(必考题)初中九年级数学上册第二十五章《概率初步》经典测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.现有两道数学选择题,他们都是单选题,并且都含有A 、B 、C 、D 四个选项,瞎猜这两道题,这两道题恰好全部猜对的概率是( )
A .14
B .12
C .18
D .116
2.在不透明的布袋中,装有三个颜色分别为红色、白色、绿色的小球,所有小球除颜色外其他都相同,若分别从两个布袋中随机各取出一个小球,则所取出的两个小球颜色相同的概率是( )
A .13
B .12
C .23
D .1
3.下列说法中正确的是( )
A .“打开电视,正在播放《新闻联播》”是必然事件
B .“x 2<0(x 是实数)”是随机事件
C .掷一枚质地均匀的硬币10次,可能有5次正面向上
D .为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查
4.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下:
甲说:“第二组得第一,第四组得第三”;
乙说:“第一组得第四,第三组得第二”;
丙说:“第三组得第三,第四组得第一”;
赛后得知,三人各猜对一半,则冠军是( )
A .第一组
B .第二组
C .第三组
D .第四组 5.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( )
A .12
B .13
C .23
D .29
6.下列说法正确的是( )
A .调查舞水河的水质情况,采用抽样调查的方式
B .数据2.0,﹣2,1,3的中位数是﹣2
C .可能性是99%的事件在一次实验中一定会发生
D .从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生 7.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )
A.1
3
B.
4
15
C.
1
5
D.
2
15
8.从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()
A.1
5
B.
2
5
C.
3
5
D.
4
5
9.如图所示,小明、小刚利用两个转盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则()
A.公平B.对小明有利
C.对小刚有利D.公平性不可预测
10.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。
从袋中摸出4个球,下列属于必然事件的是()
A.摸出的4个球其中一个是绿球B.摸出的4个球其中一个是红球
C.摸出的4个球有一个绿球和一个红球D.摸出的4个球中没有红球
11.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()
A.1
6
B.
1
8
C.
1
12
D.
1
16
12.从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是( )
A.1
5
B.
2
5
C.
3
10
D.
4
5
13.下列事件:(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( )
A.0个B.1个C.2个D.3个
14.下列事件:①篮球队员在罚球线上投篮一次,未投中;②翻开八年级数学课本,恰好翻到第28页;③任取两个正整数,其和大于1;④长为3,5,9的三条线段能围成一个三角形.其中确定事件有()
A.1个B.2个C.3个D.4个
15.在四边形ABCD 中,从以下四个条件中:
①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( )
A .13
B .12
C .23
D .56
二、填空题
16.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上,且∠EOF =90°,随机地往图中投一粒米,则米粒落在图中阴影部分的概率是___________.
17.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.
18.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是________.
19.在一个不透明的口袋中有3个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在15%左右,则口袋中的白球大约有________个.
20.同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是____________
21.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球是黑球的概率为14
,那么袋中的红球有_________个. 22.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是_________.
23.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.
24.在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只
试估算口袋中再加入黑球______只,才能使摸出黑球的概率是1
3
?
25.从口号“我爱学习,学习使我妈快乐,我妈快乐,全家快乐”中随机抽取一个字,抽到“乐”字的概率是_______.
26.某种油菜籽在相同条件下的发芽试验结果如下表:
每批粒数n51070130310700150020003000发芽粒数m4960116282639133918062715
请用频率估计概率的方法来估计这批油菜籽在相同条件下的发芽概率是_______(精确到
0.01).
三、解答题
27.为贯彻落实全市城乡“清爽行动”暨生活垃圾分类攻坚大会精神,积极创建垃圾分类示范单位,我校举行了一次“垃圾分类”模拟活动. 我们将常见的生活垃圾分为四类:可回收垃圾、厨余垃圾、有害垃圾、其他垃圾,且应分别投放于4种不同颜色的对应垃圾桶中. 若在这次模拟活动中,某位同学将两种不同类型的垃圾先后随意投放于2种不同颜色的垃圾桶.
(1)请用列表或画树状图表示所有可能的结果数;
(2)求这位同学将两种不同类型的垃圾都正确投放的概率.
28.先后两次抛掷一枚质地均匀的骰子,第一次抛掷正面朝上的点数记为a,第二次掷正面朝上的点数记为b.
(1)求先后两次抛掷的点数之和为6的概率;
(2)求以(a,b)为点在直线y=-x+5上的概率;
29.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.
(1)若先从盒子里拿走m个黄球,这时从盒子里随机摸出一个球是黄球的事件为“随机事件”,则m的最大值为;
(2)若在盒子中再加入2个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,问n的值大约是多少?
30.在不透明箱里放有红、白、黄、蓝四种颜色球共16个,除颜色外都相同,其中白球5个,黄球4个.
(1)小军和小颖为争一个竞赛的名额,决定用摸球的方式来确定,从不透明箱里随机摸出1个球,是白球就小军去,是黄球,就小颖去.请问这个规则是否公平?并通过计算概率
说明理由.
(2)现每次从箱中任意摸出一个球记下颜色,再放回箱中,通过大量重复摸球实验后发现,摸到蓝球的频率稳定在25%,那么箱里大约有多少个红球?。