锅炉SNCR烟气脱硝方案设计

合集下载

SNCR氨水脱硝方案

SNCR氨水脱硝方案

SNCR氨水脱硝方案山东阿斯德化工有限公司75T/h流化床锅炉SNCR-EE 氨水脱硝系统项目方案2013年 12月目录第1章脱硝背景及意义 0第2章SNCR脱硝工艺技术简介 (1)2.1SNCR脱硝原理 (1)2.2SNCR脱硝技术的优点 (1)2.3SNCR脱硝效率的影响因素 (2)第3章SNCR—EE脱硝系统方案 (4)3.1SNCR脱硝工艺参数表 (4)3.2工艺过程 (5)3.3系统组成 (5)3.4SNCR-EE系统主要设备清单 (9)3.5SNCR-EE系统运行成本分析 (10)3.6系统安全运行保障 (11)3.7SNCR-SE脱硝喷枪特点 (11)第4章施工组织计划 (14)4.1工程概况 (14)4.2施工准备工作 (14)4.3项目实施工作 (14)第5章公司承诺 (17)第6章公司简介 (19)第7章工程业绩表 (21)第1章脱硝背景及意义硝泛指含氮氧化物,主要有N2O、NO、NO2、N2O3等,多以NO、NO2形式存在,简称为NOx。

NOx主要来源于生产、生活中所用的煤、石油等燃料的燃烧。

NOx的危害主要有以下几个方面:(1)严重影响人类身体健康,NO能与血液中血红蛋白发生反应,降低血红蛋白的输氧能力,严重时可引起组织缺氧,损害中枢神经组织;(2)形成光化学烟雾,NOx与碳氢化合物在阳光照射下会产生有毒的烟雾,称之为光化学烟雾;(3)是形成酸雨的重要组成成分,我国酸雨主要成分为硫酸,其次是硝酸,硝酸主要来源就是空气中的氮氧化合物;(4)容易演变成PM10和PM2.5,对人体产生危害。

据研究,近来受民众关注的PM2.5,其中10%为氮氧化物氧化为硝酸根所致;(5)造成臭氧层耗损。

煤炭资源在我国一次能源构成中占据主要地位,约占目前已探明矿物质能源资源的90%。

从中国历年能源消费总量及构成上看,我国以煤为主的能源生产和消费结构在今后相当长的时间内都不会有根本性的变化。

因此,煤燃烧产生的污染物排放是我国大气污染的一个重要组成部分。

(完整版)SNCR+SCR方案

(完整版)SNCR+SCR方案
SNCR烟气脱硝的主要反应为:
NH3为还原剂 4NH3+ 4NO + O2 → 4N2 + 6H2O
SNCR通常采用的还原剂有氨水、氨水和液氨,不同还原剂的比较如表3.1所列。
表3.1 不同还原剂特点
还原剂
特点
尿素
•安全原料 (化肥)
•便于运输
•脱硝有效温度窗口较宽
•溶解要消耗一定热量
氨水
•运输成本较大
锅炉烟气SNCR+SCR脱硝






绿能环保工程有限公司
二零一四年二月

目前主流的烟气脱硝技术有选择性非催化还原技术(SNCR)、选择性催化还原技术(SCR)和SNCR/SCR联合脱硝技术。
SNCR技术
研究发现,在800~1250℃这一温度范围内、无催化剂作用下,氨水等还原剂可选择性地还原烟气中的NOx生成N2和H2O,基本上不与烟气中的O2作用,据此发展了SNCR脱硝技术。
SNCR/SCR混合烟气脱硝技术
SNCR/SCR混合技术是SNCR工艺的还原剂喷入炉膛技术同SCR工艺利用末反应氨进行催化反应结合起来,或利用SNCR和SCR还原剂需求量不同,分别分配还原剂喷入SNCR系统和SCR系统的工艺有机结合起来,达到所需的脱硝效果,它是把SNCR工艺的低费用特点同SCR工艺的高脱硝率进行有效结合的一种扬长避短的混合工艺。SNCR/SCR混合工艺的脱硝效率可达到60~80%,氨的逃逸小于4mg/Nm3。图3.3为典型的SNCR/SCR混合烟气脱硝工艺流程。
没有压力损失
催化剂用量较SCR小,产生的压力损失较低
燃料及其变化的影响
燃料显著地影响运行费用,对灰份增加和灰份成分变化敏感,灰份磨耗催化剂,碱金属氧化物劣化催化剂,AS、S等使催化剂失活少,更换催化剂的总成本较SCR低

SNCR脱硝技术方案

SNCR脱硝技术方案

SNCR脱硝技术方案SNCR(Selective Non-Catalytic Reduction)是一种选择性非催化还原脱硝技术,用于降低燃烧过程中产生的氮氧化物(NOx)的排放。

