电缆阻抗及特性阻抗一般疑问

合集下载

详细了解电缆的特性阻抗

详细了解电缆的特性阻抗

详细了解电缆的特性阻抗术语音频:人耳可以听到的低频信号。

范围在20-20kHz。

视频:用来传诵图象的高频信号。

图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。

射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。

射频的范围要宽很多,10k-3THz(1T=1024G)。

电缆的阻抗本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。

如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。

什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。

什么是电缆的阻抗,什么时候用到它?首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。

当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。

这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。

在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的?电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。

(伏特/米)/(安培/米)=欧姆欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。

如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。

所以特性阻抗由下面的公式定义:Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。

所以特性阻抗公式可以被写成后面这个形式:其中R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆j=只是个符号,指明本项有一个+90'的相位角(虚数)π=3.1416L=单位长度电缆的电感量c=单位长度电缆的电容量注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。

电缆阻抗知识

电缆阻抗知识

电缆的阻抗(Impedance):其电缆中的R、L、C造成电气阻力计算公式如下:z÷⨯+=πRf)L(2C也可用下列公式计算对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。

介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米电缆的阻抗什么是电缆的阻抗,什么时候用到它?首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。

当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。

这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。

在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的?电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。

(伏特/米)/(安培/米)=欧姆欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。

如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。

所以特性阻抗由下面的公式定义:Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。

所以特性阻抗公式可以被写成后面这个形式:其中R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆j=只是个符号,指明本项有一个+90'的相位角(虚数)π=3.1416L=单位长度电缆的电感量c=单位长度电缆的电容量注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。

