595芯片中文资料
595芯片的工作原理(二)

595芯片的工作原理(二)595芯片的工作原理什么是595芯片?595芯片,全名为74HC595移位寄存器芯片,是一种集成电路,常被用于扩展数字输出的IO口。
它具有串行输入、并行输出的特点,可用于驱动LED灯、数码管等外部设备。
串行输入与并行输出595芯片的串行输入和并行输出是其最重要的特征。
它可以通过SPI(串行外设接口)协议进行控制。
SPI协议是一种同步的全双工通信协议,利用时钟线(SCK)和数据线(MOSI)进行数据传输。
工作流程使用595芯片时,需要将数据写入串行输入寄存器(SI)中,然后通过时钟线(SCK)的上升沿脉冲,将数据移入移位寄存器(SR)。
当所有数据位都移入移位寄存器后,通过使锁存器时钟线(RCK)的上升沿脉冲,将移位寄存器的数据移入并行输出寄存器(PO)中。
最后,通过将移位寄存器清零,可以开始下一轮数据的传输。
引脚功能595芯片一般有16个引脚,其中重要的引脚包括:•Vcc:芯片供电正极;•GND:芯片地线;•OE:输出使能,控制数据在输出端口显示或关闭;•SRCLR:移位寄存器清零使能,用于将寄存器中的数据清零;•RCK:锁存器时钟,决定数据是否被移入并行输出寄存器。
应用实例595芯片的应用十分广泛,特别是在数字输出驱动方面。
以下是一些常见实例:1.控制LED灯:通过595芯片可以控制多个LED灯的亮灭、亮度等;2.驱动数码管:通过595芯片可以实现对多位数码管的显示控制;3.扩展输出端口:通过级联多个595芯片,可以扩展大量的数字输出端口。
总结595芯片是一种常用的数字输出扩展芯片,具有串行输入、并行输出的特点。
通过SPI协议进行数据的传输和控制,可以实现对LED 灯、数码管等设备的驱动。
其工作原理简单清晰,应用广泛。
74ls595芯片中文资料

74595外形图____QB--|1 16|--VccQC--|2 15|--QAQD--|3 14|--SIQE--|4 13|--/GQF--|5 12|--RCKQG--|6 11|--SCKQH--|7 10|--/SCLRGND-|8 9|--QH'|____|74595的数据端:QA--QH:八位并行输出端,可以直接控制数码管的8个段。
QH':级联输出端。
我将它接下一个595的SI端。
SI:串行数据输入端。
74595的控制端说明:/SCLR(10脚):低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
我通常都选微秒级)RCK(12脚):上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄存器数据不变。
通常我将RCK置为低点平,当移位结束后,在RCK端产生一个正脉冲(5V 时,大于几十纳秒就行了。
我通常都选微秒级),更新显示数据。
/G(13脚):高电平时禁止输出(高阻态)。
如果单片机的引脚不紧张,用一个引脚控制它,可以方便地产生闪烁和熄灭效果。
比通过数据端移位控制要省时省力。
注:74164和74595功能相仿,都是8位串行输入转并行输出移位寄存器。
74164的驱动电流(25mA)比74595(35mA)的要小,14脚封装,体积也小一些。
74595的主要优点是具有数据存储寄存器,在移位的过程中,输出端的数据可以保持不变。
这在串行速度慢的场合很有用处,数码管没有闪烁感。
与164只有数据清零端相比,595还多有输出端时能/禁止控制端,可以使输出为高阻态。
另外,据网上报价,贴片164每只1元钱,贴片5950.8元/只。
74HC595史上最全的中文资料【中为电科】