它是一种相对经济和有效的脱硝方法,广泛应用于燃煤锅炉、电厂和工业烟气排放等领域。

SNCR脱硝技术的基本原理是在燃烧过程中,通过向燃烧室或烟气道喷射一种或多种适当的还原剂,如氨水、尿素溶液等,使其与燃烧产物中的NOx发生反应生成氮气和水。

SNCR脱硝技术的优点在于不需要使用昂贵的催化剂,操作简单、成本低,但其脱硝效率相对较低,通常在30%~70%之间。

1.确定最佳喷射位置:喷射位置的选择是关键的一步。

通常在燃烧室出口、过热器顶部和脱硝催化剂之前是合适的喷射位置。

通过调整喷射位置可以达到最佳脱硝效果。

2.确定还原剂投入量:还原剂的投入量也是决定脱硝效率的重要因素。

适当的投入量可以使还原剂与NOx充分反应,但过量投入可能会产生副产品,如氨逃逸。

投入量可以通过实验室试验和现场测试得出。

3.确定喷射时间:喷射时间的控制也是关键的一步。

通常根据燃烧过程中的NOx生成特征,选择合适的喷射时间。

一般在燃烧室温度较高的区域喷射,确保还原剂与NOx充分接触并发生反应。

4.确定温度和浓度范围:最适宜的还原剂浓度和温度范围取决于燃料种类、燃烧设备类型等因素。

一般来说,在1400℃~1600℃的温度下,5%~12%的氨浓度是有效脱硝的范围。

5.监测和调整:在实际运行中,需要不断监测脱硝效果和排放水平,并根据监测结果进行调整。

可以通过在线氮氧化物分析仪监测排放浓度,并根据结果调整还原剂投入量等参数。

总之,SNCR脱硝技术是一种经济有效的脱硝方法,在工业排放和燃煤锅炉等领域得到广泛应用。

通过合理的喷射位置、还原剂投入量、喷射时间和温度浓度范围的选择,可以实现较低的NOx排放水平。

锅炉燃煤烟气脱硝处理初步设计方案

锅炉燃煤烟气脱硝处理初步设计方案

锅炉燃煤烟气脱硝处理初步设计方案目录1、项目概况 (4)2、脱硝工艺简述 (4)2.1 脱硝工艺介绍 (4)2.2 选择性催化还原法(SCR)技术介绍 (4)2.2.1 SCR工作原理 (4)2.2.2 SCR系统组成 (5)2.2.3 SCR工艺流程 (5)2.3.4 SCR反应过程 (6)2.3.5 SCR技术特点 (6)2.4 选择性非催化还原法(SNCR)技术介绍 (6)2.4.1 SNCR工作原理 (6)2.4.2 SNCR系统组成 (6)2.4.4 SNCR反应过程 (7)2.4.5 SNCR技术特点 (8)2.5 SNCR+SCR联合工艺介绍 (8)2.5.1 SNCR+SCR联合工艺工作原理 (8)2.5.2 SNCR+SCR联合工艺的系统组成 (9)2.5.3 SNCR+SCR联合工艺流程 (9)2.5.4 SNCR+SCR联合工艺反应过程 (9)2.5.5 SNCR+SCR联合工艺特点 (9)3、本方案采用的SNCR系统 (12)3.1 系统组成 (12)3.2 系统简述 (13)3.2.1 尿素溶液输送系统 (13)3.2.3 炉前喷射设备 (14)3.3 其工艺流程简图如下: (14)3.4 SNCR工艺的经济性分析 (15)4、后续的SCR工艺 (16)5、工艺计算 (16)5.1设计基础参数(单台) (16)5.2物料衡计算 (17)5.2.1 影响脱硝率的因素 (17)5.2.2 设计参数取值 (17)5.2.3 计算过程 (17)6、SNCR-SCR联合工艺脱硝预期效果 (17)1、项目概况有两台200t/h燃煤锅炉,已建成除尘脱硫装置,但随着国家对烟气排放标准要求的日益提高,锅炉的脱硝工作也被提到了议事日程,在这个背景下,受该公司委托,我公司特编报此脱硝初步方案,供业主参考。

2、脱硝工艺简述2.1 脱硝工艺介绍氮氧化物(NOx)是在燃烧工艺过程中由于氮的氧化而产生的气体,它不仅刺激人的呼吸系统,损害动植物,破坏臭氧层,而且也是引起温室效应、酸雨和光化学反应的主要物质之一。

(完整版)SNCR+SCR方案

(完整版)SNCR+SCR方案
(完整版)SNCR+SCR 方案
锅炉烟气 SNCR+SCR 脱硝
技 术 投 标 文 件
1
绿能环保工程有限公司 二零一四年二月
(完整版)SNCR+SCR 方案
目录
一、烟气脱硝技术介绍 ........................................................... 3 二、本项目 SNCR+SCR 方案设计................................................... 12
4
(完整版)SNCR+SCR 方案
图 3。1 SNCR 工艺系统流程图 SNCR 烟气脱硝过程是由下面四个基本过程组成:
还原剂的接收和溶液制备; 还原剂的计量输出; 在锅炉适当位置注入还原剂; 还原剂与烟气混合进行脱硝反应。 SCR 技术
5
(完整版)SNCR+SCR 方案
选择性催化剂还原(SCR)技术是在烟气中加入还原剂(最常用的是氨和氨水),在催化剂和 合适的温度等条件下,还原剂与烟气中的氮氧化物(NOx)反应,而不与烟气中的氧进行氧化 反应,生成无害的氮气和水.主要反应如下:
几种主要烟气脱硝技术综合比较情况如表 3.2 所列。
表 3。2 SCR、SNCR、SNCR/SCR CR/SCR 技术
反应剂 NH3
氨水或氨水
NH3
反应温 度
320~400℃
800~1250℃
前段:800~1000℃, 后段:320~400℃
8
催化剂 V2O5-WO3/TiO2
SNCR 烟气脱硝的主要反应为: NH3 为还原剂 4NH3 + 4NO + O2 → 4N2 + 6H2O

锅炉SNCR烟气脱硝技术方案

锅炉SNCR烟气脱硝技术方案

一、项目总说明1.1、项目背景现有220t/h锅炉三台,脱硫除尘系统已经投运。

烟气脱硫运行过程中存在脱硫率低下以及运行成本过高等诸多问题。

现如今随着人们对环境的要求越来越高,以及环保部门对从锅炉烟囱排出的废气物的排放监控越来越严格,排放标准也越来越严厉。

根据环保有关规定,SO2的排放浓度要低于100mg/m3,粉尘颗粒物排放浓度要低于30mg/m3, 氮氧化合物排放浓度要低于100mg/m3,污染物排入大气必须达标排放。

1.2、项目目标本工程的目的就是在上述建设背景和有关法规要求下对该项目原有污染物治理和工艺系统进行改造,在不影响现有锅炉工况条件下,使该系统能有效减少中各项污染物的排放,保证尾气达标排放,实现良好的经济效益和环保效益,并尽可能利用现有设施资源,把项目改造费用降到最低。

1.3、概述本工程针对现有3台220t/h流化床锅炉脱硫系统采用亁峰顺驰烟气脱硫技术进行改造,将原有简易双碱法系统改为石灰石石膏法系统,三套烟气脱硫塔装置改造、一套新型工艺系统设备、改造配套电气仪表系统。

