方差齐性检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但是,方差齐性检验也可以在 F 检验结果为多个样本所属总体平均数差异显著的情况下进行,因为 F 检验之后,如果多个样本所属总体平均数差异不显著,就不必再进行方差齐性检验。
Levene 方差齐性检验也称为Levene 检验(Levene's Test). 由H.Levene 在1960 年提出
[1] .M.B.Brown 和A.B.Forsythe 在1974年对Levene 检验进行了扩展[2], 使对原始数据的数据转换不但可以使用数据与算术平均数的绝对差, 也可以使用数据与中位数和调整均数(trimmed mean) 的绝对差. 这就使得Levene 检验的用途更加广泛.Levene 检验主要用于检验两个或两个以上样本间的方差是否齐性. 要求样本为随机样本且相互独立. 国内常见的Bartlett 多样本方差齐性检验主要用于正态分布的资料,对于非正态分布的数据, 检验效果不理想.Levene 检验既可以用于正态分布的资料, 也可以用于非正态分布的资料或分布不明的资料, 其检验效果比较理想.
方差分析的条件之一为方差齐,即各总体方差相等。
因此在方差分析之前,应首先检验各样本的方差是否具有齐性。
常用方差齐性检验( test for homogeneity of variance )推断各总体方差是否相等。
本节将介绍多个样本的方差齐性检验,本法由Bartlett 于1937 年提出,称Bartlett 法。
该检验方法所计算的统计量服从分布。
用自由度查界值表,若值大于等于界值,则P值小于等于相应的概率,反之,P值大于相应
的概率。
如果未经校正的值小于界值,则校正后的值更小,可不必再计算校正值。
J J
例5.7对照组、A降脂药组、B降脂药组和C降脂药组家兔的血清胆固醇含量 (mmol/L)的均数分别为5.845 、2.853 、2.972 和1.768 ,方差分别为5.941、2.370 、0.517 和0.581 ,样本含量分别为6、6、 6 和7,问四样本的方差是否齐同?
J J
本例自由度为,查界值表,得0.025>P>0.01 ,按=0.05水准拒绝H0,接受H1,可以认为四总
体方差不同或不全相同。
两个独立样本的方差齐性检验
例: 某市初中毕业班进行了一次数学考试, 为了比较该市毕业班男女生成绩的离散程度, 从男生中抽出一个样本, 容量为31, 从女考生中也抽出一个样本, 容量为21. 男女生成绩的方差分别为49和36, 请问男女生成绩的离散程度是否一致
解:1. 提出假设
2. 选择检验统计量并计算其值
3. 统计决断查附表3,
得F(19,19)0.05=2.04
F=1.340.05, 即男女生成绩的差异没有达到显著性差异. 两个相关样本的方差齐性检验例子:教科书164 页.
综合应用
例 1 :某省在高考后,为了分析男,女考生对语文学习上的差异,随机抽取了各20名男,女考生的语文成绩,并且计算得到男生平均成绩=54.6, 标准差=16.9, 女生的平均成绩=59.7, 标准差=10.4, 试分析男, 女考生语文高考成绩是否有显著差异
解: 先进行方差齐性检验: 1. 提出假设
2. 计算检验的统计量
3. 统计决断查附表3,
得F(19,19)0.05=2.16
F=2.64>F(19,19)0.05=2.16,p<0.05, 即方差不齐性.
然后,进行平均数差异的显著性检验:
1. 提出假设
2. 计算检验的统计量
3. 确定检验形式
双侧检验
4. 统计决断
1.120.05
所以,要保留零假设,即男,女考生语文高考成绩无显著差异.
例2: 为了对某门课的教学方法进行改革, 某大学对各方面情况相似的两个班进行教改实验, 甲班32人,采用教师面授的教学方法,乙班25人,采用教师讲授要点,学生讨论的方法.一学期后,用统一试卷对两个班学生进行测验,得到以下结果:甲班平均成绩=80.3, 标准差=11.9, 乙
班平均成绩=86.7, 标准差=10.2, 试问两种教学方法的效果是否有显著性差异
解: 先进行方差齐性检验:
1. 提出假设
2. 计算检验的统计量
3. 统计决断查附表3,
得F(31,24)0.05=1.94
F=1.350.05, 即方差齐性.
然后,进行平均数差异的显著性检验:
1. 提出假设
2. 计算检验的统计量
3. 确定检验形式
双侧检验
4. 统计决断
当df=55 时,
t=2.105>2.009,P<0.05
所以,要在0.05 的显著性水平上零假设,即两种教学方法的效果有显著性差异.