X X 注:
X X
H L L L
L H H H
X H X X
L Q6S NC Q6S
Z NC QnS QnS
清空移位寄存器,并行输出高阻态 移位寄存器数据分别移动一位; 第 6 位数据 移入 Q7S 移位寄存器的内容传给存储寄存器并输出 移位寄存器的所有数据移动一位; 移位寄存 器中的所有数据转入存储寄存器并输出
7. 8. 9. 10. 11. 12. 13.
1 / 15
科技效法自然 中为电科
74HC595;74HCT595
8 位串行输入,串行或并行输出移位寄存器,输出具有锁存、三态功能
1. 简介
74HC595、 74HCT595 是一款高速硅栅 (Si‐gate) COMS 器件, 并且与低压肖特基 TTL (LSTTL) 兼容。它们符合 JEDEC 7A 号文件标准。 74HC595、74HCT595 是一个 8 位串行并且带有存储寄存器和三态输出的移位寄存器, 存储寄存器和移位寄存器同步于不同的时钟。 数据在移位寄存器时钟(SHCP)的正跳变下移动,在存储寄存器时钟(STCP)的正跳 变下数据由移位寄存器转存到存储寄存器。假如 SHCP 和 STCP 被连在一起,移位寄存器将 总是超前于存储寄存器一个时钟脉冲。 移位寄存器有一个串行输入端(DS) ,还有一个用于级联的串行输出端。8 位移位寄存 器可以异步复位 (低电平复位) 。 存储寄存器有一个 8 位三态并行输出端。 当输出使能端 (OE) 被使能(低有效)数据将从存储寄存器中输出至器件引脚。
4 / 15
科技效法自然 中为电科
6. 引脚定义
6.1 引脚图
图 4 引脚定义 6.2 引脚描述 符号 Q1 Q2 Q3 Q4 Q5 Q6 Q7 GND Q7S MR SHCP STCP OE DS Q0 Vcc 引脚号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 地(0V) 数据串行输出 复位(低有效) 移位寄存器时钟(输入) 存储寄存器时钟(输入) 输出使能(低有效) 数据串行输入 数据并行输出 0 电源 数据并行输出 1 ~ 7 描述
74HC595完整中文资料

74HC595是8位串行输入/输出或者并行输出移位寄存器,具有 咼阻、关、断状态。
三态。特点8位串行输入8位串行或并行输出 存储状态寄存 器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能 力 并行输出,总线驱动 串行输出;
标准 中等规模集成电路应用 串行到并行的数据转换Remote c ontrol holding register.描述595是告诉的硅结构的CMO器件,
CPD决 定动态的能耗,PD=CPD< VCC< f1 +刀(CLXVCC2< f0) F 1=输入频率,。1=输出电容f0=输出频率(MHZ Vcc=电源电压 引脚说明符号引脚描述
内部结构
结合引脚说明就能很快理解595的工作情况
功能表:
管脚编号
管脚名
管脚定义功能
1、2、3、4、5、6、
7、15
QA—QH
2)74595的主要优点是具有数据存储寄存器,在移位的过程中,输出 端的数据可以保持不变。这在串行速度慢的场合很有用处,数码管没 有闪烁感。
与164只有数据清零端相比,595还多有输出端时能/禁止控制 端,可以使输出为高阻态。
3)595是串入并出带有锁存功能移位寄存器,它的使用方法很简单, 在正常使用时SCLR为高电平,G为低电平。从SER每输入一位数据, 串行输595是串入并出带有锁存功能移位寄存器,它的使用方法很简 单,如下面的真值表,在正常使用时SCLF为高电平,G为低电平。 从SER每输入一位数据,串行输入时钟SCK上升沿有效一次,直到八 位数据输入完毕,输出时钟上升沿有效一次,此时,输入的数据就被
送到了输出端。入时钟SCK上升沿有效一次,直到八位数据输入完毕, 输出时钟上升沿有效一次,此时,输入的数据就被送到了输出端。
HC595芯片的功能和应用

特点8位串行输入8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote control holding register.描述595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据符号参数条件TYP 单位HC HCttPHL/tPLH 传输延时SHcp到Q7’STcp到QnMR到Q7’CL=15pFVcc=5V161714 212019 NsNsfmax STcp到SHcp最大时钟速度10057 MHzCL 输入电容Notes 1 3.5 3.5 pFCPD Power dissipation capacitance per package. Notes2115 130 pFCPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0)F1=输入频率,CL=输出电容f0=输出频率(MHz)Vcc=电源电压引脚说明符号引脚描述Q0…Q7 15,1,7 并行数据输出GND 8 地Q7’ 9 串行数据输出MR 10 主复位(低电平)SHCP 11 移位寄存器时钟输入STCP 12 存储寄存器时钟输入OE 13 输出有效(低电平)DS 14 串行数据输入VCC 16 电源功能表输入输出功能SHCP STCP O E MR DS Q7’ Qn× × L ↓ × L NC MR为低电平时紧紧影响移位寄存器× ↑ L L × L L 空移位寄存器到输出寄存器× × H L × L Z 清空移位寄存器,并行输出为高阻状态↑ × L H H Q6’ NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
74hc595资料