锅炉出口到引风机出口之间工艺系统的所有设备;详细分工界线内容如下(暂定,最终以招标文件为准):a、220T流化床炉脱硫电气仪表系统1套。

b、制浆系统1套。

c、改建水泥脱硫塔3台。

d、脱硫塔工艺循环系统1套。

e、土建改造系统1套。

f、脱水系统1套。

g、管道系统3套。

脱硫前烟气中SO2原始排放浓度:设计时按工况下最大SO2浓度6043mg/m3考虑,烟气脱硫后达到如下指标:SO2浓度≤100mg/m3。

工程改建后脱硫系统运行时采用石灰石做为脱硫剂。

1.3.1、主要特点本除尘脱硫系统主要特点如下:1)改建后脱硫系统采用3×220t/h流化床锅炉和配一套脱硫系统脱硫的处理方式。

2)脱硫系统采用石灰石-石膏湿法烟气脱硫方法,脱硫系统副产物为硫酸钙沉淀物。

3)改造后的脱硫系统采用空塔喷淋塔吸收技术,塔内喷淋及布流装置采用最优化设计,液气比远远低于传统的石灰石-石膏法烟气脱硫技术,液气比仅为4.85L/Nm3。

SNCR脱硝除尘脱硫技术方案

SNCR脱硝除尘脱硫技术方案

****锅炉有限公司烟气除尘、脱硫、脱硝工程技术方案目录一、总论本设计方案书适用于2×10t/h锅炉烟气除尘、脱硫、脱硝工程1.1设计基准场地各地层工程性能为:第(1)层粉质粘土强度中等偏低,压缩性中等偏高。

第(1-1)层淤泥,强度低,压缩性高,为本场地软弱下卧层。

第(2-1)层淤泥,强度低,压缩性高,为本场地软弱下卧层。

第(2-2)层淤泥质粉质黏土,强度低,压缩性高,为本场地软弱下卧层。

第(3)层粉质粘土,强度中等,压缩性中等。

第(4)层淤泥,强度低,压缩性高。

第(5)层粘土,强度中等,压缩性中等。

1.1.3 抗震(1)抗震设防根据《中国主要城镇抗震设防烈度、设计基本地震加速度和设计地震分组》的规定,天门市地震基本烈度为Ⅵ度,设计基本地震加进度值为,设计地震分组为第一组。

(2)地震液化由于本场地地震基本烈度为六度,可不考虑砂土液化问题。

(3)场地土类型和建筑场地类别根据场地地基土的物理力学性质和湖北地区各岩土层的剪切波速统计表(经验值)估算场地自然地面下深度范围内各土层的等效剪切波速估算值在~之间,本场地场地土为中软土,根据区域资料,本场地震盖层厚度大于,故判定本场定为Ⅲ类建筑场地,本场地为可进行建设的一般地段。

1.1.4 水文该拟建场地下水类型为上层滞水,赋存于表层素填土中,地下水位主要受气候因素影响,大气降水为其主要补给来源,勘察期间测得场地稳定水位为地面下~左右。

根据本地建筑经验判定,该场地地下水对混凝土具轻微腐蚀性。

1.1.5水电气供给标准A.电三相五线电压 380伏频率 50HZB.压缩空气压力 5bar温度 30℃品质无油露点 -20℃C.水品质自来水,无固体悬浮物且含氯≤50PPM压力 3 bar温度 32℃(进车间)煤质参数:1.2技术总的要求1.2.1除尘、脱硫系统是一个较为独立的系统,本系统两台锅炉配置一套脱硫设备(要求能满足两台10吨燃煤链条炉);配备二套脱硝设备(SNCR脱硝工艺),辅助设备应尽量共用。

锅炉SNCR烟气脱硝方案

锅炉SNCR烟气脱硝方案

锅炉SNCR烟气脱硝方案SNCR工艺原理是通过燃烧室内的高温和氧化氮产生的氮氧化物(NOx)与添加的尿素或氨水在高温下发生非催化还原反应,使其转化为氮气和水,并降低烟气中的NOx排放。

SNCR适用于大部分工业锅炉和燃煤电厂,是一种较为经济、简单的烟气脱硝技术。

SNCR烟气脱硝方案主要包括尿素/氨水注射系统、煤粉输送系统、烟气分布系统和控制系统等。

尿素/氨水注射系统是SNCR中的核心部分,主要由尿素/氨水储罐、针型喷嘴、注射管道和控制阀组成。

尿素/氨水储罐用于储存尿素或氨水溶液,针型喷嘴则负责将尿素/氨水注入燃烧室或烟道中。

注射管道将尿素/氨水从储罐输送至喷嘴,并通过控制阀来控制喷嘴的喷射量和喷射时间。

煤粉输送系统用于将燃料煤粉输送至锅炉燃烧室中与烟气混合燃烧,保证燃烧室内的高温和足够的氧气供给,以促进SNCR反应的进行。

烟气分布系统主要包括进口烟气温度探头、烟气均匀分布管道和喷射孔。

进口烟气温度探头用于测量烟气进口温度,并反馈给控制系统进行调节。

烟气均匀分布管道将烟气均匀分布至喷射孔,保证SNCR反应在整个燃烧室内均匀进行。

控制系统是SNCR方案的关键部分,通过监测烟气进口温度、氨水注射量和氮氧化物排放浓度等参数,实时调节注射量和注射时间,以达到最佳的脱硝效果。

控制系统还可以与锅炉的自动控制系统相连接,实现自动调节和运行。

在实际应用中,锅炉SNCR烟气脱硝方案需要根据具体的锅炉类型、燃料特性和脱硝要求进行设计和调整。

通过合理的系统设计、准确的控制和优化的操作,可以达到较高的脱硝效果,并减少对环境的污染。

但同时也需要注意SNCR过程中可能产生的副反应和副产物,以及涉及到的安全和环保问题。

SNCR氨水脱硝方案

SNCR氨水脱硝方案

Lh东阿斯德化工有限公司75T/h流化床锅炉SNCR-EE氨水脱硝系统河北诚誉喷雾技术有限公司HEBEI CHENGYU SPRAY THE FOG TECHNIQUE CO..LTD B2013年12月目录第1章脱硝背景及意义.............................................. 1.第2章SNCR脱硝工艺技术简介 (2)2.1 SNCR脱硝原理 (2)2.2 SNCR脱硝技术的优点...................................... 2.2.3 SNCR脱硝效率的影响因素..................................3.第3章SNCR-EE脱硝系统方案...................................... ・53.1 SNCR脱硝工艺参数表...................................... 5.3.2工艺过程.................................................... 5.3.3系统组成.................................................... 6.3.4 SNCR-EE系统主要设备清单................................. 9.3.5 SNCR-EE系统运行成本分析 (10)3.6系统安全运行保障 (11)3.7 SNCR-SE脱硝喷枪特点 (11)第4章施工组织计划 (14)4.1工程概况 (14)4.2施工准备工作............................................... 1.44.3项目实施工作............................................... 1.4第5章公司承诺................................................... 1.7第6章公司简介................................................... 1.9第7章工程业绩表21第1章脱硝背景及意义硝泛指含氮氧化物,主要有N2O、NO、NO2、N2O3等,多以NO、NO2形式存在,简称为NOx。