哪位高手能帮我解释一下方差和SPSS?
问题补充:先对数据进行方差齐次性检验,必要时,对数据进行反正弦平方根转换。
根据实验的要求分别进行单因素、双因素和三因素方差分析(ANOVA) 。
在满足方差齐性的情况下,采用Tukey 检验进行多重比较;方差非齐的情况下,采用Dunnett 's T3 检验进行多重比较,
确定哪些处理间的差异达到显著水平。
方差是用来比较两组数据的整齐程度,例如,两人打靶,各有一组成绩,且平均分相同,那么谁的成绩好呢?
用方差比较一下,数值小的成绩稳定。
其实在excel 中的分析工具里,也可以进行方差和t 校验的分析。
问题:我用spss 做出的结果如下:
1. 在Levene's Test for Equality of Variances 一栏中F 值为
2.36, Sig. 为.128 是不是就应该看第一排的数据?是不是说明没有显著差异呢?
2. 在t-test for Equality of Means 中的Sig. (2-tailed) 里, 两排都是.000 第一排的其它数据
为:t=8.892,df=84,Mean Difference=22.99
3. 到底看哪个Levene's Test for Equality of Variances 一栏中sig, 还是看t-test for Equality of Means 中那个Sig. (2-tailed) 啊?我得出的这个结果倒底是显著不显著呢?
4. 还有最后一个问题, 我做的是T 检验为什么会有F 值呢?
最佳答案
t 检验过程,是对两样本均数(mean) 差别的显著性进行检验。
惟t 检验须知道两个总体的方
差(Variances) 是否相等;t 检验值的计算会因方差是否相等而有所不同。
也就是说,t 检验须视乎方差齐性(Equality of Variances)结果。
所以,SPSS在进行t-test for Equality of Mea ns 的同时,也要做Leve ne's Test for Equality of Varia nces 。
1.
在Levene's Test for Equality of Variances 一栏中 F 值为 2.36, Sig. 为.128 ,表示方差
齐性检验「没有显著差异」,即两方差齐(Equal Variances) ,故下面t 检验的结果表中要看第一排的数据,亦即方差齐的情况下的t 检验的结果。
2.
在t-test for Equality of Means 中,第一排(Variances=Equal) 的情况:t=8.892, df=84, 2-Tail
Sig=.000, Mean Difference=22.99
既然Sig=.000 ,亦即,两样本均数差别有显著性意义!
3.
到底看哪个Levene's Test for Equality of Variances 一栏中sig, 还是看t-test for Equality of Means 中那个Sig. (2-tailed) 啊?
答案是:两个都要看。
先看Levene's Test for Equality of Variances ,如果方差齐性检验「没有显著差异」,即
两方差齐(Equal Variances) ,故接著的t 检验的结果表中要看第一排的数据,亦即方差齐的情况下的t 检验的结果。
反之,如果方差齐性检验「有显著差异」,即两方差不齐(Unequal Variances) ,故接著的t 检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t 检验的结果。
4.
你做的是T检验,为什么会有F值呢?
就是因为要评估两个总体的方差(Variances) 是否相等,要做Levene's Test for Equality of Variances ,要检验方差,故所以就有F 值。
1. 方差分析的概念
方差分析(ANOVA又称变异数分析或F检验,其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析和两因素方差分析即配伍组设计的方差分析。
2. 方差分析的基本思想
下面我们用一个简单的例子来说明方差分析的基本思想:
如某克山病区测得11 例克山病患者和13 名健康人的血磷值(mmol/L )如下,
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
问该地克山病患者与健康人的血磷值是否不同?
