高考数学压轴专题《复数》难题汇编百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题
1.若()2
11z i =-,21z i =+,则1
2
z z 等于( ) A .1i + B .1i -+
C .1i -
D .1i --
2.已知复数()2m m m i
z i
--=为纯虚数,则实数m =( )
A .-1
B .0
C .1
D .0或1
3.
212i
i
+=-( ) A .1
B .−1
C .i -
D .i
4.已知i 为虚数单位,则复数23i
i
-+的虚部是( ) A .35 B .35i - C .15- D .15
i -
5.已知i 是虚数单位,则复数41i
i
+在复平面内对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6.设1z 是虚数,211
1
z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1-
B .11,22⎡⎤
-
⎢⎥⎣⎦
C .[]22-,
D .11,00,22
⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝

7.若复数z 满足421i
z i
+=+,则z =( ) A .13i +
B .13i -
C .3i +
D .3i -
8.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z
z
,其结果一定是实数的是( ) A .①②
B .②④
C .②③
D .①③
9.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3
π而得到.则21
arg()2z z -的值为( ) A .
6
π B .
3
π C .
23
π D .
43
π 10.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i -
B .16i -
C .16i --
D .17i --
11.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( )
A .3
B .5
C .6
D .8
12.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1
B .1
C .i -
D .i
13.已知i 为虚数单位,则43i
i =-( ) A .
2655
i + B .
2655
i - C .2655
i -
+ D .2655
i -
- 14.在复平面内,复数z 对应的点的坐标是(1,1),则z
i
=( ) A .1i - B .1i --
C .1i -+
D .1i +
15.已知i 是虚数单位,设11i
z i
,则复数2z +对应的点位于复平面( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
二、多选题
16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数()z a ai a R =+∈,则z 可能是纯虚数
D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限
17.(多选题)已知集合{
}
,n
M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+ B .
11i
i
-+ C .
11i
i
+- D .()2
1i -
18.设复数z 满足1
z i z
+=,则下列说法错误的是( ) A .z 为纯虚数
B .z 的虚部为12
i -
C .在复平面内,z 对应的点位于第三象限
D .2
z =
19.下面是关于复数2
1i
z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =
B .22z i =
C .z 的共轭复数为1i +
D .z 的虚部为1-
20.已知复数1cos 2sin 22
2z i π
πθθθ⎛⎫=++-
<< ⎪⎝⎭(其中i 为虚数单位),则( )
A .复数z 在复平面上对应的点可能落在第二象限
B .z 可能为实数
C .2cos z θ=
D .
1
z 的实部为12
- 21.已知i 为虚数单位,复数322i
z i
+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为
75
i C .3z =
D .z 在复平面内对应的点在第一象限
22.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:
()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:
()()()n cos sin co i s s n
n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2
2
z z = B .当1r =,3
π
θ=时,31z =
C .当1r =,3
π
θ=时,12z =
D .当1r =,4
π
θ=
时,若n 为偶数,则复数n z 为纯虚数
23.下列命题中,正确的是( ) A .复数的模总是非负数
B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应
C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限
D .相等的向量对应着相等的复数
24.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )
A .1ω=
B .2ω的虚部为
C .31ω=-
D .
1
ω
在复平面内对应的点在第四象限
25.已知复数(
)(()()2
11z m m m i m R =-+-∈,则下列说法正确的是( )
A .若0m =,则共轭复数1z =-
B .若复数2z =,则m
C .若复数z 为纯虚数,则1m =±
D .若0m =,则2420z z ++=
26.复数21i
z i
+=-,i 是虚数单位,则下列结论正确的是( )
A .|z |=
B .z 的共轭复数为
3122
i + C .z 的实部与虚部之和为2
D .z 在复平面内的对应点位于第一象限
27.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1
B .4-
C .0
D .5
28.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -
B .若120z z -=,则21z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数 29.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离 D .坐标为()2,1--的向量的模
30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( )
A .z 不可能为纯虚数
B .若z 的共轭复数为z ,且z z =,则z 是实

C .若||z z =,则z 是实数
D .||z 可以等于
12
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.D 【分析】
由复数的运算法则计算即可. 【详解】 解:, . 故选:D. 解析:D 【分析】
由复数的运算法则计算即可. 【详解】 解:
()2
211122z i i i i =-=-+=-,
()()212222(1)2222111112
z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.
2.C 【分析】
结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】
解析:因为为纯虚数,所以,解得, 故选:C.
解析:C 【分析】
结合复数除法运算化简复数z ,再由纯虚数定义求解即可 【详解】 解析:因为()()22m m m i
z m m mi i
--=
=--为纯虚数,所以20
m m m ⎧-=⎨
≠⎩,解得1m =,
故选:C.
3.D
【分析】
利用复数的除法运算即可求解. 【详解】 , 故选:D
解析:D 【分析】
利用复数的除法运算即可求解. 【详解】
()()()()22
21222255121212145
i i i i i i
i i i i i +++++====--+-, 故选:D
4.A 【分析】
先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】
因为,所以其虚部是. 故选:A.
解析:A 【分析】
先由复数的除法运算化简复数23i
i
-+,再由复数的概念,即可得出其虚部. 【详解】
因为
22(3)2613
3(3)(3)1055
i i i i i i i i -----===--++-,所以其虚部是3
5
. 故选:A.
5.A 【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】
,所以复数对应的坐标为在第一象限, 故选:A
解析:A 【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】
44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 6.B 【分析】
设,由是实数可得,即得,由此可求出. 【详解】 设,, 则,
是实数,,则, ,则,解得, 故的实部取值范围是. 故选:B.
解析:B 【分析】
设1z a bi =+,由211
1
z z z =+
是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤. 【详解】
设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+
=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭

2z 是实数,22
0b
b a b
∴-
=+,则221a b +=, 22z a ∴=,则121a -≤≤,解得11
22
a -≤≤,
故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣⎦
. 故选:B.
7.C 【分析】
首先根据复数的四则运算求出,然后根据共轭复数的概念求出. 【详解】 ,故. 故选:C.
解析:C 【分析】
首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z . 【详解】
()()()()
421426231112i i i i
z i i i i +-+-=
===-++-,故3z i =+. 故选:C.
8.D 【分析】
设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.
解析:D 【分析】
设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】
设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,
2222
2z a bi a b abi
z a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.
9.C 【分析】
写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,
所以复数在第二象限,设幅角为, 故选:C 【点睛】
在复平面内运用复数的三
解析:C 【分析】
写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3
π
得到复数2z 的三角形式,从而求得21
2
z z -的三角形式得解. 【详解】
11z =,1cos 0sin 0z i ∴=+,
121(cos sin )3322
Z i O OZ π
π=+=+
2111()222z z --∴
=+
所以复数在第二象限,设幅角为θ,tan θ=
23π
θ∴=
故选:C 【点睛】
在复平面内运用复数的三角形式是求得幅角的关键.
10.A 【分析】
根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数. 【详解】 由题意,设,
∵是平行四边形,AC 中点和BO 中点相同, ∴,即,∴点对应是,共轭复数为.
解析:A 【分析】
根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数. 【详解】
由题意(2,5),(3,2)A C -,设(,)B x y ,
∵OABC 是平行四边形,AC 中点和BO 中点相同,
∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -.
故选:A . 11.D 【分析】
利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D
解析:D 【分析】
利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】
()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=
故选:D
12.B 【分析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由, 得, ,
则的虚部是1. 故选:.
解析:B 【分析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求. 【详解】
由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5
i i i i
z i i i i ++--=
===-++-, ∴2z i =+,
则z 的虚部是1. 故选:B .
13.C 【分析】
对的分子分母同乘以,再化简整理即可求解. 【详解】 , 故选:C
解析:C 【分析】