从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。

同轴电缆的特性阻抗计算

同轴电缆的特性阻抗计算

同轴电缆的特性阻抗计算同轴电缆特性阻抗拉普拉斯方程矩形网格同轴电缆的横截面可以看做是两个同心圆。

外圆半径为2,内圆半径为1。

外圆上的电势为1,内圆上的电势为0。

我们依据这些条件,通过编写matlab程序来计算出同轴缆线的特性阻抗。

首先介绍一下计算中所用到的物理学公式。

特性阻抗的公式为如下所示,C 为电容,C0为光速。

由这两个公式,我们可将求解阻抗的问题转化为求解电量的问题。

此时我们可以使用高斯公式。

为了处理截面上的问题,我们将面积分化为线积分。

本次计算过程中编程采用的方法是逐次超松弛迭代法。

先将同轴电缆的截面按矩形网格进行划分。

由于同轴电缆截面具有对称性,为了缩短程序运行时间,我们可以先计算四分之一截面内的电位分布。

电位的迭代公式如下。

由于这个程序采用矩形网格来处理圆的问题,所以处理精度和处理速度都没有采用极坐标处理理想。

如果希望得到跟极坐标情况下同样误差的结果,则需要耗费更多的计算时间。

图一为基本算法。

图二、图三、图四分别是将代误差率为百万分之一时的特性阻抗、电势分布图和电场分布图。

在文章的最后附有程序的代码。

建立一个所有元素均是nan的矩阵U在U中将1/4个圆环离散化(圆环所包括的点取0)将所有点的c1 c2 c3c4分别存入四个与U同维的矩阵C1 C2C3 C4中U(i,j)=0时上下左右是否有nan有没有U(i,j)为边界点计算c1 c2 c3 c4中不等于1的值U(i,j)不为边界c1=c2=c3=c4=1将边界上的电势值和C1 C2 C3 C4带入迭代公式开始反复迭代矩阵U若干次迭代后便得出在四分之一个圆环内的电势分布图一图二图三图四程序代码:clcclear all;ticr1=2;r2=1;n=.01;c=299792458;%err=8.854e-12;wuchalv=.0001;x=-r1:n:r1;y=r1:-n:-r1;l=length(x);dones=ones((l+1)/2);dlens=n*dones;dianwei_1=NaN((l+1)/2);[X,Y]=meshgrid(x,y);for i=1:(l+1)/2for j=1:(l+1)/2if X(i,j)^2+Y(i,j)^2<=4&&X(i,j)^2+Y(i,j)^2>=1dianwei_1(i,j)=0;elseendendenddianwei_2=isnan(dianwei_1);len3=dlens;for i=1:(l+1)/2for j=1:(l+1)/2-1if dianwei_2(i,j)==1&&dianwei_2(i,j+1)==0len3(i,j+1)=abs(abs(sqrt(r1^2-Y(i,j+1)^2))-abs(X(i,j+1)));elseendendendlen3((l+1)/2,1)=0;len2=len3';len1=dlens;for i=1:(l+1)/2for j=1:(l+1)/2-1if dianwei_2(i,j)==0&&dianwei_2(i,j+1)==1len1(i,j)=abs(abs(sqrt(r2^2-Y(i,j)^2))-abs(X(i,j)));elseendendendlen4=len1';c1=len1./n;c2=len2./n;c3=len3./n;c4=len4./n;dianwei_3=[dianwei_1 dianwei_1(:,(l+1)/2);dianwei_1((l+1)/2,:) NaN]; dianwei_4=dianwei_3;dianwei_5=dianwei_3;maxerl=1;en=1;while maxerl>=0for i=1:(l+1)/2for j=1:(l+1)/2if c1(i,j)==1&&c2(i,j)==0&&c3(i,j)==0&&c4(i,j)==1dianwei_3(i,j)=1;elseifc1(i,j)==1&&c2(i,j)<1&&c2(i,j)>0&&c3(i,j)==0&&c4(i,j)==1dianwei_3(i,j)=1;elseifc1(i,j)==1&&c3(i,j)<1&&c3(i,j)>0&&c2(i,j)==0&&c4(i,j)==1dianwei_3(i,j)=1;elseif c1(i,j)==0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)==0dianwei_3(i,j)=0;elseifc1(i,j)==0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)<1&&c4(i,j)>0dianwei_3(i,j)=0;elseifc1(i,j)<1&&c1(i,j)>0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)==0dianwei_3(i,j)=0;endendendfor i=2:(l+1)/2forj=2:(l+1)/2 %c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i,j +1)+c1(i,j)*dianwei_3(i,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+(( c4(i,j)*dianwei_3(i-1,j)+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*( c2(i,j)+c4(i,j)))))/((c1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));ifc1(i,j)==1&&c2(i,j)==1&&c3(i,j)<1&&c3(i,j)>0&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)*dianwei _3(i-1,j)+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j) ))))/((c1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)==1&&c2(i,j)<1&&c2(i,j)>0&&c3(i,j)==1&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j)*dianwei_3(i,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+ ((c4(i,j)+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j) ))))/((c1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)<1&&c1(i,j)>0&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c1(i,j)*dianwei_3(i ,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)*dianwei_3(i-1,j )+c2(i,j)*dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c 1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)==1&&c2(i,j)==1&&c3(i,j)==1&&c4(i,j)<1&&c4(i,j)>0dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j)*dianwei_3(i,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+ ((c4(i,j)*dianwei_3(i-1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c 1(i,j)*c3(i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)==1&&c2(i,j)<1&&c2(i,j)>0&&c3(i,j)<1&&c3(i,j)>0&&c4(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c3(i,j)*dianwei_3(i ,j+1)+c1(i,j))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)+c2(i,j) *dianwei_3(i+1,j))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c1(i,j)*c3 (i,j))+(c2(i,j)*c4(i,j)));elseifc1(i,j)<1&&c1(i,j)>0&&c4(i,j)<1&&c4(i,j)>0&&c2(i,j)==1&&c3(i,j)==1dianwei_4(i,j)=c1(i,j)*c2(i,j)*c3(i,j)*c4(i,j)*(((c1(i,j)*dianwei_3(i ,j-1))/(c1(i,j)*c3(i,j)*(c1(i,j)+c3(i,j))))+((c4(i,j)*dianwei_3(i-1,j ))/(c2(i,j)*c4(i,j)*(c2(i,j)+c4(i,j)))))/((c1(i,j)*c3(i,j))+(c2(i,j)* c4(i,j)));elseif c1(i,j)==c2(i,j)==c3(i,j)==c4(i,j)dianwei_4(i,j)=0.25*(dianwei_3(i-1,j)+dianwei_3(i+1,j)+dianwei_3(i,j+ 1)+dianwei_3(i,j-1));endendenddianwei_4((l+1)/2+1,:)=dianwei_3((l+1)/2-1,:);dianwei_4(:,(l+1)/2+1)=dianwei_3(:,(l+1)/2-1);dianwei_5=dianwei_4;dianwei_4=dianwei_3;dianwei_3=dianwei_5;er=abs(dianwei_3-dianwei_4);maxer=max(max(er));[q,w]=find(er==maxer);e=length(q);erl=zeros(1,e);for o=1:eerl(1,o)=er(q(o),w(o))-(wuchalv)*dianwei_3(q(o),w(o));endmaxerl=max(max(erl));for i=2:(l-1)/2p(i-1)=(dianwei_3(i-1,i-1)-dianwei_3(i,i))/(n*sqrt(2))*2*pi*(2-(i-1)* n)*sqrt(2);endk1=1;for k=1:(l-1)/2-1if ~isnan(p(k))==1Q(k1)=p(k);k1=k1+1;endendQ1=mean(Q');for i=2:(l-1)/4p1(i)=(dianwei_3((l+1)/2,i-1)-dianwei_3((l+1)/2,i))/(n)*2*pi*(2-(i-1) *n);endP1=mean(p1');R1=[Q1 P1];dianrong=mean(R1)*err;Z(en)=1/(c*dianrong);en=en+1;endplot(Z);hold onM=1/c/(2*pi*err/log(r1/r2));plot(M*ones(1,length(Z)),'-r');xlabel('迭代次数');ylabel('特性阻抗');text(1000,M,'理论值')hold offdianwei_6_1=fliplr(dianwei_3);dianwei_6_2=dianwei_3;dianwei_6_3=flipud(dianwei_3);dianwei_6_4=fliplr(dianwei_6_3);figure(2)dianwei_6=[dianwei_6_2(1:(l+1)/2,1:(l+1)/2)dianwei_6_1(1:(l+1)/2,3:(l+1)/2+1);dianwei_6_3(3:(l+1)/2+1,1:(l+1)/2) dianwei_6_4(3:(l+1)/2+1,3:(l+1)/2+1)];contourf(X,Y,dianwei_6);figure(3)[cc ch]=contour(X,Y,dianwei_6,15);clabel(cc);hold on[FX,FY]=gradient(dianwei_6,1,-1);quiver(X(1:20:401,1:20:401),Y(1:20:401,1:20:401),-FX(1:20:401,1:20:40 1),-FY(1:20:401,1:20:401));hold offtoc个人总结a) 本次作业的主要目的是练习一下用计算机处理FDM 。

电缆阻抗介绍

电缆阻抗介绍

电缆阻抗介绍全部读完,先总结几点有用的(不是电子专业的,用词可能不太准确):1、阻抗是高频信号通过电缆时,电容和电感的反应。

这个用万用表无法测出。

2、阻抗是由线材(包括接头)材料和形状决定的,不随长度变化。

3、阻抗不匹配,会导致信号发生发射,衰减信号甚至产生再反射信号干扰。

电缆的阻抗术语音频:人耳可以听到的低频信号。

范围在20-20kHz。

视频:用来传诵图象的高频信号。

图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。

射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。

射频的范围要宽很多,10k-3THz(1T=1024G)。

本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。

如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。

什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。

什么是电缆的阻抗,什么时候用到它?首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。

当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。

这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。

在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的?电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。

