比例的基本性质

合集下载

《比例的基本性质》教学设计

《比例的基本性质》教学设计

《比例的基本性质》教学设计《比例的基本性质》教学设计篇一一、教学目标知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点重点:理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计(一)创设情境,提出问题1、复习导入:(1)什么叫做比?两个数相除又叫做两个数的比。

(2)什么叫做比值?比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:12:16= 4、5:2、7= 10:6=谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:一辆货车运输大麦芽情况第一天第二天运输次数2 4运输量(吨)16 32根据这个表格,让学生提出有关比的数学问题。

同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得较好,提出的问题较多。

谈话:谁来交流?跟大家说一下你的问题是什么?学生可能出现以下的问题:货车第一天的运输量与运输次数的比是多少?(16 : 2)货车第二天的运输量与运输次数的比是多少?(32 :4)货车第二天的运输量与第一天运输量的比是多少?(32 :16)(师根据学生的回答,将答案一一贴或写于黑板)2 :16;4 :32;16 :2;32 :4;16 :32;2 :4;32 :16;4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。

现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)思考:这个比值所表示的实际意义是什么?(每次的运输量)既然它们的比值相等,那我们可以用什么符号将两个比连接起来?学生用等号连接,并请学生把这个式子读一下。

六年级下册数学比例知识点

六年级下册数学比例知识点

六年级下册数学比例知识点
在六年级下册的数学课程中,比例是一个重要的知识点。

以下是一些关于比例的重要
知识和技能:
1. 比例的概念:比例是指两个或多个相同种类的量之间的关系,在比例中我们将这些
量用分数表示。

2. 比例的性质:比例的两个分数称为一个比例,比例中各个分数的相等关系称为比例
的性质。

例如:如果a:b = c:d,则称a、b、c、d构成一个比例。

3. 比例的基础运算:比例可以进行加、减、乘、除等运算。

例如:如果a:b = c:d,则有a+c:b+d = a-b:b-d = a/b:c/d。

4. 比例的化简和维持:在比例中,我们可以约分或扩大分数的值,得到一个全等的比例。

例如:将2:3化简为2/3:1,将2:3扩大为4:6。

5. 比例的图形应用:比例可以用来解决与图形形状和尺寸相关的问题。

例如:通过比
例可以计算矩形的边长、面积等。

6. 比例和百分数的关系:百分数是一种特殊的比例,其中分子是一个非负整数。

例如:25%表示为25/100或1/4。

7. 比例的应用:比例在日常生活中有很多应用,例如计算折扣、利率、比赛成绩等。

以上是六年级下册数学课程中关于比例的一些重要知识点。

学生可以通过练习题和实
际应用问题来巩固和应用这些知识。

《比例的基本性质》教案

《比例的基本性质》教案

《比例的基本性质》教案一、教学目标:1. 让学生理解比例的基本性质,即两内项之积等于两外项之积。

2. 培养学生运用比例基本性质解决问题的能力。

3. 培养学生合作交流、归纳概括的能力。

二、教学重点:1. 比例的基本性质:在比例里,两内项之积等于两外项之积。

2. 运用比例的基本性质解决实际问题。

三、教学难点:1. 比例的基本性质的灵活运用。

2. 解决实际问题时,比例的设置。

四、教学方法:1. 采用自主学习、合作交流的方式。

2. 运用多媒体课件辅助教学。

3. 实例演示,引导学生发现并总结比例的基本性质。

五、教学过程:1. 导入新课:通过复习相关知识,如比的定义、比的性质等,为学生学习比例的基本性质做好铺垫。

2. 自主学习:让学生独立观察一组具体的比例,引导学生发现两内项之积等于两外项之积的特点。

3. 合作交流:学生分组讨论,分享各自发现的比例基本性质,教师引导学生归纳总结。

