基于用户心理行为的云制造知识服务优选决策
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Optimal Decision-Making for Cloud Manufacturing Knowledge Service Based on User’s Psychological Behavior YIN Chao1, TANG Liming1, LI Xiaobin2
1.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China 2.School of Economics and Business Administration, Chongqing University, Chongqing 400044, China
Abstract:In order to improve the selection quality of knowledge service in cloud manufacturing environment, a cloud manufacturing knowledge service optimization method based on user’s psychological behavior is proposed. Based on the analysis of cloud manufacturing knowledge service characteristics, the optimization evaluation index system of cloud manufacturing knowledge service is set up. The rough set theory is used to assign initial weights to each evaluation index, and the initial weights are adjusted according to the multiple- attribute preferences of user’ s to ensure the rationality of weight distribution. On this basis, combining with the users psychological behavior analysis in the decision-making process and regret theory, the perceived value matrix of cloud manufacturing knowledge service is constructed, and the comprehensive perceived value of each knowledge service is calculated by integrating the above index weights to obtain the optimal cloud manufacturing knowledge service. Finally, an application example is used to verify the effectiveness and practicality of this method. Key words:cloud manufacturing; knowledge service; regret aversion; psychological behavior; multiple-attribute preference
尹超,唐力明,李孝斌 . 基于用户心理行为的云制造知识服务优选决策 . 计算机工程与应用,2019,55(21):66-73. YIN Chao, TANG Liming, LI Xiaobin. Optimal decision-making for cloud manufacturing knowledge service based on user’s psychological behavior. Computer Engineering and Applications, 2019, 55(21):66-73.
1 引言
云制造(Cloud Manufacturing,CMfg)是一种面向服
务和基于知识的网络化、敏捷化制造新模式 [1],其融合 现有信息技术、云计算[2]、物联网[3]等先进技术,将优化整
基金项目:国家自然科学基金(No.51875065);国家高技术研究发展计划(863)(No.2015AA042102);中国博士后基金(No.2017M622975)。 作者简介:尹超(1974—),男,博士,教授,研究领域为云制造,网络化制造及制造系统工程;唐力明(1992—),男,在读硕士,研究
66 2019,55(21)
Computer Engineering and Applica于用户心理行为的云制造知识服务优选决策
尹 超 1,唐力明 1,李孝斌 2 1. 重庆大学 机械传动国家重点实验室,重庆 400044 2. 重庆大学 经济与工商管理学院,重庆 400044
摘 要:为提高云制造环境下知识服务的选择质量,提出一种基于用户心理行为的云制造知识服务优选决策方法。 基于云制造知识服务的特性分析,建立云制造知识服务优选评价指标体系 ;运用粗糙集理论,对各评价指标进行初 始权重分配,并根据用户多属性偏好对初始权重进行调整,以确保权重分配的合理性 ;在此基础上,结合用户在决策 过程中的心理行为分析和后悔理论 ,构建云制造知识服务的感知价值矩阵 ,并计算各知识服务的综合感知价值 ,以 获得最优云制造知识服务。通过一个应用实例,验证此方法的有效性和实用性。 关键词:云制造 ;知识服务 ;后悔规避 ;心理行为 ;多属性偏好 文献标志码:A 中图分类号:TH166;TP391 doi:10.3778/j.issn.1002-8331.1901-0069
1.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China 2.School of Economics and Business Administration, Chongqing University, Chongqing 400044, China
Abstract:In order to improve the selection quality of knowledge service in cloud manufacturing environment, a cloud manufacturing knowledge service optimization method based on user’s psychological behavior is proposed. Based on the analysis of cloud manufacturing knowledge service characteristics, the optimization evaluation index system of cloud manufacturing knowledge service is set up. The rough set theory is used to assign initial weights to each evaluation index, and the initial weights are adjusted according to the multiple- attribute preferences of user’ s to ensure the rationality of weight distribution. On this basis, combining with the users psychological behavior analysis in the decision-making process and regret theory, the perceived value matrix of cloud manufacturing knowledge service is constructed, and the comprehensive perceived value of each knowledge service is calculated by integrating the above index weights to obtain the optimal cloud manufacturing knowledge service. Finally, an application example is used to verify the effectiveness and practicality of this method. Key words:cloud manufacturing; knowledge service; regret aversion; psychological behavior; multiple-attribute preference
尹超,唐力明,李孝斌 . 基于用户心理行为的云制造知识服务优选决策 . 计算机工程与应用,2019,55(21):66-73. YIN Chao, TANG Liming, LI Xiaobin. Optimal decision-making for cloud manufacturing knowledge service based on user’s psychological behavior. Computer Engineering and Applications, 2019, 55(21):66-73.
1 引言
云制造(Cloud Manufacturing,CMfg)是一种面向服
务和基于知识的网络化、敏捷化制造新模式 [1],其融合 现有信息技术、云计算[2]、物联网[3]等先进技术,将优化整
基金项目:国家自然科学基金(No.51875065);国家高技术研究发展计划(863)(No.2015AA042102);中国博士后基金(No.2017M622975)。 作者简介:尹超(1974—),男,博士,教授,研究领域为云制造,网络化制造及制造系统工程;唐力明(1992—),男,在读硕士,研究
66 2019,55(21)
Computer Engineering and Applica于用户心理行为的云制造知识服务优选决策
尹 超 1,唐力明 1,李孝斌 2 1. 重庆大学 机械传动国家重点实验室,重庆 400044 2. 重庆大学 经济与工商管理学院,重庆 400044
摘 要:为提高云制造环境下知识服务的选择质量,提出一种基于用户心理行为的云制造知识服务优选决策方法。 基于云制造知识服务的特性分析,建立云制造知识服务优选评价指标体系 ;运用粗糙集理论,对各评价指标进行初 始权重分配,并根据用户多属性偏好对初始权重进行调整,以确保权重分配的合理性 ;在此基础上,结合用户在决策 过程中的心理行为分析和后悔理论 ,构建云制造知识服务的感知价值矩阵 ,并计算各知识服务的综合感知价值 ,以 获得最优云制造知识服务。通过一个应用实例,验证此方法的有效性和实用性。 关键词:云制造 ;知识服务 ;后悔规避 ;心理行为 ;多属性偏好 文献标志码:A 中图分类号:TH166;TP391 doi:10.3778/j.issn.1002-8331.1901-0069