循环流化床锅炉脱硝技术方案设计(详)

循环流化床锅炉脱硝技术方案设计(详)

循环流化床锅炉SNCR脱硝技术方案一、SNCR工程设计方案1、SNCR和SCR两种技术方案的选择1.1.工艺描述选择性非催化还原(Selective Non-Catalytic Reduction,以下简写为SNCR)技术是一种成熟的商业性NOx控制处理技术。

SNCR方法主要在900~1050℃下,将含氮的化学剂喷入贫燃烟气中,将NO还原,生成氮气和水。

而选择性催化还原(Selective Catalytic Reduction,SCR),由于使用了催化剂,因此可以在低得多的温度下脱除NOx。

两种方法都是利用氮剂对NOx还原的选择性,以有效的避免还原氮剂与贫燃烟气中大量的氧气反应,因此称之为选择性还原方法。

两种方法的化学反应原理相同。

SNCR在实验室内的试验中可以达到90%以上的NOx脱除率。

应用在大型锅炉上,短期示范期间能达到75%的脱硝率,长期现场应用一般能达到30%~50%的NOx脱除率。

SNCR技术的工业应用是在20世纪70年代中期日本的一些燃油、燃气电厂开始的,在欧盟国家从80年代末一些燃煤电厂也开始SNCR技术的工业应用。

美国的SNCR技术应用是在90年代初开始的,目前世界上燃煤电厂SNCR 工艺的总装机容量在2GW以上。

两种烟气脱硝技术都可以采用氨水、纯氨、或者尿素作为还原剂,工艺上的不同主要体现在两个方面:其一,SCR需要布置昂贵的金属催化剂,SNCR不需要催化剂;其二,SNCR存在所谓的反应温度窗口,一般文献介绍,其最佳反应温度窗口为850~1100℃,但是当采用氨做还原剂且和烟气在良好混合条件下,并且保证一定的停留时间,则在更低的760~950℃范围内也可以进行有效程度的脱硝反应。

采用SCR技术的脱硝反应,由于催化剂的存在,则可以在尾部烟道低温区域进行。

SNCR、SCR和SNCR-SCR三种技术性能比较见表2-1。

表2-1 选择性还原脱硝技术性能比较近年来由于环保需要,中国要求电厂锅炉除了使用低氮燃烧器(LNB)外,还需进一步安装烟气脱硝装置,目前采用的最佳成效工艺主要有SNCR 、SCR 和SNCR/SCR 混合法技术。

(完整版)SNCR+SCR脱硝方案

(完整版)SNCR+SCR脱硝方案

100t/h循环流化床锅炉烟气脱硝工程技术方案(SNCR+SCR)目录1 项目概况 (3)2 技术要求 (3)2.1设计原则 (3)2.2设计依据 (3)2.3设计规范 (4)3 工作范围 (8)3.1设计范围 (8)3.2供货范围 (8)4 技术方案 (8)4.1技术原理 (8)4.2工艺流程 (11)4.3平面布置 (15)4.4控制系统 (15)7 技术培训及售后服务 (16)7.1技术服务中心 (16)7.2售前技术服务 (17)7.3合同签订后的技术服务 (17)7.4技术培训 (17)7.5售后服务承诺 (18)1 项目概况现有100t/h循环流化床锅炉2台。

据《GB13223-2011火电厂大气污染物排放国家标准》,NOx排放浓度必须满足当地环保要求,拟采用SNCR+SCR脱硝技术实施脱硝。

本脱硝系统设计脱硝处理能力锅炉最大工况下脱硝效率不小于80%,脱硝装置可用率不小于98%。

本项目工程范围包括脱硝系统的设计、设备供货、安装、系统调试和试运行、考核验收、培训等。

2 技术要求2.1 设计原则本项目的主要设计原则:(1)本项目脱硝工艺采用“SNCR+SCR”法。

(2)本项目还原剂采用氨水。

(3)烟气脱硝装置的控制系统使用PLC系统集中控制。

(4)锅炉初始排放量均在400mg/Nm3(干基、标态、6%O2)的情况下,脱硝系统效率不低于80%。

(5)NH3逃逸量控制在8ppm以下。

(6)脱硝设备年利用按3000小时考虑。

(7)脱硝装置可用率不小于98%。

(8)装置服务寿命为30年。

2.2 设计依据锅炉参数:锅炉类型:流化床锅炉出口热水压力:1.6MPa烟气量:100t/h锅炉烟气量:260000m3/hNOx含量:400mg/Nm3NOx排放要求:小于100mg/Nm3排烟温度:150℃烟气中氧含量:8~10%2.3 设计规范国家和地方现行的标准、规范及其他技术文件见下表:3 工作范围3.1 设计范围烟气脱硝系统成套设备与界区外交接的公用工程设施(如水、电、气等),由业主提供,设备及系统所需的公用工程设施(水、电等)由业主引至界区外1米处,系统内除因增加脱硝系统而引起的锅炉相关设备的改造需由锅炉厂家配合设计和核算外,其他所有设备、管道、电控设备等全部由卖方设计并供货。

烟气脱硝SNCR工艺原理及方案选择修订稿

烟气脱硝SNCR工艺原理及方案选择修订稿

烟气脱硝SNCR工艺原理及方案选择修订稿烟气脱硝(Selective Non-Catalytic Reduction,SNCR)是一种常用的烟气脱硝技术,主要用于减少燃煤电厂烟气中的氮氧化物(NOx)排放。

本文将重点介绍SNCR工艺的原理以及方案选择。

SNCR工艺原理:SNCR是一种基于氨(NH3)或尿素(CH4N2O)对烟气中的NOx进行还原的技术。

NOx与氨或尿素在高温条件下发生反应,生成氮气和水蒸气。

这个反应过程主要遵循两个化学反应:1.4NO+4NH3+O2→4N2+6H2O2.2NO2+4NH3+O2→3N2+6H2O这些反应一般发生在接触时间短、温度高和亚硝酸盐(NOx)浓度高的区域。