(伏特/米)/(安培/米)=欧姆欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。

如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。

所以特性阻抗由下面的公式定义:Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。

电缆的电抗和阻抗计算

电缆的电抗和阻抗计算

电缆的电抗和阻抗计算
电缆是电力传输和信号传输中常用的导线,其电抗和阻抗的计算对于电力系统的设计和电路的分析非常重要。

本文将介绍电缆电抗和阻抗的计算方法及其应用。

首先,我们来了解一下电抗和阻抗的概念。

电抗是指电缆对交流电的阻碍程度,可以分为电感抗和电容抗。

电感抗是指电缆对电流变化的反应,主要由电感引起;电容抗是指电缆对电压变化的反应,主要由电容引起。

阻抗是指电缆对交流电的总体阻碍程度,包括电阻和电抗。

对于计算电缆的电感抗,我们可以使用下面的公式:
XL=2πfL
其中,XL表示电感抗,f表示频率,L表示电感。

对于计算电缆的电容抗,我们可以使用下面的公式:
XC=1/(2πfC)
其中,XC表示电容抗,f表示频率,C表示电容。

在计算电缆的总电抗时,我们需要考虑电感抗和电容抗的综合影响。

可以使用下面的公式计算电缆的总电抗:
Z=√(R^2+(XL-XC)^2)
其中,Z表示电缆的总电抗,R表示电缆的电阻,XL表示电感抗,XC表示电容抗。

通过计算电缆的电抗和阻抗,我们可以评估电缆在交流电路中的性能和稳定性。

在电力系统设计中,合理计算电缆的电抗和阻抗有助于保证电缆的传输效率和稳定性。

在电路分析中,我们可以根据电缆的电抗和阻抗来预测电路的响应和特性。

总之,电缆的电抗和阻抗计算是电力系统设计和电路分析中的重要内容。

通过合理计算电缆的电抗和阻抗,我们可以评估电缆的性能和稳定性,保证电力传输和信号传输的有效性。

这对于提高电力系统的运行效率和电路分析的准确性具有重要意义。

特性阻抗 ( 简介 )

特性阻抗 ( 简介 )

特性阻抗假设一根完美电缆无限延伸,在发射端的频率阻抗称为 "特性阻抗"。

测量特性阻抗时,可在电缆的另一端用特性阻抗的等值电阻终接,其测量结果会跟输入信号的频率有关.. 特性阻抗的测量单位为奥姆(Ohm or Ω).在高频率一路提高时, 特性阻抗会渐近于固定值. 例如同轴线将会是50或75奥姆. 而对绞线(用于电话及网络通讯)将会是100奥姆(在高于1MHz时).远端串音串音是. 远程串音是在远程测量对绞线的输入端及接收间的噪声强度. 串音的单位是分贝(decibel or dB). 当电缆是由多对芯线组成时, 不同对绞线的组合也需要测量.衰减当信号由发生品通过电缆, 电线制品或其它零件到逹接收器前都会被减弱. 衰减便是测量这减弱的大小. 而这是信号强度在输入点和接收点的比例. 单位会是分贝(decibel or dB).近端串音近端串音是由近端测量输入端及接收间的噪声. 远程串音是在远程测量两对绞线的结果. 串音的单位是dB 当电缆是由多对芯线组成时, 不同对绞线组合也需要测量.延时为信号由导体的近端到逹远程的时间. 单位是十亿分之一秒(nanosecond or ns)电缆内所.有信号对都需加以测量延时差是指信号通过不同对线到逹时间的差异, 单位同样是十亿分之一秒. 而这经常是由延时结果中经常分析及计算得出回授损失回授损失是指待测物(电缆, 讯号源, 接收器或其它)的阻抗与标准阻抗的差距比 (这代表了讯)号反射的强度, 完美的匹配Return Loss Return Loss是无限大反应时间 (频宽)反应时间是测试对绞线或平衡在线的分差讯号(包括测试设备), 当数字讯号讯达到100%或0%这两个最高及最低点的时候, 在半时钟传输数字讯号会为喻为1及0来的.当我们使用TDR来测试反应时间时候, 应将时段的幅度调整得较为傻化, 这在测读取数据时更为准确. 在一般测试里头都是设定为20%及80%的幅度及波型平均化后来得出更稳定的数字.。

如何理解阻抗的概念

如何理解阻抗的概念

如何理解阻抗的概念阻抗(Impedance)是电学的一个重要概念,用来描述电路对交流电的阻碍程度。

阻抗由两个部分组成:电阻(Resistive)和电抗(Reactive)。

电阻是电流通过元件时产生的能量损耗,而电抗则是电流通过元件时产生的能量储存或释放。

阻抗的概念可以从以下几个方面来理解:1. 阻抗与电阻的区别:电阻是直流电路的特性,描述电流通过物质时产生的热损耗,单位为欧姆(Ω)。

而阻抗是交流电路的特性,描述电路对交流电的阻碍程度,既包含了电阻的特性,也包括了电感和电容的影响。

阻抗的单位为欧姆(Ω),但通常在复数形式下表示,其实部分表示电阻,虚部分表示电抗。

2. 阻抗与电抗的关系:电抗是电路对交流电的阻碍程度的一种量度,包括了电感和电容的影响。

电感产生的阻碍称为感抗(Inductive reactance),其大小与电感元件的感值和角频率成正比。

电感的特性是在电流改变时会产生电磁感应,由于电感自身磁场的作用,电流变化需要消耗或释放能量,从而产生感抗。

电感元件的感抗的计算公式为:XL = 2πfL,其中,XL为感抗值,f为角频率,L为电感的感值。

对于电容而言,电容产生的阻碍称为容抗(Capacitive reactance),其大小与电容元件的容值和角频率成反比。

电容的特性是在电流变化时会储存或释放电荷,从而产生容抗。

电容元件的容抗的计算公式为:XC = 1 / (2πfC),其中,XC为容抗值,f为角频率,C为电容的容值。

电感和电容的阻抗在交流电路中起到了影响电流和电压相位关系的作用。

3. 阻抗与复数的表示:阻抗用复数表示,复数的实部表示电阻,虚部表示电抗,具体是通过欧姆定律在复平面上的应用来表示。

例如,一个电路的阻抗为Z = R + jX,其中R为电阻,X为电抗,j表示虚数单位。

复数形式的阻抗表示方式可以方便地计算和分析电路的特性,包括电流和电压的相位差、功率因数等。

4. 阻抗的概念在电路分析和设计中的应用:阻抗的概念在电路分析和设计中具有重要作用。

什么是特性阻抗特性阻抗的说明

什么是特性阻抗特性阻抗的说明

什么是特性阻抗特性阻抗的说明特性阻抗又称特征阻抗,它不是直流电阻,属于长线传输中的概念。

那么你对特性阻抗了解多少呢?以下是由店铺整理关于什么是特性阻抗的内容,希望大家喜欢!特性阻抗的简介在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个电流I,而如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大小为V/I,把这个等效的电阻称为传输线的特性阻抗Z。

信号在传输的过程中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。

影响特性阻抗的因素有:介电常数、介质厚度、线宽、铜箔厚度。

特性阻抗的类比说明现象类比:运输线的糟糕路况(类似传输线里的特性阻抗)会影响运输车队的速度,路越窄,路的阻碍作用越大(特性阻抗大,通过的无线电波能量就小);路越宽、路况越好,通过的车队速度越快(通过的无线电波能量越多)。