43i
i -的分子分母同乘以3i +,再化简整理即可求解. 【详解】
()()()434412263331055
i i i i i i i i +-+===-+--+, 故选:C
14.A 【分析】
根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】
因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A
解析:A 【分析】
根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】
因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,
所以
11i
i i z i +==-, 故选:A
15.A
【分析】
由复数的除法求出,然后得出,由复数的几何意义得结果.
【详解】
由已知,
,对应点为,在第一象限,
故选:A.
解析:A
【分析】
由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.
【详解】 由已知(1)(1)(1)(1)
i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,
故选:A.
二、多选题
16.AD
【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题
解析:AD
【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.
【详解】
A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;
B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;
C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;
D 选项,设(),z a bi a b R =+∈,则()2
222234z a bi a abi b i =+=+-=+,
所以22324
a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.
17.BC
【分析】
根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.
【详解】
根据题意,中,
时,;
时,
;时,;
时,,
.
选项A 中,;
选项B 中,;
选项C 中,;
选项D 中,.
解析:BC
【分析】
根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.
【详解】 根据题意,{}
,n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;
()41n k k N =+∈时,
n i i =;()42n k k N =+∈时,1n i =-;
()43n k k N =+∈时,n i i =-,
{}1,1,,M i i ∴=--.
选项A 中,()()112i i M -+=∉;
选项B 中,()()()2
11111i i i i i i M --==-+-∈+; 选项C 中,()()()2
11111i i i i i i M ++==-+∈-;
选项D 中,()2
12i i M -=-∉.
故选:BC.
【点睛】
此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 18.AB
【分析】
先由复数除法运算可得,再逐一分析选项,即可得答案.
【详解】
由题意得:,即,
所以z 不是纯虚数,故A 错误;
复数z 的虚部为,故B 错误;
在复平面内,对应的点为,在第三象限,故C 正确
解析:AB
【分析】 先由复数除法运算可得1122z i =-
-,再逐一分析选项,即可得答案. 【详解】
由题意得:1z zi +=,即111122
z i i -==---, 所以z 不是纯虚数,故A 错误;
复数z 的虚部为12
-,故B 错误; 在复平面内,z 对应的点为1
1(,)22--,在第三象限,故C 正确;
2
z ==,故D 正确. 故选:AB
【点睛】
本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.
19.BD
【分析】
把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.
【详解】
解:,
,A 错误;
,B 正确;
z 的共轭复数为,C 错误;
z 的虚部为,D 正确.
故选:BD.
【点
解析:BD
【分析】 把21i
z =
-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.
【详解】 解:22(1)11(1)(1)
i z i i i i --===---+-+--,
||z ∴=A 错误;
22i z =,B 正确;
z 的共轭复数为1i -+,C 错误;
z 的虚部为1-,D 正确.
故选:BD.
【点睛】
本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.
20.BC
【分析】
由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.
【详解】
因为,所以,所以,所以,所以A 选
解析:BC
【分析】
由22π
πθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部
sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭
时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得
11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.
【详解】
因为22π
π
θ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,
所以A 选项错误;
当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝
⎭时,复数z 是实数,故B 选项正确;
2cos z θ===,故C 选项正确:
()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22
θθ+=+,故D 不正确. 故选:BC
【点睛】
本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.
21.AD
【分析】
先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.
【详解】
,故,故A 正确.
的虚部为,故B 错,,故C 错,
在复平面内对应的点为,故D 正确.
故选:AD.
【点睛】
本题考
解析:AD
【分析】
先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项. 【详解】
()()32232474725555
i i i i i z i ++++====+-,故4755i z =-,故A 正确.
z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭
,故D 正确. 故选:AD.
【点睛】
本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.
22.AC
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.
【详解】
对于A 选项,,则,可得
解析:AC
【分析】
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.
【详解】
对于A 选项,()cos sin z r i θθ=+,则()2
2cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;
对于B 选项,当1r =,3πθ=
时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;
对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;
对于D 选项,()cos sin cos sin cos sin 44
n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误. 故选:AC.
【点睛】
本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.
23.ABD
【分析】
根据复数的几何意义逐项判断后可得正确的选项.
【详解】
设复数,
对于A ,,故A 正确.
对于B ,复数对应的向量为,
且对于平面内以原点为起点的任一向量,其对应的复数为,
故复数集与
解析:ABD
根据复数的几何意义逐项判断后可得正确的选项.
【详解】
设复数(),z a bi a b R =+∈,
对于A ,0z =≥,故A 正确.
对于B ,复数z 对应的向量为(),OZ a b =,
且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,
且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,
故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.
对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,
故C 错.
对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .
【点睛】
本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.
24.AB
【分析】
求得、的虚部、、对应点所在的象限,由此判断正确选项.
【详解】
依题意,所以A 选项正确;
,虚部为,所以B 选项正确;
,所以C 选项错误;
,对应点为,在第三象限,故D 选项错误.
故选
解析:AB
【分析】 求得ω、2ω的虚部、3ω、
1ω对应点所在的象限,由此判断正确选项.
【详解】
依题意1ω==,所以A 选项正确;
2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭
,虚部为,所以B 选项正确;
2
2321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;
22111122212ω---====-⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
,对应点为1,22⎛⎫-- ⎪ ⎪⎝
⎭,在第三象限,故D 选项错误. 故选:AB
【点睛】
本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.
25.BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,时,,则,故A 错误;
对于B ,若复数,则满足,解得,故B 正确;
对于C ,若复数z 为纯虚数,则满足,解得,
解析:BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,0m =
时,1z =-
,则1z =-,故A 错误;
对于B ,若复数2z =
,则满足(()212
10m m m ⎧-=⎪⎨-=⎪⎩
,解得m ,故B 正确; 对于C ,若复数z
为纯虚数,则满足(()210
10m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =
,则1z =-+
,(
)()221420412z z ++=+--+=+,故
D 正确.
故选:BD.
【点睛】
本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.
26.CD
【分析】
根据复数的四则运算,整理复数,再逐一分析选项,即得.
【详解】
由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一
解析:CD
【分析】
根据复数的四则运算,整理复数z ,再逐一分析选项,即得.
【详解】 由题得,复数22(2)(1)13131(1)(1)122
i i i i z i i i i i ++++====+--+-,可得
||2
z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22
,位于第一象限,则D 正确.综上,正确结论是CD.
故选:CD
【点睛】
本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.
27.ABC
【分析】
设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设,∴,
∴,
∴,解得:,
∴实数的值可能是.
故选:ABC.
【点
解析:ABC
【分析】
设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方
程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222
223,23042,
x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴2
44(3)04
a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.
故选:ABC.
【点睛】
本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.
28.AD
【分析】
A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.
根据,得到,再用共轭复数的定义判断.
【详解】
A .根据共轭
解析:AD
【分析】
A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.
【详解】
A .根据共轭复数的定义,显然是真命题;
B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;
C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;
D. 若120z z -=,则12z z =
,所以1z 与2z 互为共轭复数,故D 是真命题.
故选:AD
【点睛】
本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 29.ACD
【分析】
由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D
【详解】
由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B
解析:ACD
【分析】
由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D
【详解】
由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,
故选:ACD
【点睛】
本题考查复数的几何意义,考查复数的模
30.BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由
解析:BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则
a bi a bi +=-,因此0
b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1
||2z =得2214
a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于
12,D 错误. 故选:BC
【点睛】
本小题主要考查复数的有关知识,属于基础题.。

相关文档
最新文档