方案选择:SNCR工艺的选择主要取决于以下几个因素:1.烟气温度:SNCR适用于烟气温度在1100°C以下的情况。

高温会导致氨的挥发率下降,降低脱硝效率。

2.烟气还原性:SNCR需要存在一定的烟气还原性,即烟气中需要有适量的还原剂(氨或尿素)以及未被氧化的NOx。

3.沉积物:SNCR工艺需要检查烟气进入脱硝反应器前的烟气管道和烟气净化设备是否有沉积物。

沉积物可能会成为反应器阻塞的风险。

4.尾部处理:SNCR工艺通常会产生氨溶液和未被反应的氨排放。

这些废液需要进行处理,以避免对环境产生负面影响。

5.设备需求:SNCR工艺需要投资额外的喷嘴和反应器等设备。

在选择方案时,需要考虑设备安装、运行和维护的成本。

除了SNCR工艺,还有其他一些脱硝技术可供选择,如SCR (Selective Catalytic Reduction)和低氮燃烧技术等。

选择最合适的脱硝技术需要考虑到烟气特性、经济性以及环境法规等多个因素。

总结:烟气脱硝SNCR工艺的原理主要是通过氨或尿素的添加还原烟气中的NOx。

方案选择时需要考虑烟气温度、烟气还原性、沉积物、尾部处理以及设备需求等因素。

此外,还需综合考虑与其他脱硝技术的对比,以选择最适合的脱硝方案。

电厂烟气脱硝方案SNCR

电厂烟气脱硝方案SNCR

电厂烟气脱硝方案SNCRSNCR是选择性非催化还原技术的缩写,是一种常见的电厂烟气脱硝方案。

下面将详细介绍SNCR的原理、应用范围、工艺流程以及优缺点。

1.原理:SNCR通过在烟气中加入适量的氨水、尿素或其他含氮化合物,在高温下与烟气中的NOx反应生成氮气和水,达到脱硝的目的。

该反应是非催化的,反应生成的氮气和水蒸气随烟气一同排出。

2.应用范围:SNCR适用于NOx排放浓度较低(100-300mg/Nm³)的电厂烟气脱硝,尤其是燃煤电厂。

由于SNCR是一种后段脱硝技术,适用于烟气温度高于850℃的情况。

3.工艺流程:SNCR的工艺流程由氨水/尿素投加系统、反应器和混合器组成。

步骤一:氨水/尿素投加系统将氨水/尿素溶液通过喷嘴或喷淋装置加入脱硝区域。

一般来说,SNCR技术需要根据烟气NOx浓度、温度和氨水/尿素投加量来确定最佳的投加位置。

步骤二:反应器烟气与投加的氨水/尿素在反应器中混合和反应,通常需要在反应器中保持较高的温度和逗留时间,以确保反应充分进行。

步骤三:混合器将反应生成的氮气和水等副产物与烟气充分混合,以减少副产物的排放。

4.优缺点:优点:①相较于SCR技术,SNCR在设备投资和运行维护成本方面更低;②SNCR适用于已存在的电厂,不需要对锅炉和烟气处理系统进行大规模改造。

缺点:①由于SNCR是一种后段脱硝技术,对烟气温度和逗留时间有严格要求,不适用于烟气温度较低的情况;②SNCR的脱硝效率受到烟气氨含量、温度和逗留时间等多个因素的影响,脱硝效果可能不够稳定和可靠。

综上所述,SNCR是一种常见的电厂烟气脱硝方案,具有设备投资和运行成本较低、适用于已存在的电厂等优点。

然而,由于其适用范围受到烟气温度和逗留时间等因素的限制,脱硝效果可能不够稳定和可靠。

因此,在实际应用中,需要综合考虑SNCR的优缺点来选择最合适的烟气脱硝技术方案。

SCR烟气脱硝工艺方案设计

SCR烟气脱硝工艺方案设计

SCR烟气脱硝工艺方案设计1. 脱硝工艺的简介有关NOX的控制方法从燃料的生命周期的三个阶段入手,限燃烧前、燃烧中和燃烧后。

当前,燃烧前脱硝的研究很少,几乎所有的脱硝都集中在燃烧中和燃烧后的NOX 的控制。

所以在国际上把燃烧中NOX的所有控制措施统称为一次措施,把燃烧后的NOX控制措施统称为二次措施,又称为烟气脱硝技术。

目前普遍采用的燃烧中NOX 控制技术即为低NOX燃烧技术,主要有低NOX燃烧器、空气分级燃烧和燃料分级燃烧。

应用在燃煤电站锅炉上的成熟烟气脱硝技术主要有选择性催化还原技术(Selective Catalytic Reduction,简称SCR)、选择性非催化还原技术(Selective Non-Catalytic Reduction,简称SNCR)以及SNCR/SCR混合烟气脱硝技术。

2 .SCR烟气脱硝技术近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,目前催化还原烟气脱硝技术是应用***多的技术。

1)SCR脱硝反应目前世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR两种。

此两种法都是利用氨对NOX 的还原功能,在催化剂的作用下将NOX(主要是NO)还原为对大气没有多少影响的N2和水。

还原剂为NH3,其不同点则是在尿素法SCR中,先利用一种设备将尿素转化为氨之后输送至SCR触媒反应器,它转换的方法为将尿素注入一分解室中,此分解室提供尿素分解所需之混合时间,驻留时间及温度,由此室分解出来之氨基产物即成为SCR的还原剂通过触媒实施化学反应后生成氨及水。

尿素分解室中分解成氨的方法有热解法和水解法,主要化学反应方程式为:NH2CONH2+H2O→2NH3+CO2在整个工艺的设计中,通常是先使氨蒸发,然后和稀释空气或烟气混合,***后通过分配格栅喷入SCR反应器上游的烟气中。

典型的SCR反应原理示意图如下:在SCR反应器内,NO通过以下反应被还原:4NO+4NH3+O2→3N2+6H2O6NO+4NH3→5N2+6H2O当烟气中有氧气时,反应第一式优先进行,因此,氨消耗量与NO还原量有一对一的关系。