假若一段路况特别好,另一段路况特别差,从路况好的路段进入差的路段,车队就需要放慢速度。

这就说明两段路的路况不匹配(阻抗不匹配)。

特性阻抗是射频传输线影响无线电波电压、电流的幅值和相位变化的固有特性,等于各处的电压与电流的比值,用表示。

在射频电路中,电阻、电容、电感都会阻碍交变电流的流动,合称阻抗。

电阻是吸收电磁能量的,理想电容和电感不消耗电磁能量。

阻抗合起来影响无线电波电压、电流的幅值和相位。

同轴电缆的特性阻抗和导体内、外直径大小及导体间介质的介电常数有关,而与工作频率传输线所接的射频器件以及传输线长短无关。

也就是说,射频传输线各处的电压和电流的比值是一定的,特征阻抗是不变的。

目前无线通信系统射频器件有两种特性阻抗,一种是50W,用于军用微波、GSM、WCDMA等系统;另一种是75W,用于有线电视系统,一般应用较少。

特性阻抗的测量方法测量特性阻抗时,可在电缆的另一端用特性阻抗的等值电阻终接,其测量结果会跟输入信号的频率有关。

电线电缆高频性能定义 及生产工艺对其的影响

电线电缆高频性能定义 及生产工艺对其的影响

电线电缆高频性能1.特性阻抗2.衰减3.回波损耗4.VSWR5.串音6.延时7.延时差8.转移阻抗9.屏蔽效应同轴线影响阻抗的因素﹕介电常数﹔绝缘线径﹔导体线径。

1) 介电常数是材料本身固有的﹐不同的材料具有不同的介电常数。

可通过发泡度的大小来改变介电常数的大小﹐即发泡度增大—介电常数减小—阻抗增大﹔发泡度不均匀—介电常数不均匀—阻抗不均匀。

2) 绝缘线径﹕绝缘线径增大—阻抗增大﹔绝缘线径不均匀—阻抗不均匀。

3) 导体线径: 导体线径增大—阻抗减小﹔导体线径不均匀—阻抗不均匀。

设计改善:阻抗偏小,加大线径或加大发泡度工艺改善:水中电容调小,对绞时注意防止芯线变形,同轴编织时注意张力调节等.•对绞线•影响阻抗的因素﹕•介电常数﹔绝缘线径﹔导体线径﹔对绞节距﹔绕包松紧(对屏蔽)﹔成缆节距﹔成缆包带松紧﹔编织的松紧﹔外被的松紧。

•1) 发泡度:发泡度增大—介电常数减小—阻抗增大﹔发泡度不均匀—介电常数不均匀—阻抗不均匀。

•2) 绝缘线径﹕绝缘线径增大—阻抗增大﹔绝缘线径不均匀—阻抗不均匀。

•3) 导体线径: 导体线径减小—阻抗增大。

•4)对绞节距﹕•a)非屏蔽线对﹕对绞节距减小—阻抗减小﹔•b)屏蔽线对﹕对绞节距增大—阻抗减小﹔•5) 绕包﹕绕包张力大—铝箔紧—阻抗小。

•6) 成缆节距(非对屏蔽)﹕成缆节距减小—阻抗减小。

•7) 成缆包带(非对屏蔽) ﹕成缆包带紧—阻抗减小。

•8) 编织的松紧(非对屏蔽) ﹕编织紧—阻抗减小。

•9) 外被的松紧(非对屏蔽) ﹕外被紧—阻抗小。

2. 衰减(Attenuation)衰减表示线路的材料等原因而引起的信号损失线缆的衰减主要由两部份组成﹐一为介质内偶极子受交变电场作用做取向运动引起的介质损耗﹐一为导体上热磁涡流及导体发热引起的能量损失。

单位为“dB/m”α= 10 log ( Pout / Pin ) = 20 log ( Vout / Vin )是指输出端功率(P out)比入射功率(P in),讯号损耗剩下多少。

特性阻抗的含义文档

特性阻抗的含义文档

特性阻抗假设一根均匀电缆无限延伸,在发射端的在某一频率下的阻抗称为“特性阻抗”。

测量特性阻抗时,可在电缆的另一端用特性阻抗的等值电阻终接,其测量结果会跟输入信号的频率有关。

特性阻抗的测量单位为欧姆。

在高频段频率不断提高时,特性阻抗会渐近于固定值英文名称:impedance[编辑本段]阻抗定义在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

阻抗常用Z表示.,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。

阻抗的单位是欧。

在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。

电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。

还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值等于零的物质。

但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。

电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。

它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。

此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。

对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。

在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。

也就是阻抗减小到最小值。

在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。

在音响器材中,扩音机与喇叭的阻抗多设计为8欧姆,因为在这个阻抗值下,机器有最佳的工作状态。

其实喇叭的阻抗是随着频率高低的不同而变动的,喇叭规格中所标示的通常是一个大略的平均值,现在市面上的产品大都是四欧姆、六欧姆或八欧姆。

导线电缆的电阻和电抗的计算

导线电缆的电阻和电抗的计算

导线电缆的电阻和电抗的计算导线和电缆的电阻和电抗是在电力传输和电子设备中非常重要的参数。

本文将详细介绍导线和电缆的电阻和电抗的计算方法。

1.导线的电阻计算:导线的电阻是由导线的材料、截面积和长度来决定的。

常用的导线材料有铜和铝。

R=(ρ*L)/A其中,R是导线的电阻,ρ是铜的电阻率,L是导线的长度,A是导线的截面积。

R=(ρ*L)/A其中,R是导线的电阻,ρ是铝的电阻率,L是导线的长度,A是导线的截面积。

2.导线的电抗计算:导线的电抗是导线对交流电流的阻碍程度。

导线的电抗一般分为纯电容和纯感抗。

-对于纯电容导线:纯电容导线的电抗可以通过下面的公式计算:Xc=-1/(2πfC)其中,Xc是导线的电抗,f是交流电源的频率,C是导线的电容。

-对于纯感抗导线:纯感抗导线的电抗可以通过下面的公式计算:Xl=2πfL其中,Xl是导线的电抗,f是交流电源的频率,L是导线的电感。

3.电缆的电阻计算:电缆的电阻是由电缆导体的材料、截面积和长度来决定的。

电缆通常由多股细线组成,因此需要考虑电缆中电流的分布。

-对于多股导线电缆:可以通过下面的公式计算多股导线电缆的电阻:R=(ρ*L)/(n*A)其中,R是电缆的电阻,ρ是导线材料的电阻率,L是电缆的长度,n是电缆中导线的股数,A是每股导线的截面积。