74HC595芯片中文资料8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
特点8位串行输入8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote control holding register.描述595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据符号参数条件TYP单位HC HCtt PHL/t PLH传输延时SHcp到Q7’C L=15pFVcc=5V 161714212019NsNsNsC PD 决定动态的能耗,P D =C PD ×V CC ×f 1+∑(C L ×V CC 2×f 0)F 1=输入频率,C L =输出电容 f 0=输出频率(MHz ) Vcc=电源电压 引脚说明 符号 引脚 描述 Q0…Q7 15, 1, 7 并行数据输出 GND 8 地 Q7’ 9 串行数据输出 MR 10 主复位(低电平) SH CP 11 移位寄存器时钟输入 ST CP 12 存储寄存器时钟输入 OE 13 输出有效(低电平) D S 14 串行数据输入 V CC 16 电源 功能表输入 输出功能SH CP ST CP OE MR D S Q7’ Q n× × L ↓ × L NC MR 为低电平时紧紧影响移位寄存器× ↑ L L × L L 空移位寄存器到输出寄存器 × × H L × L Z 清空移位寄存器,并行输出为高阻状态↑ × L H H Q 6’ NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
4HC595完整中文资料

74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:管脚编号管脚名管脚定义功能1、2、3、4、5、6、7、15QA—QH 三态输出管脚8 GND 电源地9 SQH 串行数据输出管脚10 SCLR 移位寄存器清零端11 SCK 数据输入时钟线12 RCK 输出存储器锁存时钟线13 OE 输出使能14 SI 数据线15 VCC 电源端真值表:输入管脚输出管脚SI SCK SCLR RCK OEX X X X H QA—QH 输出高阻X X X X L QA—QH 输出有效值X X L X X 移位寄存器清零L 上沿H X X 移位寄存器存储LH 上沿H X X 移位寄存器存储HX 下沿H X X 移位寄存器状态保持X X X 上沿X 输出存储器锁存移位寄存器中的状态值X X X 下沿X 输出存储器状态保持74595的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
74HC595完整中文资料

74HC595芯片是一种串入并出的芯片, 在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/ 输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点8 位串行输入8 位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote c ontrol holding register. 描述595 是告诉的硅结构的CMOS器件,兼容低电压TTL 电路,遵守JEDEC标准。
595 是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在S Tcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7'), 和一个异步的低电平复位,存储寄存器有一个并行8 位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0) F 1=输入频率,CL=输出电容f0 =输出频率(MHz)Vcc= 电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解595 的工作情况功能表:真值表:74595 的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8 个段。
QH': 级联输出端。
我将它接下一个595的SI 端。
SI: 串行数据输入端。
74595 的控制端说明:/SRCLR(10脚): 低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH ;下降沿移位寄存器数据不变。
HC595完整中文资料

HC595完整中⽂资料74HC595芯⽚是⼀种串⼊并出的芯⽚,在电⼦显⽰屏制作当中有⼴泛的应⽤。
74HC595是8位串⾏输⼊/输出或者并⾏输出移位寄存器,具有⾼阻、关、断状态。
三态。
特点 8位串⾏输⼊ 8位串⾏或并⾏输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能⼒并⾏输出,总线驱动串⾏输出;标准中等规模集成电路应⽤串⾏到并⾏的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和⼀个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输⼊,在STcp 的上升沿进⼊的存储寄存器中去。
如果两个时钟连在⼀起,则移位寄存器总是⽐存储寄存器早⼀个脉冲。
移位寄存器有⼀个串⾏移位输⼊(Ds),和⼀个串⾏输出(Q7’),和⼀个异步的低电平复位,存储寄存器有⼀个并⾏8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输⼊频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的⼯作情况引脚功能表:真值表:1)74164和74595功能相仿,都是8位串⾏输⼊转并⾏输出移位寄存器。
74164的驱动电流(25mA)⽐74595(35mA)的要⼩,14脚封装,体积也⼩⼀些。
2)74595的主要优点是具有数据存储寄存器,在移位的过程中,输出端的数据可以保持不变。
这在串⾏速度慢的场合很有⽤处,数码管没有闪烁感。
与164只有数据清零端相⽐,595还多有输出端时能/禁⽌控制端,可以使输出为⾼阻态。
3)595是串⼊并出带有锁存功能移位寄存器,它的使⽤⽅法很简单,在正常使⽤时SCLR为⾼电平, G为低电平。
74HC595完整中文资料复习过程