烟气脱硝方案

烟气脱硝方案

20t/h链条锅炉SNCR脱硝工程技术方案1 概述1.1 项目概况近年来,随着我国火电装机容量的急速增长,火电NOx排放量逐年增加,NOx已成为目前我国最主要的大气污染物之一。

随着我国对SOx排放控制的加强,NOx对酸雨的影响将逐步赶上甚至超过SOx。

14年5月16日,环境保护部、国家质量监督检验检疫总局联合发布《锅炉大气污染物排放标准》(GB13271-2014),据此标准为控制火电厂的NOx排放,此锅炉执行重点地区燃煤锅炉NOx排放浓度限值,即最终烟气NOx排放浓度<200 mg/Nm3(标态,干基,9%氧)。

本工程为1台20t/h以煤为燃料的链条锅炉,原始NOx排放浓度按450 mg/Nm3,为了满足排放要求,本工程考虑对其进行SNCR脱硝改造。

还原剂用20%浓度的氨水设计,脱硝后NOx 排放浓度小于200 mg/Nm3,锅炉脱硝效率为56%。

1.2 主要设计原则(1) 脱硝设计效率满足用户要求。

(2) 采用的脱硝工艺具有技术先进、成熟,设备可靠,性能价格比高,对锅炉工况有较好的适用性。

(3) 脱硝系统能持续稳定运行,系统的启停和正常运行不影响主机组的安全运行。

(4) 脱硝装置的可用率应≥98%,且维护工作量小,不影响电厂的文明生产;脱硝装置设计寿命按30年。

(5) 脱硝工艺的选择应利于电厂的管理和降低运行管理费用。

1.3 推荐设计方案(1)由于本锅炉炉膛温度较高,拟采用SNCR烟气脱硝技术,锅炉脱硝设计效率为56%。

(2)还原剂为20%氨水。

(3)NH3逃逸量(烟囱出口处测量)控制在8ppm以下。

如有更高的排放要求可在烟道尾部增加催化剂,采用混合法脱硝技术。

2、SNCR法NOx控制机理在高温没有催化剂的条件下,氨基还原剂(如氨气、氨水、尿素)喷入炉膛,热解生成NH3与其它副产物,在800~1100℃温度窗口,NH3与烟气中的NOx进行选择性非催化还原反应,将NOx还原成N2与H2O。

SNCR脱硝技术方案设计最终

SNCR脱硝技术方案设计最终

标准实用滨州东力热电有限公司2×130t/h CFB燃煤锅炉烟气脱硝项目标书方案项目编号:HYHABZ2013-0790招标方:滨州东力热电有限公司投标方:煤炭工业济南设计研究院有限公司2013年08月目录一、技术规范 (3)1.1总则 (3)1.2工程概况 (3)1.3设计与运行条件 (5)1.4技术要求 (11)1.5标准与规范 (32)1.6性能保证值 (34)二、供货范围 (35)2.1一般要求 (35)2.2供货范围 (37)三、设计范围和设计联络会 (49)3.1概述 (49)3.2设计部分 (50)3.3设计接口界限 (52)3.4设计联络 (53)四、技术资料内容和交付进度 (55)4.1项目实施阶段的资料 (55)4.2调试后资料 (56)4.3投标方提供的资料份数 (56)五、项目交付进度 (58)5.1交货进度 (58)六、检验、试验和验收 (59)6.1概述 (59)6.2工厂检验及试验 (60)6.3现场检验和试验 (61)6.4验收试验(性能考核测试) (61)七、技术培训 (62)7.1培训要求 (62)7.2培训内容 (62)7.3培训计划 (62)八、现场技术服务与调试 (65)8.1技术服务 (65)8.2调试 (66)九、运行费用计算 (68)十、施工组织设计................................................................................................................ 错误!未定义书签。

一、技术规范1.1 总则本技术方案适用于滨州东力热电有限公司2×130t/h循环流化床锅炉的脱硝装置(SNCR)项目。

采用EPC总承包模式,提出了该系统的功能设计、结构、性能、安装和调试等方面的技术要求。

脱硝(SNCR)技术要求:(1) 本工程采用选择性非催化还原脱硝(SNCR)工艺。

锅炉脱硝方案设计1213

锅炉脱硝方案设计1213

合川盐化企业锅炉烟气脱硝方案1.设计条件1.1 项目概略现有82t/h循环流化床锅炉,当前锅炉NOx 排放浓度约为≦3400mg/Nm,为节能减排,现对该机组进行脱硝改造,将NOx排放浓3度降低到< 100mg/Nm。

本方案为 82t/h 循环流化床锅炉 SNCR烟气脱硝技术方案。

本方案对 SNCR系统的工艺流程,电气及控制方案,平面部署、设施配置、运行花费等内容都进行简要介绍。

1.2 工程地址企业热电厂房锅炉旁地区。

1.3 设计原则本项目的主要设计原则:(1)脱硝技术采纳 SNCR工艺。

(2)复原剂采纳尿素水解方案。

(3)控制系统使用 PLC独自控制。

3( 4)SNCR进口 NOx浓度为≦ 400mg/Nm,SNCR出口 NOx浓度≦3100mg/Nm,脱硝效率 75/90%。

(5)SNCR工艺 NH3逃逸量≤ 6ppm。

1.4 设计条件1.4.1 锅炉烟气参数序号项目名称单位数据1进口烟肚量3160000 m/h2脱硝前 NOx排放浓度3≦400 mg/Nm3脱硝后 NOx排放浓度3≦100 mg/Nm4炉膛温度℃850~950设施安装条件:主厂房室外安装;1)复原剂:以尿素水解为 10%浓度的氨水和高分子剂作为 SNCR 烟气脱硝系统的复原剂;2)主燃料:煤;3)运行方式:每日 24 小时连续运行;4)年累计工作时间:不小于 7200 小时;2.复原剂、工艺水、电源及压缩空气参数2.1 复原剂本方案采纳 10%浓度的尿素溶液。

2.2 工艺水作为尿素稀释剂的水应是拥有除盐水质量的融化水,而且知足以下条件,详见下表。

序号名称单位数据备注1pH 值6~ 92全硬度mmol/kg<33钙硬度( CaCO3)mmol/kg<2最好4全碱度mmol/kg<2最好 <0.2 mmol/kg 5铁mg/kg6电导率μ s/cm1-107杂质含量没有显然的污浊和悬浮固态物2.3 电源用于脱硝系统的电源,为AC380V和AC220±2%V、50±0.2Hz 、波形失真率 <5%的电源至设计界区。

