2019年高中三年级数学下期末第一次模拟试卷(附答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高中三年级数学下期末第一次模拟试卷(附答案)(1)
一、选择题
1.某人连续投篮5次,其中3次命中,2次未命中,则他第2次,第3次两次均命中的概率是( ) A .
310
B .
25
C .
12
D .
35
2.()22
x x
e e
f x x x --=+-的部分图象大致是( )
A .
B .
C .
D .
3.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由2
222
()110(40302030),7.8()()()()60506050
n ad bc K K a b c d a c b d -⨯⨯-⨯=
=≈++++⨯⨯⨯算得 附表:
2()P K k ≥
0.050
0.010
0.001
k 3.841
6.635
10.828
参照附表,得到的正确结论是( )
A .有99%以上的把握认为“爱好该项运动与性别有关”
B .有99%以上的把握认为“爱好该项运动与性别无关”
C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
4.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )
A .
B .
C .
D .
5.已知平面向量a r
=(1,-3),b r
=(4,-2),a b λ+r
r
与a r
垂直,则λ是( ) A .2
B .1
C .-2
D .-1
6.如图,12,F F 是双曲线22
22:1(0,0)x y C a b a b
-=>>的左、右焦点,过2F 的直线与双曲线
C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )
A .23y x =±
B .22y x =±
C .3y x =±
D .2y x =±
7.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺
序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲
B .乙
C .丙
D .丁
8.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
9.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2
π
)的部分图象如图所示,则ω、φ的值分别是( )
A .2,-
3π
B .2,-6
π C .4,-6
π
D .4,
3
π 10.在ABC ∆中,60A =︒,45B =︒,32BC =AC =( ) A 3B 3 C .23D .43
11.已知双曲线C :()22
2210,0x y a b a b
-=>>的焦距为2c ,焦点到双曲线C 的渐近线的
距离为
3
c ,则双曲线的渐近线方程为() A .3y x =±
B .2y x =±
C .y x =±
D .2y x =±
12.设,a b ∈R ,数列{}n a 中,2
11,n n a a a a b +==+,N n *∈ ,则( )
A .当101
,102
b a =
> B .当101
,104
b a =
> C .当102,10b a =-> D .当104,10b a =->
二、填空题
13.曲线2
1
y x x
=+
在点(1,2)处的切线方程为______________. 14.在ABC V 中,60A =︒,1b =,面积为3,则sin sin sin a b c
A B C
++=++________.
15.在平行四边形ABCD 中,3
A π
∠=
,边AB ,AD 的长分别为2和1,若M ,N 分别是
边BC ,CD 上的点,且满足CN CD
BM BC =u u u u v u u u v u u u v u u u v ,则AM AN ⋅u u u u v u u u v 的取值范围是_________. 16.设a R ∈,直线20ax y -+=和圆22cos ,
12sin x y θθ
=+⎧⎨=+⎩(θ为参数)相切,则a 的值为
____.
17.函数2()log 1f x x =-的定义域为________.
18.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r
=______.
19.已知1OA =u u u r ,3OB =u u u r 0OA OB •=u u u r u u u r
,点C 在AOB ∠内,且AOC 30∠=o ,设
OC mOA nOB
=+u u u r u u u r u u u r ,(,)m n R ∈,则m
n
=__________. 20.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2
EF ,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;
③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,
其中正确结论的序号是______.
三、解答题
21.已知()11f x
x ax =+--.
(1)当1a =时,求不等式()1f x >的解集;
(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 22.如图:在ABC ∆中,10a =,4c =,5cos 5
C =-
.
(1)求角A ;
(2)设D 为AB 的中点,求中线CD 的长.
23.已知A 为圆2
2
:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足
2.BP BA =u u u v u u u v
(1)求动点P 的轨迹方程;
(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.
24.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛
⎫
=-= ⎪⎝
⎭
. (I )12C C 求与交点的极坐标; (II )
112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为
()33{,,.1
2
x t a t R a b b y t =+∈=+为参数求的值 25.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为
CDP V ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.
(1)用θ分别表示矩形ABCD 和CDP V 的面积,并确定sin θ的取值范围;
(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.
26.设O 为坐标原点,动点M 在椭圆C 22:12
x y +=上,过M 作x 轴的垂线,垂足为N ,
点P 满足2NP =u u u v u u u v
.
(1)求点P 的轨迹方程;
(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v
.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】 【分析】
基本事件总数32
52n C C 10==,他第2次,第3次两次均命中包含的基本事件个数212
232m C C C 3==,由此能求出他第2次,第3次两次均命中的概率,得到答案.