4.电缆的电抗计算:电缆的电抗可以通过导线的电阻和电抗的叠加来计算。

-对于纯电阻电缆:纯电阻电缆的电抗等于电阻。

-对于存在电感或电容的电缆:电缆的总电抗等于导线的电阻和电抗之和。

综上所述,导线和电缆的电阻和电抗的计算方法可以根据导线和电缆的特性和材料的不同而有所差异。

准确计算导线和电缆的电阻和电抗是电力传输和电子设备设计的重要一环,可以有效地提高能源利用效率和电路的稳定性。

如何详细了解电缆的特性阻抗(精)

如何详细了解电缆的特性阻抗(精)

如何详细了解电缆的特性阻抗点击次数:116 发布时间:2010-12-9 8:55:58详细了解电缆的特性阻抗点击次数:1441 发布时间:2010-1-27 19:54:12术语音频:人耳可以听到的低频信号。

范围在20-20kHz。

视频:用来传诵图象的高频信号。

图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。

射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。

射频的范围要宽很多,10k-3THz(1T=1024G)。

电缆的阻抗本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。

如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。

什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。

什么是电缆的阻抗,什么时候用到它?首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。

当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。

这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。

在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的?电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。

(伏特/米)/(安培/米)=欧姆欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。

如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。

所以特性阻抗由下面的公式定义:Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。

所以特性阻抗公式可以被写成后面这个形式:其中R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆j=只是个符号,指明本项有一个+90'的相位角(虚数)π=3.1416L=单位长度电缆的电感量c=单位长度电缆的电容量注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。

浅谈影响应答器数据传输电缆特性阻抗的因素及解决的方法

浅谈影响应答器数据传输电缆特性阻抗的因素及解决的方法

浅谈影响应答器数据传输电缆特性阻抗的因素及解决的方法低压电气网一、引言应答器数据传输电缆是用于应答器与地面电子单元(简称LEU)的连接,传输报文数据信息及电能的电缆。

应答器是一种可以发送数据报文的高速数据传输设备,适用CTCS-1-4各级列车运行控制系统。

地面电子单元(LEU)是一种数据采集与处理单元,当有数据变化时,可根据变化后的数据形成报文并送给地面有源应答器。

应答器数据传输电缆缆芯结构较为简单(见图1),但工艺流程复杂。

该产品在行业中尚未有正式的行业标准,所以我们是根据用户提出的技术条件进行试制,其中对特性阻抗的要求非常严格,测试频率在1. 8 kHz时波动范围仅在±5Ω以内。

从我公司近两年生产的该电缆产品的各项指标检测数据统计状况看,其特性阻抗值波动不易控制。

因此,本文就影响特性阻抗指标的几个因素进行分析,对其主要产生的原因和消除办法进行讨论。

二、特性阻抗的定义及计算公式特性阻抗亦称波阻抗,是描述电磁波沿均匀传输线路传输时在没有反射时的阻抗,在高频条件下,对称电缆的波阻抗zC(Ω)可由式(l)计算:式中,L为单位长度电缆回路的电感(H/km)C为单位长度电缆回路的电容(F/km)。

为了保证该种电缆在高频条件下的传输质量,通常在线组外面加了一层屏蔽层,所以电缆回路电感L(H/km)的计算式为:式中,λ为总的绞入系数;α为回路两导线中心间距离(mm);d0 为导线直径(mm);r为屏蔽层的半径(mm);K为涡流系数;μr为屏蔽层的相对磁导率;Q(x)为x(=kd/2)的特定函数。

对称电缆的电容C(F/km)可按式(3)计算:式中,e为组合绝缘介质的等效相对介电常数;Ψ为由于接地金属护层和邻近导线产生影响而引用的修正系数。

Ψ可由式(4)、式(5)计算:式中,d为绝缘线芯的直径(mm);D为屏蔽层内直径(mm)。

三、影响特性阻抗的因素及生产过程中应注意的事项在电缆的制造过程中,由于制造工艺的不均匀。

电线电缆特性阻抗介绍

电线电缆特性阻抗介绍

什么是电缆的阻抗,什么时候用到它?首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。

当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。

这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。

在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的?电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。

(伏特/米)/(安培/米)=欧姆欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。

如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。

所以特性阻抗由下面的公式定义:Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。

所以特性阻抗公式可以被写成后面这个形式:其中R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆j=只是个符号,指明本项有一个+90'的相位角(虚数)π=3.1416L=单位长度电缆的电感量c=单位长度电缆的电容量注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。

从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。

对于电缆一般所使用的绝缘材料来说,和2πfc相比,G微不足道可以忽略。

在低频情况,和R相比2πfL微不足道可以忽略,所以在低频时,可以使用下面的等式:注:原文这里是Zo = sqrt ( R / (j * 2 * pi * f * L))应该是有个笔误。

阻抗不应该是反比于感抗.实际上低频时应该是电阻和容抗占主导地位。

射频电缆的参数理论

射频电缆的参数理论

射频电缆的参数理论第一节特性阻抗特性阻抗是选用电缆的首先要考虑的参数它定义为电缆处于匹配状态即线路上无反射波时沿线路分析的电压与电流的比值实际上它代表了无限长线路始端呈现的阻抗。

特性阻抗是电缆本身的参数它取决于导体的直径以及绝缘结构的等效介电常数。

特性阻抗对于电缆的使用有很大的影响例如在选择射频电缆作为发射天线馈线时其特性阻抗应尽可能和天线的阻抗一致否则会在电缆和天线的连接处造成信号反射使得天线得到的功率减少电缆的传输效率也会下降更为严重的是反射的存在会使电缆沿线出现驻波有些地方会出现电压和电流的过载从而造成电缆的热击穿或热损伤而影响电缆的正常运行。

电缆内部反射的存在还会造成传输信号的畸变使传输信号出现重影严重影响信号传输质量。

为了便于使用射频电缆的阻抗已经标准化了。

因此在选用电缆时应尽可能选用标准阻抗值。

对于射频同轴电缆有以下三中标准阻抗50±2ohm 推荐使用于射频及微波用于测试仪表以及同轴波导转换器等75±3ohm 用于视频或者脉冲数据传输用于大长度例如CATV电缆传输系统100±5ohm 用于低电容电缆以及其它特种电缆。