SNCR-SCR脱硝系统设计与应用

SNCR-SCR脱硝系统设计与应用

SNCR-SCR脱硝系统设计与应用摘要广东某钢铁公司热电厂有1台蒸发量为85t/h的锅炉,为降低该钢铁公司热电厂氮氧化物排放,对该公司的锅炉加装SNCR-SCR脱硝系统,烟气经该系统处理后氮氧化物稳定达标排放。

关键词氮氧化物SNCR-SCR脱硝系统SummaryA steel company in Guangdong, has a thermal power plant 85t / h boiler evaporation, In order to reduce the emission of nitrogen oxides, the company decided to install the boiler SNCR-SCR denitrification system. The nitrogen oxide discharges stably after the flue gas treated by the system.KeywordNOXSNCR-SCR denitrification system1、项目概况广东某钢铁公司热电厂有1台蒸发量为85t/h的锅炉,烟气处理配套建有半干法循环流化床脱硫和布袋除尘设施,烟尘排放浓度小于0mg/Nm3,二氧化硫排放浓度小于550mg/Nm3,氮氧化物排放浓度约700mg/Nm3。

为降低该钢铁公司热电厂氮氧化物排放,需要对该公司的燃煤锅炉加装脱硝系统,以达到热电厂烟气氮氧化物排放浓度降至200mg/Nm3以下、降氮脱硝总效率不低于60%的目的。

该钢铁公司脱硝系统主要设计参数:锅炉排放烟气量:230000Nm3/h锅炉出口NOx排放浓度:≤700mg/Nm3脱硝效率:≥60%脱硝后NOx排度浓度:≤200mg/Nm3氨逃逸量:﹤5ppm2、工艺流程与工艺原理本项目采用SNCR (选择性非催化还原)-SCR(选择性催化还原)工艺,工艺流程图如下所示:SNCR-SCR脱硝工艺流程图1、SNCR脱硝工艺原理SNCR工艺是当烟气温度在850~1200 ℃时, 将氮还原剂(一般是氨或尿素) 喷入烟气中, 把NOX还原, 生成氮气和水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

×××公司3×10t/h+1×20 t/h水煤浆锅炉及3×5 t/h链条导热油炉+1×10t/h蒸汽链条炉烟气脱硝工程(SNCR法)xxx有限公司年月目录1 概述 (1)1.1 项目概况 (1)1.2 主要设计原则 (1)1.3 推荐设计方案 (1)2 锅炉基本特性 (2)3 本项目脱硝方案的选择 (3)4 工程设想 (4)4.1 系统概述 (4)4.2 工艺装备 (5)4.3 电气部分 (5)4.4 系统控制 (6)4.5 供货范围清单 (7)4.6 脱硝系统水、气、电等消耗 (11)4.7 脱硝系统占地情况 (11)5 工程实施条件和轮廓进度 (12)I1概述1.1项目概况现有3×10t/h+1×20 t/h水煤浆锅炉及3×5 t/h链条导热油炉+1×10t/h蒸汽链条炉,根据国家十二五期间对污染物减排的整体部署和要求,以及新的《锅炉大气污染物排放标准》 (GB 13271-2014),现拟对锅炉增设一套SNCR烟气脱硝装置,初步考虑氨区系统公用,硝区系统每炉各一套。

8台锅炉原始NOx排放浓度约900~1000 mg/Nm3,要求采用SNCR脱硝后NOx排放浓度小于400 mg/Nm3,脱硝效率需大于55%,采用20%氨水溶液作为还原剂。

1.2主要设计原则(1)脱硝设计效率应满足用户要求,并适用于目前国家排放标准和地方环保局的排放要求。

(2)采用的脱硝工艺应具有技术先进、成熟,设备可靠,性能价格比高,有处理燃煤锅炉烟气的商业运行业绩,且对锅炉工况有较好的适用性。

(3)脱硝系统应能持续稳定运行,系统的启停和正常运行应不影响主机组的安全运行。

(4)脱硝装置的可用率应≥98%,且维护工作量小,不影响电厂的文明生产;脱硝装置设计寿命按30年。

(5)脱硝工艺的选择应利于电厂的管理和降低运行管理费用。

1.3推荐设计方案(1) 采用SNCR法烟气脱硝技术;(2) 20%氨水溶液作为SNCR法烟气脱硝还原剂;(3) SNCR系统脱硝效率设计值不小于55%;(4) 充分考虑脱硝系统对送、引风机等设备性能的影响;(5) SNCR法脱硝装置的布置(包括平台、附属设备、支撑)不影响除尘器,但对有影响的相关设备布置适当调整;(6) 充分考虑现有空间和基础给脱硝装置;(7) NH逃逸量控制在8mg/Nm3以下。

32锅炉基本特性详见锅炉说明书3本项目脱硝方案的选择本项目为3×10t/h+1×20 t/h水煤浆锅炉及3×5 t/h链条导热油炉+1×10t/h蒸汽链条炉脱硝项目,原始NOx排放浓度约为1000mg/Nm3。

为满足最新实施的NOx排放要求,同时考虑到脱硝的经济性,推荐采用SNCR法脱硝工艺,脱硝后NOx排放浓度低于400mg/Nm3,实现达标排放。

SNCR脱硝工艺优点如下:(1)采用我公司专利技术,脱硝效率可达55%,确保NOx达标排放。

(2)脱硝系统运行灵活,调整余地大。

(3)投资省。

(4)占地小。

(5)对锅炉的运行影响较小。

(6)运行维护方便。

本项目SNCR烟气脱硝工艺方案设计参数如表3.1所列:表3.1 锅炉SNCR烟气脱硝方案工程设计参数4工程设想4.1系统概述以20%氨水溶液为还原剂进行SNCR工程方案设计时,整个SNCR系统包括还原剂溶液存储输送系统(氨区部分)及氨水溶液喷射系统(硝区部分)。

