第六章复习 省优精品教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章平行四边形
教学目标:
1、能够熟练掌握平行四边形的判定和性质定理,并能够应用数学符号语言表述证明过程。

2、掌握三角形中位线的定义和性质,明确三角形中位线与中线的不同并能运用它进行有关的论证和计算。

3、掌握多边形内角和、外角和定理,进一步了解转化的数学思想。

教学重点:
会熟练应用所学定理进行证明。

体会证明中所运用的归类、类比、转化等数学思想,通过复习课对证明的必要性有进一步的认识。

教学难点:
学会对证明方法的总结,通过讨论交流,进一步发展学生的合作交流意识。

课时安排:一课时
教学过程:
本节课设计了五个教学环节:第一环节:教师和学生一起回顾本章的主要内容;第二环节:随堂练习,巩固提高;第三环节:回顾小结,共同提升;第四环节:分层作业,拓展延伸;第五环节:课后反思。

第一环节:教师和学生一起回顾本章的主要内容。

一、“平行四边形性质、平行四边形的判定定理”
内容:从边、角、对角线三个角度对平行四边形的性质、判定进行复习回顾。

学生用“问答”的形式带领其他学生将表格完成。

应用性质和判定完成例题:
例1.如图,在平行四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,且BE ∥DF 。

求证:BE =DF 。

教师在这里将这道题进行开放处理:
例2、 如图,在平行四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,连接DE 、BF ,_________,求证:四边形BEDF 是平行四边形。

由学生来填加适当的条件,使得命题成立并证明。

学生可以在证明的过程中找到针对条件最简单的判定定理。

二、“三角形的中位线” 内容:
这一章节中,除学习了平行四边形相关的性质和判定定理,还学习了三角形中位线的定义和性质定理。

所以,这个环节上,老师选取了学生总结出的几道比较有代表性的例题,帮助学生加深对定理理解,增强恰当应用定理的意识。

例3.如图2,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是( )
A.线段EF 的长逐渐增大
B.线段EF 的长逐渐减小
C.线段EF 的长不变
D.线段EF 的长与点P 的位置有关
解析:由三角形中位线定理可知线段EF 的长在P 点的运动过程中,EF 一定等于AR 的一半,又由于AR 的长不变,所以可做出正确的判断应选C.
D
R
P D
C
A
E
F
图2
例4. 如图3,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.请证明四边形EGFH 是平行四边形;
分析:(1)根据三角形中位线定理得GF ∥EC,
GF=21
EC=EH,一组对边平行且相等的四边形是平行
四边形,所以EGFH 是平行四边形.
证明:(1)在BEC △中,G F ,分别是BE BC ,的中点
GF EC ∴∥且
12GF EC =
又H 是EC 的中点,
1
2EH EC =

GF EH ∴∥且GF EH =
∴四边形EGFH 是平行四边形 三、“多边形的内角和与外角和公式”
多边形的内角和、外角和公式主要是多边形边数和内角度数之间的互化:由多边形的边数得内角的度数,由多边形的内角和的度数得变数。

所以,这个环节上,老师选取了学生总结出的几道比较有代表性的例题,帮助学生加深对定理理解,增强恰当应用定理的意识。

例5. 若一个多边形内角和为1800°,求该多边形的边数。

解:设这个多边形的边数为n ,则:
即该多边形为十二边形。

例6. 多边形的内角和与某一个外角的度数总和为1350°,求该多边形的边数。

分析:该外角的大小范围应该是
由此可得到该多边形内角和范围应该是
B
G
A E
F
H D
C
图3

4
,而
解1:设该多边形边数为n ,这个外角为x ° 则
因为n 为整数,所以必为整数。

即:必为180°的倍数。

又因为
,所以
解2:设该多边形边数为n ,这个外角为x 。


为整数,
则该多边形为九边形。

第二环节:随堂练习,巩固提高
1.七边形的内角和等于______度;一个n 边形的内角和为1800°,则n=________。

2.多边形的边数每增加一条,那么它的内角和就增加 。

3.从多边形的一个顶点可以画7条对角线,则这个n 边形的内角和为( ) A 1620° B 1800° C 900° D 1440°
4.一个多边形的各个内角都等于120°,它是( )边形。