以下是同轴电缆特性阻抗计算的各种公式。

§1.1同轴电缆阻抗公式根据传输理论特性阻抗公式为Zc 式中R、L、G、C、代表该传输线的一次参数而ω2πf代表信号的角频率。

对于射频同轴电缆传输高频信号通常都有RωLGωC此时特性阻抗公式可以简化为Zc 60??lnD/d/138??lgD/d/ ohm 式中D为外导体内直径mm d为内导体外直径mm ε为绝缘相对介电常数R:射频电缆的参数理论基础表1给出了常用绝缘材料的相对介电常数。

表1常用介质材料的特性介质种类介电常数ε1000KHz 介质损耗角正切tgδ 空气1.00 0 聚乙烯2.30 0.0002 物理发泡聚乙烯1.201.30 0.0001 聚丙烯2.55 0.0004 聚四氟乙烯2.10 0.0002 聚全氟乙丙烯2.10 0.0002 泡沫绝缘的是一种常用的半空气绝缘形式其等效介电常数公式为εrε·2ε12Pε1/2ε1Pε1 式中ε为绝缘相对介电常数P为绝缘发泡度它表示发泡绝缘介质内所有气泡的体积与绝缘总体积的比例。

CAN网络 其特性阻抗及终端阻抗

CAN网络 其特性阻抗及终端阻抗

CAN 网络其特性阻抗及终端阻抗CAN 网络阻抗问题的开始是由CAN 网络开始的,如下图是一个CAN 的网络的基本模型,两端是120 欧姆的电阻,can 网络用的线材的特性阻抗是也是120 欧姆的,下面有几个问题分别拆分来说明。

1.为什么要用120 欧姆的终端阻抗?首先CAN 网络里用到传输线,线材的特性阻抗为120 欧姆。

关于这跟线下面的问题来讨论,另外要说明的是在CAN 网络里的设备,即CAN 收发器,这种器件的输出阻抗很低,输入阻抗是比较高的,可以见TJA1050 的框图,也就是说在传输线上120 欧姆的特性阻抗传输的信号突然到了一个阻抗很高的地方,可以理解为断路,这样会产生很高的信号反射,影响CAN 收发器对电平的采样,造成信息的误读。

如果在CANH 和CANL 之间加上一个120欧姆的电阻即终端电阻,因为这个电阻和线缆特性阻抗相同,同时这个远小于CAN 收发器输出阻抗的电阻和CAN 收发器并联在一起,电流自然更多的从阻抗小的地方流过,这样从特征阻抗120 欧姆的线缆上流道120 欧姆的电阻上,他们之间阻抗接近,他们的信号反射就要小很多,可以有效的保证信号完整性。

同时这个电阻也不会影响信号本身如下图,例如在一个容错CAN 网络里,CANH=3.5v,CANL=0.5v 的时候为显性,CANH=CANL=2.5v 的时候为隐形,在显性位的时候终端电阻两端分别为3.5v 和1.5v,一个CAN 收发器为输出端一个CAN 收发器为接收端,输出端在输出电压,保持CANH 和CANL 的电压为 3.5v 和1.5v 不变,他们之间的电压差将产生电流由终端电阻消耗掉,接受端的CANH 和CANL 可以准确的采样到3.5v 和1.5v 的电压值,同理在隐形位的时候终端电阻也是不影响CAN 网络的信号但是达到了阻抗匹配的作用。

2.CAN 网络使用的120 欧姆特性阻抗的线材,对线材的特性阻抗如何定义?特性阻抗是对一种材质我们这里说的是线材,由于本身的粗细,大小等因素决定。

电缆阻抗及特性阻抗一般疑问

电缆阻抗及特性阻抗一般疑问

电缆阻抗及特性阻抗一般疑问术语音频:人耳可以听到的低频信号。

范围在20-20kHz。

视频:用来传诵图象的高频信号。

图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。

射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。

射频的范围要宽很多,10k-3THz(1T=1024G)。

电缆的阻抗本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。

如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。

什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。

什么是电缆的阻抗,什么时候用到它,首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。

当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。

这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。

在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的,电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。

(伏特/米)/(安培/米)=欧姆欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。

如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。

所以特性阻抗由下面的公式定义: Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。

所以特性阻抗公式可以被写成后面这个形式:其中R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆j=只是个符号,指明本项有一个+90'的相位角(虚数)π=3.1416L=单位长度电缆的电感量c=单位长度电缆的电容量注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。

数据电缆中特性阻抗的解析

数据电缆中特性阻抗的解析

数据电缆中特性阻抗的解析一、概述在现在各类型号的数据电缆生产中,最重要也是最基本的四个参数:特性阻抗(IMPEDANCE)、衰减(ATTENUATION)、近端串音(NEAR-END CROSSTALK)、结构回波损耗(SRL)。

相比之下,这四个参数中最难控制应是特性阻抗,尤及对于特殊的多工序控制的数据缆,如阻水五类缆(UTP-ZS)、屏蔽五类缆(FTP)等。

怎样使其与衰减达到平衡,怎样使其波动范围控制在100+15Q 之内。

本文主要是从理论和实际操作中的经验所得来对特性阻抗的控制进行分析。

(由于数据电缆属典型的对称通信电缆,所以以下所有的计算都基于理想的对称回路)二、计算(一)、特性阻抗数值(ZC)的理论计算:ZC= ( R2+Q2L2/G2+®2C2) 1/4其中的R、G、L、C为线路的一次传输参数(单个回路的电阻、电导、电感、电容)。

由于数据缆的应用环境为100MHz,远远大于3()KHz,属高频范围,所以有®L》R,®C》G,故有ZC= (R2+®2L2/ G2+3 2C2) 1/4匕(O)2L2/6)2C2) 1/4= (L/C) 1/2,由以上式中可以看出要想算出ZC,只要知道L、C就可以了o(-)、孤立回路电感(L)的理论计算:当回路通以交流电后,则在回路的导电线芯中和回路周围产生磁通①,导电线芯内的叫内磁通,导电线芯外的叫外磁通。