还原剂溶液存储输送系统包括氨水溶液储存系统、高流量循环装置及其电气/控制系统等;氨水溶液喷射系统包括计量与分配装置、氨水溶液喷枪及电气/控制系统等。

4.1.1 以氨水为还原剂的存储系统•氨水溶液储罐系统包括氨水溶液储罐及其附属设施。

氨水溶液储罐。

氨水溶液储罐设置1座,满足8台锅炉5天的用量。

储罐304制造。

溶液储罐规格为Φ3.8mx4.5m,V=50m3。

•高流量循环装置。

装置内设置有过滤器、2台氨水循环泵(1用1备)等。

氨水泵采用多级离心泵与背压控制阀相结合,以稳定循环回路内的氨水溶液压力。

•电气系统。

设置脱硝MCC电气柜以完成为各用电设备供电。

•控制系统。

设置独立的PLC系统,以实现对氨水储存系统设备的控制和操作界面。

该控制系统可按照要求与电厂辅机等系统通信连接。

4.1.2 氨水溶液喷射系统•计量与分配装置。

本工程为每台锅炉设置1台氨水溶液计量混合装置和1套氨水溶液分配装置。

锅炉喷射区的计量装置是一级装置,根据锅炉负荷、燃料、燃烧方式、NOx水平、脱硝效率等参数的变化,自动调节到锅炉每个喷射区的还原剂流量。

•氨水喷射器。

本工程拟在锅炉上墙式固定喷射器,具体位置及数量待详细设计时确定。

锅炉在不同负荷时反应剂喷射量,可由流体力学模型、动力学模型及物料平衡的计算获得,并通过前馈控制参数(锅炉负荷和蒸汽生产率、及炉内的温度)以及反馈控制参数(尾部烟道NOx和NH3浓度)来进行连续不断的调整,以达到要求的NOx 及NH3控制值。

•电气系统。

设置脱硝MCC电气柜,以完成为各用电设备供电。

•控制系统。

设置独立的PLC系统,以实现对氨水溶液计量喷射系统设备的控制和操作界面。

该控制系统可按照要求与电厂辅机等系统通信连接。

4.2工艺装备采用20%氨水(质量浓度)为还原剂进行SNCR工程方案设计,系统包括还原剂溶液存储系统、氨水溶液喷射系统2部分。

4.2.1 还原剂溶液储存系统采购20%氨水为锅炉脱硝系统提供所需的还原剂,氨水储存于氨水储罐内,通过高流量循环装置输送供应锅炉脱硝系统用氨水。

1)氨水储罐20%氨水储存系统按1台氨水储罐设计,氨水储罐总容量按1台锅炉5天用量设计,单台储罐体积为50m3。

储罐设置液位计、人孔、梯子、通风孔等。

2)高流量和压力循环控制系统氨水由高流量和压力循环系统输送给计量和分配装置,配置用于远程控制和监测循环系统压力等仪表。

压力控制回路可以调节高流量循环装置,为计量装置提供供应氨水所需的压力,以维持适当的流量和压力。

4.2.2 氨水溶液喷射系统该系统布置在炉区,用来将计量后的氨水按要求分配输送至喷射器,通过喷射器注入锅炉内部适当位置。

该系统主要由以下部件/装置组成:1)计量混合装置2)分配装置3)还原剂喷射器4.3电气部分本部分主要包括供配电系统和控制与保护两部分。

4.3.1供配电系统1)380/220V供电系统。

2)检修照明系统。

3)氨水储存区设置脱硝MCC柜,脱硝范围内用电设备由脱硝MCC柜供电。

4)脱硝氨水储存区域的正常照明电源取自氨水储存区MCC柜,炉区正常照明由现有炉区动力箱供电;SNCR区域和氨水区域的检修电源取自MCC。

4.3.2 控制与保护1)控制方式脱硝系统的电气设备纳入单元机组的PLC系统,不设常规控制屏。

所有低压空气断路器控制电压采用220V AC。

2)信号与测量380V低压所有开关的合闸、跳闸状态、事故跳闸、控制电源消失信号送仪表PLC系统。

所有电动机的合闸、跳闸状态、事故跳闸、控制电源消失。

电气量可送入脱硝PLC实现数据自动采集、定期打印制表、实时调阅、显示电气主接线、亊故自动记录及故障追忆等功能4.4系统控制4.4.1 控制系统概述本烟气脱硝系统还原剂的喷射通过前馈控制参数(锅炉负荷、温度)和反馈控制参数(出口NOx浓度、氨逃逸量)来进行连续不断的调整。

在保持NOx排放浓度(或脱硝效率)及NH3逃逸率小于设定值的条件下,根据前馈控制参数确定不同负荷时还原剂的喷射量,再以反馈控制参数来调整还原剂的喷射量。

当锅炉负荷、原始烟气中NOx浓度低于设定值等情况下,停止投加还原剂。

4.4.2 控制方式和水平本烟气脱硝装置的系统可直接纳入机组PLC控制系统,完成数据采集、顺序控制和调节控制功能。

脱硝控制系统建成后,可完成对脱硝系统的启/停控制、正常运行的监视和调整、以及异常与事故工况的处理和故障诊断。

脱硝控制包括氨水站公用系统、还原剂计量和分配等几部分,控制系统能够完成整个脱硝装置内所有的测量、监视、操作、自动控制、报警及保护和联锁、记录等功能。

4.4.3 氨水供应系统PLC控制系统要求PLC控制系统的可利用率达到99.9%。

其技术规范满足电力行业要求。

烟气脱硝控制系统如图4.1所示。

图4.4 SNCR烟气脱硝控制系统4.5供货范围清单本项目SNCR烟气脱硝系统主要设备供货范围如表4.2所列。

表4.1 SNCR烟气脱硝系统主要工艺电气设备供货一览表(共8台炉)表4.2 SNCR烟气脱硝系统主要热工设备供货一览表(共8台炉)4.6脱硝系统水、气、电等消耗脱硝系统主要消耗为还原剂、水、电、气等,本项目锅炉脱硝系统主要消耗情况如表4.2所列:表4.2 脱硝系统消耗指标4.7脱硝系统占地情况脱硝系统氨区占地面积约70m2。

4.8投资估算以下投资估算为8台炉脱硝装置总投资5工程实施条件和轮廓进度锅炉脱硝工程改造完成时间是在土建施工后40天内。

工程实施日程见下表:。

相关文档
最新文档