74H C595完整中文资料74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在ST cp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:真值表:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
QH': 级联输出端。
我将它接下一个595的SI端。
SI: 串行数据输入端。
74595的控制端说明:/SRCLR(10脚): 低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
HC595-中文芯片手册

74H C595-中文芯片手册(总5
页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
74HC595
8位移位寄存器与输出锁存器
功能描述
这种高速移位寄存器采用先进的硅栅CMOS技术。
该装置具有高的抗干扰性和标准CMOS集成电路的低功率消耗,以及用于驱动15个LS-TTL负载的能力。
此装置包含馈送一个8位D型存储寄存器的8位串行入,并行出移位寄存器。
存储寄存器具有8 TRI-STATEÉ输出。
提供了用于两个移位寄存器和存储寄存器独立的时钟。
移位寄存器有直接首要明确,串行输入和串行输出(标准)引脚级联。
两个移位寄存器和存储寄存器的使用正边沿触发的时钟。
如果两个时钟被连接在一起时,移位寄存器的状态将总是提前存储寄存器的一个时钟脉冲。
该54HC/74HC逻辑系列就是速度,功能和引脚输出与标准54LS/74LS逻辑系列兼容。
所有输入免受损害,由于静电放电由内部二极管钳位到VCC和地面。
产品特点
1低静态电流:80 mA最大值(74HC系列)
2低输入电流为1mA最大
38位串行输入,并行出移位寄存器以存储
4宽工作电压范围:2V±6V 5级联
6移位寄存器直接明确
7保证移频率:DC至30兆赫。
74HC595完整中文资料

74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点8位串行输入8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote control holding register. 描述595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容f0=输出频率(MHz)Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解595的工作情况功能表:真值表:74595的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
QH': 级联输出端。
我将它接下一个595的SI端。
SI: 串行数据输入端。
74595的控制端说明:/SRCLR(10脚): 低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
595芯片中文资料

8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
特点8位串行输入,8位串行或并行输出,存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力,并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote control holding register.描述595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据符号参数条件 TYP 单位HC HCt ,tPHL/tPLH 传输延时,SHcp到Q7’,STcp到Qn,MR到Q7’,CL=15pF,Vcc=5V,16,17,14, 21,20,19 Ns,Ns,Ns,fmax STcp到SHcp 最大时钟速度100,57 MHz,CL 输入电容Notes 1 3.5 , 3.5 pFCPD Power dissipation capacitance per package. Notes2 115 130 pF,CPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0)F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述Q0…Q7 15, 1, 7 并行数据输出,GND 8 地,Q7’ 9 串行数据输出,MR 10 主复位(低电平),SHCP 11 移位寄存器时钟输入,STCP 12 存储寄存器时钟输入,OE 13 输出有效(低电平),DS 14 串行数据输入,VCC 16 电源功能表输入输出功能SHCP STCP OE MR DS Q7’ Qn× × L ↓ × L NC MR为低电平时紧紧影响移位寄存器× ↑ L L × L L 空移位寄存器到输出寄存器× × H L × L Z 清空移位寄存器,并行输出为高阻状态↑ × L H H Q6’ NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
74hc595中文资料

74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态.三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote control holding register。
描述 595是告诉的硅结构的CMOS器件, 兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f 0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况74HC595引脚图,管脚图________QB-—|1 16|——VccQC—-|2 15|--QAQD——|3 14|--SIQE—-|4 13|—-/GQF—-|5 12|--RCKQG--|6 11|—-SRCKQH-—|7 10|—-/SRCLRGND- |8 9|-—QH'|________|74595的数据端:QA—-QH: 八位并行输出端,可以直接控制数码管的8个段。
QH':级联输出端。
我将它接下一个595的SI端。
HC 595芯片资料