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:
(1)组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;
(2)组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。
而且:SS总=SS组间+SS组内v总=v组间+v组内
如果用均方MS(离均差平方和SS/自由度v,)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,
则说明各组均数间的差异没有统计学意义,若 F 值远大于 1 ,则说明各组均数间的差异有统计学意义。
实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方
差分析用)获得。
3. 方差分析的应用条件
应用方差分析对资料进行统计推断之前应注意其使用条件,包括:
1)可比性,若资料中各组均数本身不具可比性则不适用方差分析。
(2)正态性,即偏态分布资料不适用方差分析。
对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。
(3)方差齐性,即若组间方差不齐则不适用方差分析。
多个方差的齐性检验可用Bartlett
法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。
二、方差分析的主要内容根据资料设计类型的不同,有以下两种方差分析的方法:
1. 对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。
2. 对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。
两类
方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解
为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,
总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。
整个方差分析的基本步骤如下:
(1)建立检验假设;
H0:多个样本总体均数相等。
H1:多个样本总体均数不相等或不全等。
检验水准为0.05 。
(2)计算检验统计量 F 值;
(3)确定P 值并作出推断结果。
三、多个样本均数的两两比较经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。
若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。
1. 多个样本均数间两两比较
多个样本均数间两两比较常用q 检验的方法,即Newman-kueuls 法,其基本步骤为:
建立检验假设--> 样本均数排序--> 计算q值--> 查q界值表判断结果。
2. 多个实验组与一个对照组均数间两两比较多个实验组与一个对照组均数间两两比较,若目的是减小第II 类错误,最好选用最小显著差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q' 界值表
egg1022 请问老师,我们做作业时可以用计算机做方差齐性的检验,那考试中呢?默认为齐性吗?还需再说明吗?
medista 一般根据样本方差来判断,如果样本方差相差不大,一般不用做方差齐性检验。
而如果样本方差相差比较大(比如相差 3 倍以上)时,则要怀疑方差不齐,需要进行总体方差齐性检验。
用SPSS故时,自动给出方差齐性检验;考试的时候,可以根据实际资料判断。
egg1022 请问老师,(1)假如S仁1 S2=3.5,我是否可以这样说:因为S2〉3S1,所以
认为两样本方差不齐,故应用近似t 检验。
(2)两方差相差 3 倍是否就是通常所用的判断标准?谢谢老师:)
medista 不是这样的。
(1)我们比较的样本方差,而不是标准差。
你举的例子,样本方差已经相差
12倍以上了。
(2) 3 倍只是个例子,说明样本方差相差比较大而已(就象我们教材上所说的样本量n>60为大样本一样),只起提示作用。
并没有定理说明样本方差相差 3 倍以上总体方差就不齐。
总体方差是否齐性,还需要进行检验。
切记切记比如你举的例子,样本方差相差很大,提示总体方差不齐,要进行检验。
严格来说,方差齐不齐,都需要进行检验。
egg1022 老师,(1)那假如说考试中两样本方差相差很大,提示总体方差不齐,没有计算机,怎么行检验呢?(2)假设检验中要求样本服从正态分布的,可为何例题(哪怕是小样本)不作正态分析呢?(3)在我看的一篇文献中,作者把受试对象分为 4 组,分别进行配对检验,为何他 a 取值不一致呢?有的组用0.05 ,有的用0.01 ,这样可以吗?呵呵,问题有点多,谢谢老师!
medista (1)不要总盯着考试,老师们知道那时候没有计算机,也不能查表,不会让你为难。
(2)“假设检验中要求样本服从正态分布”?要严谨,同学!本章只讲t 检验,只说t 检验的
条件。
注意,是要求“总体”服从正态分布,这里还要注意是哪种t 检验,要求哪个总体是
正态的。
比如配对t 检验要求差值的总体服从正态分布,两样本t 检验要求相应的两总体服从正态分布。