【详解】
由题意某人连续投篮5次,其中3次命中,2次未命中,
因为基本事件总数32
52n C C 10==,
他第2次,第3次两次均命中包含的基本事件个数212
232m C C C 3==,
所以他第2次,第3次两次均命中的概率是m 3p n 10
==. 故选:A . 【点睛】
本题主要考查了古典概型及其概率的计算,以及排列、组合等知识的应用,其中解答中根
据排列、组合求得基本事件的总数和第2次、第3次两次均命中所包含的基本事件的个数是解答的关键,着重考查了运算与求解能力,属于基础题.
2.A
解析:A 【解析】 【分析】
根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}
1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】
由函数解析式()22x x e e f x x x --=+-,易知()2
2x x
e e
f x x x ---=+-=() f x - 所以函数()22
x x
e e
f x x x --=+-为奇函数,排除D 选项
根据解析式分母不为0可知,定义域为{}
1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】
本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.
3.A
解析:A 【解析】 【分析】 【详解】
由27.8 6.635K ≈>,而(
)
2
6.6350.010P K ≥=,故由独立性检验的意义可知选A
4.C
解析:C 【解析】 【分析】
从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】
由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项.
故选C .
点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.
5.D
解析:D 【解析】 【详解】
试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知
()
()()·0433201a b a λλλλ+=∴+---=∴=-r r r
考点:向量垂直与坐标运算
6.A
解析:A 【解析】 【分析】
设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b
y x a
=±得到双曲线的渐近线方程. 【详解】
设1123,4,5,AB BF AF AF x ====,
由双曲线的定义得:345x x +-=-,解得:3x =,
所以12||F F =
=c ⇒=
因为2521a x a =-=⇒=,所以b =
所以双曲线的渐近线方程为b
y x a
=±=±. 【点睛】
本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.
7.C
解析:C 【解析】 【分析】
跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】
由题意得乙、丙均不跑第一棒和第四棒,
∴跑第三棒的只能是乙、丙中的一个,
当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】
本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.
8.A
解析:A 【解析】 【分析】
根据充分条件和必要条件的定义,结合祖暅原理进行判断即可. 【详解】
根据祖暅原理,当12,S S 总相等时,12,V V 相等,所以充分性成立;
当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.
所以“12,S S 总相等”是“12,V V 相等”的充分不必要条件. 故选:A 【点睛】
本题考查充分条件与必要条件的判断,属于基础题.
9.A
解析:A 【解析】 【分析】
由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】
由函数f (x )=2sin (ωx+φ)的部分图象知,
3T 5π412=-(π3-)3π4
=, ∴T 2π
ω
=
=π,解得ω=2; 又由函数f (x )的图象经过(5π
12
,2), ∴2=2sin (25π
12
⨯+φ), ∴
5π6+φ=2kππ
2
+,k∈Z,
即φ=2kππ3
-, 又由π2-
<φπ2<,则φπ3
=-; 综上所述,ω=2、φπ
3
=-. 故选A . 【点睛】
本题考查了正弦型函数的图象与性质的应用问题,是基础题.
10.C
解析:C 【解析】 【分析】
在三角形中,利用正弦定理可得结果. 【详解】 解:在ABC ∆中, 可得
sin sin BC AC
A B
=
,
即sin 60sin 45
AC 鞍
=
2
=
解得AC = 故选C. 【点睛】
本题考查了利用正弦定理解三角形的问题,解题的关键是熟练运用正弦定理公式.
11.A
解析:A 【解析】 【分析】
利用双曲线C :()222210,0x y a b a b -=>>
,求出a ,b 的
关系式,然后求解双曲线的渐近线方程. 【详解】
双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=
,
可得:=
,可得2
b c =
,b
a =C
的渐近线方程为y =.
故选A .
【点睛】
本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.
12.A
解析:A 【解析】 【分析】 对于B ,令2
14x λ-+
=0,得λ12=,取112a =,得到当b 1
4
=时,a 10<10;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1,取a 1=2,得到当b =﹣2时,a 10<10;对于D ,令x 2﹣λ﹣4=0
,得12λ±=
112
a +=,得到当
b =﹣4时,a 10<10;对于A ,221122a a =+
≥,223113()224a a =++≥,4224319117
()14216216
a a a =+++≥+=>,当n ≥4时,1n n a a +=a n 12n a +>11322+=,由此推导出104a
a >(32)6,从而a 10729
64>
>10. 【详解】
对于B ,令2
14x λ-+=0,得λ12
=, 取112a =
,∴211
1022n a a ==L ,
,<, ∴当b 1
4
=
时,a 10<10,故B 错误; 对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =﹣2时,a 10<10,故C 错误; 对于D ,令x 2﹣λ﹣4=0
,得λ=
取1a =
,∴2a =
,…,n a =10, ∴当b =﹣4时,a 10<10,故D 错误; 对于A ,2
21122a a =+
≥,223113
()224
a a =++≥, 4224319117
()14216216
a a a =+++≥+=>,
a n +1﹣a n >0,{a n }递增,
当n ≥4时,1
n n
a a +=a n 1
2n
a +>11322+=, ∴54
45109323232
a a a a a
a ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅
⎪⋅⎪⎪⎪⎪⎩>>>,∴
104a a >(32)6,∴a 1072964>>10.故A 正确. 故选A . 【点睛】
遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.