电感为磁通①与引起磁通的电流I之比,所以相应的内外磁通亦有内外电感(L内和L外),总电感为L=L 内+L 夕卜。

L内为导线内部的磁通与流过导线的电流之比所决定的。

它的计算公式可在求二孤立导线有效电阻时,其复数功率的虚部来求得。

其计算公式如:L内二Q(x) *10-4 (亨/公里)L外是导线外(与回路本身所交链的)磁通与流过被交链导线中电流之比,即L外二①/I。

回路的磁场分布如图1所示。

回路两导线中»由导线a电流所产生的磁场强度为H a =1/2 TH•,由导线b中电流所产生的磁场强度为Hb二1/2兀(a-r),由图1中可以看出H=H a +Hb=I (l/r+l/(a-r)) /2兀,由此L外可由式L=/zH/I 求得。

单芯电缆的阻抗值

单芯电缆的阻抗值

单芯电缆的阻抗值单芯电缆的阻抗值是指电缆在传输电信号时所表现出的阻抗特性。

阻抗值对于电信号的传输和匹配至关重要。

以下是关于单芯电缆阻抗值的详细解释:阻抗的定义:电缆阻抗是电信号在电缆中传播时所遇到的电阻、电感和电容等电性参数的综合体现。

它通常用欧姆(Ω)为单位,表示电缆对电信号流动的阻力。

传输线理论:单芯电缆的阻抗值与传输线理论有关。

传输线理论描述了电磁波在电缆中的传播方式,其中阻抗是描述电信号传输效果的关键参数。

电阻成分:阻抗中的电阻成分通常由电缆的导体电阻贡献。

电阻导致电信号在电缆中发生功率损耗。

电感成分:电感是由电缆的导体绕成线圈而形成的,它对于高频信号的传输具有重要作用。

电感导致电信号在电缆中产生相位延迟。

电容成分:电缆中的电容主要由导体和绝缘之间的电场引起。

电容对于电信号的高频响应和信号的传播速度起着关键作用。

匹配问题:电缆的阻抗值需要与连接的设备或系统匹配,以确保信号的有效传输。

匹配问题可以通过适当选择电缆阻抗来解决。

标准阻抗值:常见的单芯电缆阻抗值包括50Ω和75Ω,这两者是电信系统中最常见的阻抗标准。

50Ω电缆通常用于射频(RF)和通信系统,而75Ω电缆主要用于视频和广播系统。

波长和频率关系:阻抗值通常与电缆中传播的信号的波长和频率有关。

在高频信号传输中,阻抗的选择会更加关键。

传输线匹配:为了最大程度地减小反射和信号损失,电缆的阻抗应该与连接到它的其他传输线或设备的阻抗相匹配。

总体而言,电缆的阻抗值是一个重要的设计参数,影响着电信号的传输质量和系统性能。

在特定应用中,选择适当的阻抗值对于确保最佳的信号传输至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆阻抗及特性阻抗一般疑问术语音频:人耳可以听到的低频信号。

范围在20-20kHz。

视频:用来传诵图象的高频信号。

图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。

射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。

射频的范围要宽很多,10k-3THz(1T=1024G)。

电缆的阻抗本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。

如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。

什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。

什么是电缆的阻抗,什么时候用到它?首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。

当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。

这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。

在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的?电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。

(伏特/米)/(安培/米)=欧姆欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。

如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。

所以特性阻抗由下面的公式定义:Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。

所以特性阻抗公式可以被写成后面这个形式:其中R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆j=只是个符号,指明本项有一个+90'的相位角(虚数)π=3.1416L=单位长度电缆的电感量c=单位长度电缆的电容量注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。

从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。

对于电缆一般所使用的绝缘材料来说,和2πfc相比,G微不足道可以忽略。

在低频情况,和R相比2πfL微不足道可以忽略,所以在低频时,可以使用下面的等式:注:原文这里是Zo = sqrt ( R / (j * 2 * pi * f * L))应该是有个笔误。

阻抗不应该是反比于感抗.实际上低频时应该是电阻和容抗占主导地位。

如果电容不跟随频率变化,则Z0和频率的平方根成反比关系,在接近直流的状态下有一个-45'的相位角,当频率增加相位角逐渐减少到0'。

当频率上升时,聚氯乙烯和橡胶材料会稍微降低电容,但聚乙烯,聚丙烯,特氟纶(聚四氟乙烯)的变化不大。

当频率提高到一定程度(f足够大),公式中包含f的两项变的很大,这时候R和G可能可以被忽略。

等式成为简化成高频下的电缆性质在高频下您不能把电缆视作一条简单的电缆。

在此时它是波导。

特性阻抗是为电磁波而设立的电阻系数。

故此阻抗负责描述高频下电缆的状态。

高频通常用100kHz以上的频率传输(当然能否高频传输取决于电缆)。

如果您在电缆一端输入合适频率的正弦交流信号,信号以电波的形式传播过电缆。

如果电缆的长度和该交流信号频率的波长相比是个很大的数字的话(注:即电缆长度是波长的很多倍),在传送过程中可以测量AC的电压和电流比,这个比值叫做这条电缆的特性阻抗。

实际上电缆的特性阻抗由电缆的几何形状和绝缘部分决定的。

电缆的长度不影响电缆的特性阻抗。

注:就是说使用多数绝缘材料电容不会起变化。

而电感量L的定义公式为L = μ(N^2/I)Sμ = 介质磁导率N = 线圈匝数I = 线圈长度S = 线圈横截面积可以看出,电感量只和材质及几何形状有关,和频率无关。

所以在f足够高的情况下,特性阻抗和频率没有关系了。

频率再高,特性阻抗都等于电感量除以电容量的平方根。

(实际上特性阻抗等于感抗容抗乘积的平方根,由于在乘积中约除了有关频率部分,所以有些资料中说特性阻抗和频率无关,实际上应该是在足够高频的情况下,特性阻抗和频率无关)同轴电缆的模型是怎么样的?同轴电缆可以表示为分布的串联电感和分布的并联电容,一种不对称的过滤装置排列起来,特定的电缆有唯一的值。

如果给定某个频率,而且这个频率合适,这套过滤装置可以最大化地传递信号;如果频率再提高的话,这套装置会削弱信号。

注:这段信息很有意思,考虑一下,特性阻抗没有变化,而信号却减弱了!为什么会这样?唯一的合理解释,就是在电缆的接收端电压和电流都减弱了,而且是按照相同的比例减弱的。