至于书上为什么不进行正态性检验,我想应该是为了编教材方便,默认总体是正态的吧,汗一个
~~~~~~
(3)没见到文献不便发表意见,呵呵。
至于为什么检验水准不一,如果是同一类数据,同一个
指标,采用不同的检验水平,估计作者是根据P值然后才确定的alhpa,你别学他就好了。
杂志中存在的统计问题太多,注意别被误导。
方差齐性检验的原理:
除了对两个研究总体的总体平均数的差异进行显著性检验以外,我们还需要对两个独立样本所属总体的总体方差的差异进行显著性检验,统计学上称为方差齐性(相等)检验。
对两个研究总体进行总体方差齐性的显著性检验,同两个总体平均数差异的显著性检验的步骤一样。
首先提出两个总体方差没有差异的零假设,即,和备择假设。
然后从两个研究总体中各抽取容量分别为两个样本,通过比较两个样本方差之间的差异,来推断两个总体方差之间的差异。
对于两个样本方差的比较,采用的是比商的方法,因为统计学家已经证明的比值的抽样分布服从 F 分布,记为:J J
F 分布有两个自由度,称为分子的自由度,称为分母的自由度,把称为F 统计量。
图5.2 为F 分布的曲线图。
F 分布的形态随F 比值分子和分母中自由度的变化而形成一簇正偏态分布的曲线。
各种自由度组合所形成的理论 F 值,可以查 F 值表,见附表4。
表的最上端横行表示 F 比值中分子的自由度,最左端纵列表示分母的自由度,附表 3 (1)、3 (2)表示a =0.05的显著性水平的F临界值,附表3(3)、3(4)表示a =0.01的显著性水平的F临界值。
F 值表只列有右侧临界值,所以在计算F 统计量的值时,必须将样本方差较大的一个作分子,较小的一个作分母,使得F± 1, (LXK查书后注:表上有:分子v1是较大均方的自由度,分
母v2是较小均方的自由度)以便可以同F值表中的临界值进行比较并作出决断:如果通过计
算得到的 F 值大于临界值,就拒绝零假设;如果通过计算得到的 F 值小于临界值,就接受零假设。
在进行One Way ANOVA寸若出现方差齐性不满足时,一般来说可以进行数据变换后再进行方差分析。
在SPSS 中进行方差分析时,Tamhane's T2 等方法不用假定方差相等(Equal Variances Not Assumed ),可以用。
其实这种情况下选非参数方法可能更好一些。
至于删除一些数据,在统计学中有一些剔除异常值的方法可用,但正如楚鱼所说“那些零值显然不是异常值——明显偏离变量范围的值,是没有理由删除的” 。
可行的选择也许是仔细分析你的数据,找到引起不齐的原因(这一点你已找到了)及其生态学的意义。
分析之后也许会发现,可能有更好的方法可以解决问题。
统计分析的目的是为了解决问题或发现问题,而不是一定要用某个方法分析数据
单因素方差分析中,方差不齐,是不是就得用非参数检验?怎么做事后比较呢
方差不齐只能说明差异不一定是由自变量造成的,因为方差分析的假设是变源都来自所有自变量,然后再细分哪 1 个影响较大而已,既然不符合此前提,你应该查看样本是否太小、无关变量是否控制好了,其实齐不齐自己知道行了,只是检验力度不太够,不用告诉别人,至于非参数检验总体是否正态分布、样本容量多大等都无需考虑!至于用哪种自己决定!
以前上统计课时,老师曾讲过,方差分析的前题之一是各组间的方差相等。
但是我发现在的
SPSS统计学软件上one-way ANOVA方差分析项的post Hoc test 分别有二选项:1.假设方差齐时有一系列的分析方法可选。
2. 假设方差不齐时又有一系列的分析方法可选。
因此我就疑惑了:是否方差不齐的多样本均数比较也能用SPSS进行one-way ANOVA方差分析??如果可以的话,这不就与经典的统计学书上相矛盾了吗?
答案:
方法一,把means土SD范围外的数据剔除。
方法二,把数据进行转换后进行多重比较,如转为log10 。
选择适当的转换形式,直到齐性检验变为不显著。
实际操作中对方差齐性等适用条件的把握:
1. 单因素方差分析:根据BOX的研究结果,在单因素方差分析中,如果各组的例数相同(即均衡), 或总体呈正态分布, 则方差分析模型对方差略微不齐有一定的耐受力, 只要最大与最小方差之比小于3,分析结果都是稳定的
2. 单元格内无重复数据的方差分析分析:以配伍设计的方差分析最为典型,此时不需要考虑正态性和方差齐性问题,原因在于正态性和方差齐性的考察是以单元格为基本单位的,此时每个格子中只有一个元素,当然没法分析了. 除配伍设计的方差分析外,交叉设计,正交设计等也可以出现无重复数据的情况.但必须指出,这里只是因条件不足,无法考察适用条件,而不是说可以完全忽视这两个问题. 如果根据专业知识认为可能在不同单元格内正态性,方差齐性有问题则应当避免使
用这种无重复数据的设计方案.
3. 有重复数据的多因素方差分析:由于正态性,方差齐性的考察以单元格为基本单位,此时单
元格数目往往很多,平均每个单元格内的样本粒数实际上比较少。
此时实际上很难检验出差别;另一方面,也可能只是因为极个别单元格方差不齐而单质检验不能通过。
根据实际经验,实际在多因素方差分析中,极端值的影响远远大于方差齐性等问题的影响,因此实际分析中可以直接考察因变量的分布情况,如果数据分布不是明显偏态,不存在极端值,而一般而言方差齐性和正态齐性不会有太大问题,而且也可以基本保证单元格内无极端值. 因此在多因素方差分析中,方差齐性往往只限于理论讨论,但对于较重要的研究,则建模后的残差分析是非常重要的。