芯片资料特点8位串行输入8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote control holding register.描述595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q<?xml:namespace prefix = st1 />7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据符号参数条件 TYP 单位HC HCttPHL/tPLH 传输延时SHcp到Q7’STcp到QnMR到Q7’CL=15pFVcc=5V161714 212019 NsNsNs到SHcp最大时钟速度 10057 MHzCL 输入电容 Notes 1 3.5 3.5 pFCPD Power dissipation capacitance per package. Notes2 115 130 pFCPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0)F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述Q0…Q7 15, 1, 7 并行数据输出GND 8 地Q7’ 9 串行数据输出MR 10 主复位(低电平)SHCP 11 移位寄存器时钟输入STCP 12 存储寄存器时钟输入OE 13 输出有效(低电平)DS 14 串行数据输入VCC 16 电源功能表输入输出功能SHCP STCP OE MR DS Q7’ Qn为低电平时紧紧影响移位寄存器× ↑ L L × L L 空移位寄存器到输出寄存器× × H L × L Z 清空移位寄存器,并行输出为高阻状态↑ × L H H Q6’ NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
74HC595完整中文资料

74HC595是 8 位串行输入 / 输出或许并行输出移位寄存器,拥有高阻、关、断状态。
三态。
特色8 位串行输入8 位串行或并行输出储存状态寄存器,三种状态输出寄存器能够直接消除100MHz的移位频次输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据变换Remote control holding register. 描绘 595 是告诉的硅构造的 CMOS器件,兼容低电压 TTL 电路,恪守 JEDEC标准。
595 是拥有 8 位移位寄存器和一个储存器,三态输出功能。
移位寄存器和储存器是分其他时钟。
数据在 SCHcp的上涨沿输入,在 STcp 的上涨沿进入的储存寄存器中去。
假如两个时钟连在一同,则移位寄存器老是比储存寄存器早一个脉冲。
移位寄存器有一个串行移位输入( Ds),和一个串行输出( Q7’) , 和一个异步的低电平复位,储存寄存器有一个并行 8 位的,具备三态的总线输出,当使能 OE时(为低电平),储存寄存器的数据输出到总线。
CPD决定动向的能耗, PD=CPD×VCC×f1+ ∑(CL×VCC2×f0) F1 =输入频次, CL=输出电容 f0 =输出频次( MHz) Vcc= 电源电压引脚说明符号引脚描绘内部构造联合引脚说明就能很快理解595 的工作状况引脚功能表:管脚编号管脚名管脚定义功能1、2、3、4、5、6、7、QA— QH 三态输出管脚158 GND 电源地9 SQH 串行数据输出管脚10 SCLR 移位寄存器清零端11 SCK 数据输入时钟线12 RCK 输出储存器锁存时钟线13 OE 输出使能14 SI 数据线15 VCC 电源端真值表:输入管脚SI SCK SCLR RCK OE输出管脚X X X X H QA— QH 输出高阻X X X X L QA— QH 输出有效值X X L X X 移位寄存器清零L 上沿H X X 移位寄存器储存LH 上沿H X X 移位寄存器储存HX 下沿H X X 移位寄存器状态保持X X X 上沿X 输出储存器锁存移位寄存器中的状态值X X X 下沿X 输出储存器状态保持74595 的数据端:QA--QH: 八位并行输出端,能够直接控制数码管的8 个段。
74HC595完整中文资料

74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:真值表:SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
我通常都选微秒级)RCK(12脚):上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄存器数据不变。
(通常我将RCK置为低电平,) 当移位结束后,在RCK端产生一个正脉冲(5V时,大于几十纳秒就行了。
我通常都选微秒级),更新显示数据。
/G(13脚): 高电平时禁止输出(高阻态)。
如果单片机的引脚不紧张,用一个引脚控制它,可以方便地产生闪烁和熄灭效果。
595串转并芯片