二、填空题
13.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+
【解析】
设()y f x =,则21
()2f x x x
'=-,所以(1)211f '=-=, 所以曲线2
1
y x x
=+
在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是
000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不
存在)时,由切线定义知,切线方程为0x x =.
14.【解析】【分析】由已知利用三角形面积公式可求c 进而利用余弦定理可求a 的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在
【解析】
【分析】
由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.
【详解】
60
A=︒
Q,1
b=
11
sin1
222
bc A c
==⨯⨯⨯,
解得4
c=,
由余弦定理可得:
a===,
所以sin sin sin sin3
a b c a
A B C A
++
===
++,
故答案为:
3
【点睛】
本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
15.【解析】【分析】画出图形建立直角坐标系利用比例关系求出的坐标然后通过二次函数求出数量积的范围【详解】解:建立如图所示的直角坐标系则设则所以因为二次函数的对称轴为:所以时故答案为:【点睛】本题考查向量解析:[2]5,
【解析】
【分析】
画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.
【详解】
解:建立如图所示的直角坐标系,则(2,0)
B,(0,0)
A,
1
2
D
⎛
⎝⎭
,设
||||
||||
BM CN
BC CD
λ
==
u u u u r u u u r
u u u r u u u r,[]
0,1
λ∈,则(2
2
M
λ
+
),
5
(2
2
Nλ
-
,
所以(2
2
AM AN
λ
=+
u u u u r u u u r
g
5
)(2
2
λ
-
g
22
53
5425
44
λλλλλλ
=-+-+=--+,
因为[]
0,1
λ∈,二次函数的对称轴为:1
λ=-,所以[]
0,1
λ∈时,[]
2252,5
λλ
--+∈.
故答案为:[2]5,
【点睛】
本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力,属于中档题.
16.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使
解析:3
4
【解析】 【分析】
根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。
【详解】 圆22cos ,12sin x y θθ
=+⎧⎨
=+⎩化为普通方程为22
(2)(1)2x y -+-=,
圆心坐标为(2,1),圆的半径为2, 22121
a a +=+,解得34
a =。
【点睛】
直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断。
17.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题
解析:[2,+∞) 【解析】
分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.
详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为
[2,)+∞.
点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.
18.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答
解析:2 【解析】 【分析】
过点C 作CD⊥AB 于D ,可得1
AD AB 12
=
=,Rt△ACD 中利用三角函数的定义算出1cos A AC
=
,再由向量数量积的公式加以计算,可得AB AC ⋅u u u v u u u v
的值. 【详解】
过点C 作CD ⊥AB 于D ,则D 为AB 的中点.
Rt △ACD 中,1
AD AB 12
==, 可得cosA=
1
1,cosA AD AB AC AB AC AB AC AB AC AC AC
=∴⋅=⋅=⋅⋅=u u u u v u u u u v u u u u v u u u u v u u u u v u u u v u u u v =2. 故答案为2 【点睛】
本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.
19.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则
解析:3 【解析】
因为30AOC ∠=o ,所以3cos cos302OC OA AOC OC OA
⋅∠===⋅o
u u u r u u u r
u u u r u u u r ,从而有
222223
||2m OA n OB mn OA OB OA
=++⋅⋅⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .因为1,3,0OA OB OA OB ==⋅=u u u r u u u r u u u r u u u r
2233m n
=+,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则
3m
n
=
20.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③
【解析】 【分析】
对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值. 【详解】
对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;
对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;
对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是
1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误.
综上知①②③正确,故答案为①②③ 【点睛】
本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.
三、解答题
21.(1)12x x ⎧⎫
>
⎨⎬⎩⎭
;(2)(]0,2 【解析】
分析:(1)将1a =代入函数解析式,求得()11f x x x =+--,利用零点分段将解析式化
为()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪
=-<<⎨⎪≥⎩
,然后利用分段函数,分情况讨论求得不等式()1f x >的解集
为12x x
⎧⎫⎨⎬⎩⎭
; (2)根据题中所给的()0,1x ∈,其中一个绝对值符号可以去掉,不等式()f x x >可以化为
()0,1x ∈时11ax -<,分情况讨论即可求得结果.