下面画出一张传输线分布参数的草图,这个理论是无线电工业的工程工具之一,在这个理论中线长可以变动,可以使用复数源,和复数的终端阻抗。

实际上阻抗这个词代表有实部和虚部如何用同轴电缆本身的性质计算特性阻抗?电缆的长度和它的特性阻抗无关。

特性阻抗是由导体的大小和间隔,还有就是导体之间的绝缘体的种类决定的。

通常的同轴电缆在常规的频率下使用,特性阻抗由内导体和外(屏蔽)导体的尺寸决定的,当然内导体和外导体之间的绝缘体也起着决定作用。

下列方程可以用来计算同轴电缆的特性阻抗:(摘自Reference Data for Radio Engineers book published by Howard W. Sams & Co.1975, page 24-21)其中:lg = 以10为底的对数d = 中心导体的直径D = 电缆屏蔽层的内径e = 介电常数 (空气为 1 )简单地说,同轴电缆的特性阻抗就是一个商的平方根(这个商是单位长度的电感除以单位长度的电容)同轴电缆的特性阻抗典型值在20-150欧姆之间。

电缆的长度无论如何都无法影响特性阻抗。

如果同轴电缆使用的传输频率过高,则波会以我们不期望的方式传播,(就是说会产生非预期的电场和磁场图)电缆这时不能正常工作是由多方面原因造成的。

如何计算平衡传输线(对称传输线)的特性阻抗?特性阻抗是由导体的大小和导体间的间隔,以及导体之间使用的绝缘体决定的。

平衡传输线或双绞线的阻抗Z0,由线距和线径比决定,前面提到的绝缘体种类一样起决定作用。

现实中的Z0在高频下相当接近纯电阻,但并不完全相等。

下列公式可以用来计算接近地面的平衡传输线的特性阻抗(摘自Reference Data for Radio Engineers book published by Howard W. Sams & Co. 1975, page 24-22)其中lg = 以10为底的对数d = 传输线线径D = 线对之间的距离e = 介电常数(空气为1)h = 线对和地面之间的距离这个公式不只是适用于非屏蔽平衡传输线,当D比d大,而h比d更大的时候(带屏蔽的平行传输线也适用)。

如果双绞线离地面非常远(h接近无穷大)则地面的影响可以忽略不计,线缆的阻抗可以由一个简化的公式近似:(原文作者本人推演上面的公式得出的)注:将对数中真数部分少做改动对结果影响不大,因为结果是真数的指数,可以这个简化接受。

但原来的公式有个开方,这个相当于结果1/2!对双绞线来说,典型的特性阻抗在75欧姆到1000欧姆之间,可以满足各种应用的需要。

典型旧式电话线对,架在电线杆间的空中,其特性阻抗大约是600欧姆左右。

现在使用的电话和电讯电缆典型的特性阻抗为100或120欧姆。

我可以使用哪种电路模型来描述长线的同轴电缆?如果您知道一定长度的电缆的电感量和电容量的话,可以使用下面的电路模型描述长线同轴电缆:这个模型对理解描述阻抗,电容,电感之间关系的阻抗等式非常有帮助:我能否使用万用表来测量电缆的阻抗?电缆的特性阻抗只描述了电缆在高频信号下的的工作性质。

万用表是用直流电流来测量电阻值的,所以不能用万用表或其他简单的测量设备来测量电缆的阻抗。

通常最好的方法是检查电缆的类型(一般印刷在电缆外面)查阅相关的信息手册,而不要试图实际测量.我如何测量电缆的阻抗呢?使用一个关系式来确定Z0比使用设备测量要简单很多。

在给定的频率,可以这样来推算电缆的阻抗:测量一段电缆在远端开路情况下的阻抗Zoc,再测量该段电缆在远端短路的情况下的阻抗Zsc,用下面的等式来确定ZO:其中Zoc = 某一电缆在远端开路的情况下测量出的阻抗Zsc = 该电缆在远端短路的情况下测量出的阻抗注意:对Zoc和Zsc的测量包含了幅值和相位,所以Z0也会有幅值和相位。

阻抗高频测量法是先确定电缆的传播速度和电容,或者使用反射计。

什么情况下电缆的阻抗会影响到信号?为了使电缆的特性阻抗能够对传输的信号产生不同的影响,电缆的长度必须至少是实际载频波长的数分之一。

(注:表达的意思应该是电缆长度和波长必须是可比的,使信号可以在传输线上传送出波形的一部分,如1/4或更多) 大多数的金属丝可以用光速60~70%来传递交流电,换个说法就是每秒传递19.5万公里。

一个频率为20000Hz的音频信号的波长为9750米(195/0.02MHz=9750m),所以电缆起码要有4~5公里长才开始影响音频信号。

所以音频连接电缆的特性阻抗和其他困扰我们的问题相比,算不上什么。

标准的视频信号很少有超过10MHz的,其大概波长大概是20米。

这样高的频率足以使特性阻抗开始对信号产生影响。

高分辨率的电脑显示信号和高速的数据信号经常超过100MHz,所以即便是很短的电缆传输,也要考虑到正确的阻抗匹配问题。

如何进行阻抗匹配?首先驱动电缆电源的输出阻抗,必须和电缆的特性阻抗相等,这样才能使所有输出的功率进入传输电缆,避免从电缆的输入端反射回入源。

其次,应该使电缆输出端负荷设备的输入阻抗和电缆的特性阻抗相同,这样所有功率进入了负载设备,而不会被负载反射回电缆。

这个正常的驱动方法有很多的例外,但一般是用来做其他用途的。

可以选一个特性阻抗匹配使低频带宽的传输功率最大化,或者使阻抗失配改善更宽广频宽下的响应。

这是工程师的抉择,视其需求而决定。

为什么需要阻抗匹配?如果您的源输出阻抗,电缆特性阻抗,和负载输入阻抗之间存在失配的话,将存在反射,并完全由电缆长度决定(反射的状态)。

此外如果电缆被非正常使用,如挤压,打结,或者连接器的安装不正确,会产生反射,造成功率损失。

更有甚者,如果是大功率向电缆输出(比如无线广播台),反射功率可能会损坏功率源设备。

所以您必须小心防范阻抗失配问题。

并非所有的教科书中都说明了这个不寻常的情况:当天线把功率送回(没有正确终止),功率可以从同轴电缆的内芯直接穿透到电缆的外芯屏蔽网,这时天线的功率是最低下的。

相关文档
最新文档