5.小华想在2012年的元旦设计一个内角和是2012°的多边形做窗花装饰教室,他的想法( )实现。

(填“能”与“不能”)
6. 如图4,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD=30米,则AB=______米.
7. 以三角形的三个顶点及三边中点为顶点的平行四边形共有()
A.1个
B.2个
C.3个
D.4个
8. 如图5,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
求证:四边形AEFD是平行四边形;
图5
9. 已知:如图,在平行四边形ABCD中,E,F分别是AB,CD上的两点,且AE =CF,AF,DE相交于点M,BF,CE相交于点N.
求证:四边形EMFN是平行四边形.(要求不用三角形全等来证)
第三环节:回顾小结,共同提升
通过本节课的复习,你取得了哪些经验?(学生总结,老师补充)
学生踊跃发言,强调了学习定理的重要性;理解并掌握定理的必要性;要善于在生活中发现与数学有关的问题,并要认真分析思考,利用数学知识解决发现的问题;遇到新题时不能想当然,要谨慎思考,不要出现漏洞;数学其实也不难学,但是基础一定要夯实,然后要有信心不断提高,要适时巩固……
第四环节:作业
板书设计
教后反思:
第2课时一元一次不等式的应用
1.会在实际问题中寻找数量关系列一元一次不等式并求解; 2.能够列一元一次不等式解决实际问题.(重点,难点)
一、情境导入
如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠? 二、合作探究
探究点:一元一次不等式的应用 【类型一】 商品销售问题
某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折
销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?
解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x 折该商品获得的利润=该商品的标价×x 10-进价,即该商品获得的利润=180×x
10-120,列出不等
式,解得x 的值即可.
解:设可以打x 折出售此商品,由题意得:
180×x
10
-120≥120×20%,
解得x ≥8.
答:最多可以打8折出售此商品.
方法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.
【类型二】 竞赛积分问题
某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要
超过80分,他至少要答对多少道题?
解析:设小明答对x 道题,则答错或不答的题目为(25-x )道,根据得分要超过80分,列出不等关系求解即可.
解:设小明答对x 道题,则他答错或不答的题目为(25-x )道.根据他的得分要超过80分,得:
4x -2(25-x )>80,
解得x >212
3
.
因为x 应是整数而且不能超过25,所以小明至少要答对22道题.
答:小明至少要答对22道题.
方法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“至多”“至少”等.
【类型三】安全问题
采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域.导火
线燃烧速度是每秒1厘米,工人转移的速度是每秒5米,导火线至少要多少米?
解析:根据时间列不等式,导火线燃烧时间>工人要在爆破前转移到400米外的安全区域时间.
解:设导火线的长度需要x米,1厘米/秒=0.01米/秒,由题意得x
0.01>400
5,解得x>0.8.
答:导火线至少要0.8米.
【类型四】分段计费问题
小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不
超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?
解析:当每月用水5立方米时,花费5×1.8=9元,则可知小明家每月用水超过5立方米.设每月用水x立方米,则超出(x-5)立方米,根据题意超出部分每立方米收费2元,列一元一次不等式求解即可.
解:设小明家每月用水x立方米.
∵5×1.8=9<15,
∴小明家每月用水超过5立方米.
则超出(x-5)立方米,按每立方米2元收费,
列出不等式为5×1.8+(x-5)×2≥15,
解不等式得x≥8.
答:小明家每月用水量至少是8立方米.
方法总结:分段计费问题中的费用一般包括两个部分:基本部分的费用和超出部分的费用.根据费用之间的关系建立不等式求解即可.
【类型五】调配问题
有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入
0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?
解析:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.甲种蔬菜有3x亩,乙种蔬菜有2(10-x)亩.再列出不等式求解即可.
解:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.
根据题意得0.5×3x+0.8×2(10-x)≥15.6,
解得x≤4.
答:最多只能安排4人种甲种蔬菜.
方法总结:调配问题中,各项工作的人数之和等于总人数.
【类型六】方案决策问题
为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,
其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.
(1)(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案.
解析:(1)设购买污水处理设备A 型x 台,则B 型为(10-x )台,列出不等式求解即可,x 的值取整数;(2)如图表列出不等式求解,再根据x 的值选出最佳方案.
解:(1)设购买污水处理设备A 型x 台,则B 型为(10-x )台.
12x +10(10-x )≤105,解得x ≤2.5,∵x 取非负整数,∴x 可取0,1,2,
有三种购买方案:购A 型0台,B 型10台;A 型1台,B 型9台;A 型2台,B 型8台; (2)240x +200(10-x )≥2040,解得x ≥1, ∴x 为1或2.
当x =1时,购买资金为12×1+10×9=102(万元); 当x =2时,购买资金为12×2+10×8=104(万元). 答:为了节约资金,应选购A 型1台,B 型9台.
方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.
三、板书设计
应用一元一次不等式解决实际问题的步骤:
实际问题
――→找出不等关系
设未知数
列不等式―→解不等式―→
结合实际问题
确定答案
本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
3.1 图形的平移 第1课时 平移的认识
1.理解并掌握平移的定义及性质;(重点)
2.能够根据平移的性质进行简单的平移作图.
一、情境导入
观察下列图片,你能发现图中描绘的运动的共同点吗?
二、合作探究
探究点一:平移的定义
下列各组图形可以通过平移互相得到的是( )
A.
B.
C. D. 解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C ,故选C.
方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.
探究点二:平移的性质
【类型一】 利用平移的性质进行计算
如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1,若BC =32,△ABC 与
△A 1B 1C 1重叠部分面积为2,则BB 1等于( )
A .1 B. 2 C. 3 D .2
解析:设B 1C =2x ,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B 1C 边上的高为x ,∴1
2×x ×2x =2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC
-B 1C = 2.故选B.
方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.
【类型二】 平移性质的综合应用
如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段
BE 的距离,就得到此图形,下列结论正确的有( )
①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为
552
. A .1个 B .2个 C .3个 D .4个
解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =1

(8+5)×5=65
2
,错误.故选C.
方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.
探究点三:简单的平移作图
将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图
形.
解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.
解:
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.
三、板书设计 1.平移的定义
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.
2.平移的性质
一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.
3.简单的平移作图
教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.。

相关文档
最新文档