详解:(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪
=-<<⎨⎪≥⎩
故不等式()1f x >的解集为12x x
⎧⎫⎨⎬⎩⎭
. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥; 若0a >,11ax -<的解集为20x a <<,所以2
1a
≥,故02a <≤. 综上,a 的取值范围为(]
0,2.
点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果. 22.(1)4
A π
=;(2
【解析】 【分析】
(1)通过cos C 求出sin C 的值,利用正弦定理求出sin A 即可得角A ;(2)根据
()sin sin B A C =+求出sin B 的值,由正弦定理求出边b ,最后在ACD ∆中由余弦定理
即可得结果. 【详解】 (1
)∵cos 5
C =-
,∴sin 5C ===
. 由正弦定理sin sin a c A C
=
,即sin A =
.
得sin 2A =
,∵cos 0C =<,∴C 为钝角,A 为锐角, 故4
A π
=
.
(2)∵()B A C π=-+,
∴()sin sin sin cos cos sin B A C A C A C =+=
+252510
⎛⎫=
⨯-+⨯= ⎪ ⎪⎝⎭. 由正弦定理得sin sin b a B A
=
102
=
得b = 在ACD ∆中由余弦定理得:
2222cos CD AD AC AD AC A =+-⋅
⋅242222
=+-⨯
=
,∴CD =. 【点睛】
本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.
23.(1) 2
214
x y += (2) 3.2
【解析】 【分析】
(1)设出A 、P 点坐标,用P 点坐标表示A 点坐标,然后代入圆方程,从而求出P 点的轨迹;
(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值. 【详解】
解:(1) 设(),P x y , 由题意得:()()1,,0,A x y B y , 由2BP BA =u u u v u u u v
,可得点A 是BP 的中点, 故102x x +=, 所以12
x
x =
, 又因为点A 在圆上,
所以得2
214
x y +=,
故动点P 的轨迹方程为2
214
x y +=.
(2)设()11,P x y ,则10y ≠,且2
21114
x y +=,
当10x =时,11y =±,此时()33,0,2
POQ Q S ∆=; 当10x ≠时,1
1
,OP y k x = 因为OP OQ ⊥, 即1
1
,OQ x k y =- 故1133,x Q y ⎛⎫-
⎪⎝⎭
,
OP ∴=
OQ ==,
22
111
1322POQ
x y S OP OQ y ∆+==⋅①, 2
21114x y +=代入① 2111143334
322POQ
y S y y y ∆⎛⎫-=⋅=- ⎪ ⎪⎝⎭
()101y <≤
设()()4
301f x x x x
=
-<≤ 因为()24
f x 30x
'=-
-<恒成立, ()f x ∴在(]
0,1上是减函数, 当11y =时有最小值,即3
2
POQ S ∆≥, 综上:POQ S ∆的最小值为3.2
【点睛】
本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值. 24.(I
)(4,),(2)24
π
π
(II )1,2a b =-= 【解析】 【分析】 【详解】
(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-=
联立得22(2)4
{40x y x y +-=+-=得110{4x y ==22
2{2x y ==所以1C 与2C 交点的极坐标为(4,),(22,)24
ππ
(II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为
20x y -+=
由参数方程可得122
b ab y x =
-+,所以1,12,1,222b ab
a b =-+==-=解得
25.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫
⎪⎢⎣⎭
;(2)6
π. 【解析】
分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.
详解:
解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,
则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为
12
×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π
6
). 当θ∈[θ0,
π
2
)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[
1
4
,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[
1
4
,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,
设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×
800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)
=8000k (sin θcos θ+cos θ),θ∈[θ0,
π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,
π2), 则()()
()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=
π6, 当θ∈(θ0,
π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2
)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=
π6时,f (θ)取到最大值. 答:当θ=π6
时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.
26.(1)222x y +=;(2)见解析.
【解析】
【分析】
【详解】
试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=u u u r u u u r
,先设 P (m ,n ),则需证330+-=m tn ,即根据条件1OP PQ ⋅=u u u r u u u r 可得2231--+-=m m tn n ,而222m n +=,
代入即得330+-=m tn .
试题解析:解:(1)设P (x ,y ),M (00,x y ),则N (0,0x ),
00NP (x ,),MN 0,x y y =-=u u u r u u u u r ()
由NP =u u u r u u u r 得0002
x y y ==,. 因为M (00,x y )在C 上,所以22
x 122
y +=. 因此点P 的轨迹为222x y +=.
由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则 OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-u u u r u u r u u u r u u r ,,,,,
OP m n PQ 3m t n ==---u u u r u u u r ,,(,)
.
由OP PQ 1⋅=u u u r u u u r 得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0. 所以OQ PF 0⋅=u u u r u u r ,即OQ PF ⊥u u u r u u r .又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.
点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.。