595串转并芯片595串转并芯片是一种数字集成电路,常用于将串行信号转换为并行信号。
其常常被用于控制LED灯带等设备。
该芯片主要包含三个部分:输入寄存器、输出寄存器和控制逻辑。
输入寄存器接受串行数据输入,输出寄存器输出并行数据,控制逻辑则负责控制芯片的各项参数。
对于595芯片来说,它的输入端包括数据引脚(DS)、时钟引脚(SHCP)和锁存引脚(STCP)。
数据引脚接收串行数据,时钟引脚为时钟输入引脚,锁存引脚为锁存使能引脚。
时钟引脚在上升沿时,数据引脚所接收到的数据会被送入芯片的数据寄存器中,同时锁存引脚置高时,输出寄存器会将数据寄存器中的数据输出。
595芯片的常规应用是控制LED灯带。
在LED灯带的驱动中,需要通过芯片将要显示的图案以二进制的形式输入进去,然后通过输出引脚将数据输出到LED灯带的控制芯片中。
下面就介绍一下595芯片的使用方法:1. 连接电路首先,需要将595芯片与其他器件连接。
595芯片有16个脚,它们分别是:- DS (Data Serial Input):串行数据输入引脚- SHCP (Shift Register Clock Input):数据移位时钟输入引脚- STCP (Storage Register Clock Input):存储时钟输入引脚- OE (Output Enable):输出使能引脚- MR (Master Reset):复位输入引脚- Q0~Q7 (Serial Output or Parallel Output):并行输出引脚将SHCP和STCP连接到控制器的GPIO中,OE接地或控制高低电平可开启或关闭输出使能状态。
MR也可以接地或者控制高低电平,若需要执行清除操作,需要将MR端口置高再置低。
2. 代码实现对于使用Arduino进行调制的实现,首先需要定义对应引脚号,然后通过下面代码实现数据的读入和移位://样例代码//定义引脚号#define DS_pin 2 // Serial data input pin#define STCP_pin 3 // Shift register latch pin#define SHCP_pin 4 // Shift register clock pin#define OE_pin 5 // Output enable pin// 其他定义const byte Num_Leds = 8;byte Led_Data;// 初始化引脚void setup() {pinMode(DS_pin, OUTPUT);pinMode(STCP_pin, OUTPUT);pinMode(SHCP_pin, OUTPUT);pinMode(OE_pin, OUTPUT);digitalWrite(OE_pin, LOW);}// 发送数据到芯片void Write_Byte(byte Data) {for (byte i = 0; i < 8; i++) {digitalWrite(SHCP_pin, LOW);digitalWrite(DS_pin, ((Data << i) & 0x80) ? HIGH : LOW); digitalWrite(SHCP_pin, HIGH);}digitalWrite(STCP_pin, LOW);digitalWrite(STCP_pin, HIGH);}// 主函数void loop() {Led_Data = 0x55;Write_Byte(Led_Data);delay(1000);}在这段代码中,我们将DS_pin和SHCP_pin、STCP_pin、OE_pin分别绑定,然后定义变量Led_Data,它表示我们将要将哪些LED灯点亮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
特点
8位串行输入,8位串行或并行输出,存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力,并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换
Remote control holding register.
描述
595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据
符号参数条件 TYP 单位
HC HCt ,tPHL/tPLH 传输延时,SHcp到Q7’,STcp到Qn,MR到Q7’,CL=15pF,Vcc=5V,16,17,14, 21,20,19 Ns,Ns,Ns,fmax STcp到SHcp 最大时钟速度100,57 MHz,CL 输入电容Notes 1 3.5 , 3.5 pF
CPD Power dissipation capacitance per package. Notes2 115 130 pF,CPD决定动态的能耗,
PD=CPD×VCC×f1+∑(CL×VCC2×f0)
F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压
引脚说明
符号引脚描述
Q0…Q7 15, 1, 7 并行数据输出,GND 8 地,Q7’ 9 串行数据输出,MR 10 主复位(低电平),SHCP 11 移位寄存器时钟输入,STCP 12 存储寄存器时钟输入,OE 13 输出有效(低电平),DS 14 串行数据输入,VCC 16 电源功能表
输入输出功能
SHCP STCP OE MR DS Q7’ Qn
× × L ↓ × L NC MR为低电平时紧紧影响移位寄存器
× ↑ L L × L L 空移位寄存器到输出寄存器
× × H L × L Z 清空移位寄存器,并行输出为高阻状态
