,供以后查询使用。

显示模块是面向用户的。

它按照配置管理、性能管理、故障管理、安全管理几个模块分类,以图形化
界面形式显示各项信息,并且提供人机接口,供配置使用。

本系统是在Windows环境下,用VC++ 6.0开发出来的。

通信模块是利用Windows提供的API函数,封装成一个SNMP类,来实现SNMP的各种操作。

按照显示模块的需要,数据处理模块采用各种算法对采集到的数据进行分析处理。

显示模块则以对话框、列表框、曲线图等形式,提供直观、方便的图形化界面,如图4所示。

2.代理站软件的实现
SNMP在代理站的实现工作主要包括代理进程软件的实现和MIB的设计与组织。

(1) 代理进程软件的实现
代理进程软件实现SNMP协议,并管理MIB。

它实际上是一个执行无限循环的守护进程,在循环中,它接收管理站的SNMP请求,然后进行相应的操作,并作出响应。

同时,代理进程能够根据自身管理的MIB信息,主动向管理站发送陷阱报文(Trap),以通知管理站所管理的网络设备发生了异常事件,实现故障告警。

通常,在开发过程中使用一些软件开发包可以大大缩短产品开发周期。

ucd-snmp软件包是一个广泛使用的实现SNMP代理开发的免费软件包,它支持SNMP v1/v2c/v3,支持分布式代理的开发,支持MIB-II。

它包括SNMP协议模块和MIB管理模块,实现了SNMP代理站的基本框架。

(2) EPON设备MIB的设计与组织
OLT、ONU设备的MIB主要包括RFC1213定义的MIB-II、RFC1573定义的Interfaces MIB、RFC1493定义的Bridge MIB和根据EPON设备需要自定义的私有MIB。

MIB-II包含了基于TCP/IP网络的基本网管信息,包括系统组、接口组、IP组、ICMP组、UDP组、SNMP组等基本管理对象。

通过MIB-II,我们可以获取OLT、ONU设备运行的基本网络信息,如系统信息、端口基本信息、IP、ICMP等类型数据包的统计等,对某些对象可以配置。

Interfaces MIB是针对改善MIB-II中的接口组的不足和缺陷,发展而来的一个以定义网络接口管理对象为主的MIB。

Bridge MIB是一个定义网桥管理对象的MIB,它包括一般网桥管理信息、生成树网桥管理信息和透明网桥管理信息。

它主要对OLT设备中所具有的生成树网桥的设置、监测提供网络管理手段。

自定义MIB是针对OLT、ONU特殊管理对象和特殊功能而定义的,主要包含各OLT、ONU的特殊系统信息和带宽控制管理两部分。

特殊系统信息包括硬件系统信息和软件系统信息。

如我们的EPON系统上行是采用WDMA方式的,对于每个ONU端,对应于不同的上行波长。

把波长信息加入每个ONU的自定义MIB中,这样通过网管系统就可以查询各ONU的波长相关信息了。

带宽控制管理MIB是自定义MIB的一个重要部分,通过它,我们可以远程进行基于用户的带宽管理。

六、结束语
随着EPON的快速发展,为EPON设计和实现一个稳定高效和准确的网络管理系统具有重要的意义。

本文结合EPON的特点,设计和实现了一个基于SNMP的EPON网络管理系统。

目前,本系统已经基本完成,正在进行最后的测试工作。

相关文档
最新文档