↑ × L H H Q6’ NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
× ↑ L H × NC Qn’ 移位寄存器的内容到达保持寄存器并从并口输出↑ ↑ L H × Q6’ Qn’ 移位寄存器内容移入,先前的移位寄存器的内容到达保持寄存器并输出。
H=高电平状态
L=低电平状态
↑=上升沿
↓=下降沿
Z=高阻
NC=无变化
×=无效
当MR为高电平,OE为低电平时,数据在SHCP上升沿进入移位寄存器,在STCP上升沿输出到并行端口。
/*************************************************************** ************************/
给个74HC595的"慢动作"
void WriteSIOByte(unsigned char val)
{
unsigned char i;
ACC = val;
for (i = 8; i > 0; i --) {
SRCLK = 0;//拉低74HC595时钟
_rrca_();//右移一位数据
SER = CY;//发送74HC595一位串行数据
SRCLK = 1;//拉高74HC595时钟
_nop_();//延时
}
SER = 1;//释放数据总线
//以下3条指令若在多字节时,应该移入多字节全发送完后在执行此3条指令
RCLK = 0;
_nop_();//延时
RCLK = 1;//打入并行数据
}
74ls595"速射"
hotpower
for(i = 0; i < buffsize; i ++){
SBUF = siobuff;
while(TI == 0);
TI = 0;
}
RCLK = 0;
_nop_();//延时
RCLK = 1;//打入并行数据
/*************************************************************** *********/
利用74HC595实现多位LED显示的新方法
摘要:本文介绍了应用移位寄存器芯片74HC595实现LED动、静态显示的基本原理。
提出了一种用74HC595实现多位LED显示的新方法。
同时对该系统的硬件组成和软件实现作了详细说明。
实际应用表明,此方法连线简单方便,成本低廉,可用于24位LED或更多位LED显示。
关键词:LED 74HC595 动态显示静态显示
1 引言
单片机应用系统中使用的显示器主要有LED和LCD两种。
近年来也有用CRT显示的。
前者价格低廉,配置灵活,与单片机接口方便;后者可进行图形显示,但接口较复杂,成本也较高。
LED(Ling Emiting Diode)是发光二极管的缩写。
实际应用非常普遍的是八段LED显示器。
LED显示器在大型报时屏幕,
银行利率显示,城市霓虹灯建设中,得到广泛应用。
在这些需要多位LED显示的场合,怎样实现系统稳定,价格低廉的显示,成为决定其成本的关键所在。
2 74HC595实现LED静、动态显示基本原理
74HC595是美国国家半导体公司生产的通用移位寄存器芯片。
并行输出端具有输出锁存功能。
与单片机连接简单方便,只须三个I/O口即可。
而且通过芯片的Q7引脚和SER引脚,可以级联。
而且价格低廉,每片单价为1.5元左右.
2.1 静态显示
每位LED显示器段选线和74HC595的并行输出端相连,每一位可以独立显示(见图1)。
在同一时间里,每一位显示的字符可以各不相同(每一位由一个74HC595的并行输出口控制段选码)。
N位LED显示要求N个74HC595芯片及N+3条I/O口线,占用资源较多,而且成本较高。
这对于多位LED显示很不利。
2.2 动态显示
在多位LED显示时,为了简化电路,降低成本,节省系统资源,将所有的N位段选码并联在一起,由一片74HC595控制(见图2)。
由于所有LED的段选码皆由一个74HC595并行输出口控制,因此,在每一瞬间,N位LED会显示相同的字符。
想要每位显示不同的字符,就必须采用扫描的方法,即在每一瞬间只使用一位显示字符。
在此瞬间,74HC595并行输出口输出相应字符段选码,而位选则控制I/O口在该显示位送入选通电平,以保证该位显示相应字符。
如此轮流,使每位分时显示该位应显示字符。
由于74HC595具有锁存功能,而且串行输入段选码需要一定时间,因此,不需要延时,即可形成视觉暂留效果。
N位LED显示时,只需要一片74HC595即可完成,成本最低。
但是,此种方法的最大弱点就是当LED的位数大于12位时,出现闪烁现象,这是所有动态LED显示方式共同的弱点。
3 多位LED显示方法的实现
图3 多位LED动态显示驱动电路连线图
为实现24位或更多位LED显示,本文提出了一种全新的方法。
此方法结合了动态和静态显示的优点,可以说是两者的结合。
连线图如图3所示。
段选码由三片74HC595控制,段选数据由74HC595的SER引脚串行输入,由于输出使能时钟RCLK并接在一起,因此,三片74HC595并行输出端同时输出。
而三个LED位选信号也并接在一起,因此,一次可以同时点亮三位LED。
此过程类
似于静态显示。
每片74HC595并行输出端并接8位LED,用于扫描输出,此过程类似于动态扫描过程。
此方法运用3片74HC595,n条位选信号,即可实现3n 位LED显示。
成本低廉,而且节省资源。
此种方法实现多位LED显示程序框图为图4所示,MCU为89S52。
示例程序如下(24位LED显示):
4 结论
实践证明,此多位LED显示方法性能稳定,如再级联一片74HC595,在不需要增加I/O口线的情况下,即可实现32位LED显示。
笔者做过48位LED 显示,应稳定可靠。