4. 实例演示:教师通过具体例子,展示比例基本性质在解决问题中的应用,让学生体会其作用。

5. 练习巩固:设计一些练习题,让学生运用比例基本性质解决问题,巩固所学知识。

6. 拓展延伸:引导学生思考比例基本性质在实际生活中的应用,激发学生学习兴趣。

7. 总结反馈:对本节课的主要内容进行总结,了解学生的掌握情况,针对性地进行辅导。

8. 布置作业:设计一些课后作业,让学生进一步巩固比例基本性质。

9. 课后反思:教师对本节课的教学进行反思,总结经验教训,为下一步教学做好准备。

10. 教学评价:通过课堂表现、作业完成情况等对学生进行评价,了解学生的学习效果。

六、教学内容与资源:1. 教学内容:比例的定义和组成比例的基本性质的推导和证明比例在实际问题中的应用2. 教学资源:多媒体课件教学挂图练习题册实际问题案例七、教学步骤与方法:1. 教学步骤:步骤一:导入新课,复习相关知识步骤二:自主学习,发现比例的基本性质步骤三:合作交流,总结比例的基本性质步骤四:实例演示,应用比例的基本性质解决问题步骤五:练习巩固,学生独立解决实际问题步骤六:拓展延伸,讨论比例在生活中的应用步骤七:总结反馈,复习本节课的主要内容步骤八:布置作业,巩固所学知识2. 教学方法:讲授法:讲解比例的基本性质的推导和证明引导法:引导学生发现比例的基本性质互动法:小组讨论,分享解题心得实践法:解决实际问题,体验比例的应用八、教学评价设计:1. 评价目标:学生能理解并运用比例的基本性质学生能解决实际问题,运用比例知识2. 评价方法:课堂表现:观察学生在课堂上的参与度和理解程度作业完成情况:检查学生作业的准确性和完整性实际问题解决:评估学生在解决实际问题时的创意和准确性九、教学反思:1. 反思内容:教学内容的难易程度是否适合学生教学方法是否有效,学生是否积极参与教学评价是否全面,能否准确反映学生的学习情况2. 反思时间:课后即时反思,调整教学策略定期反思,如每周或每月,总结教学经验和不足十、课后作业设计:1. 作业内容:练习题:包括选择题、填空题、解答题等,巩固比例的基本性质实际问题:运用比例知识解决生活中的问题2. 作业要求:准确无误:要求学生解答正确,无计算错误书写规范:要求学生作业书写清晰,格式规范创新思考:鼓励学生在解决问题时展现创新思维3. 作业反馈:及时批改:教师应及时批改作业,给予学生反馈鼓励表扬:对学生的进步和创意给予表扬,增强信心辅导纠正:对作业中出现的问题,给予个别辅导和纠正重点和难点解析一、教学内容与资源补充说明:实际问题案例应贴近学生生活,具有代表性,能够引导学生将比例知识应用于实际情境中,增强学生的学习兴趣和解决实际问题的能力。

六年级数学比例重点知识汇总

六年级数学比例重点知识汇总

六年级数学比例重点知识汇总孔子曰:学而时习之。

课后作业也是学习和巩固数学的重要环节。

下面是小偏整理的六年级数学比例重点知识汇总,感谢您的每一次阅读。

六年级数学比例重点知识汇总(一)比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:3组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

3、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。

4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

(二)正比例和反比例1、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④、y=5x,y和x成正比例,因为:y÷x=5(一定)。

⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

2、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

苏教版六年级数学下册《比例的基本性质》教案

苏教版六年级数学下册《比例的基本性质》教案

苏教版六年级数学下册《比例的基本性质》教案一. 教材分析苏教版六年级数学下册《比例的基本性质》是学生在学习了分数、小数和百分数的基础上,进一步深化对比例的理解。

本节课的主要内容是让学生掌握比例的基本性质,即两内项之积等于两外项之积。

通过本节课的学习,学生能更好地理解和运用比例解决实际问题。

二. 学情分析六年级的学生已经具备了一定的数学基础,对分数、小数和百分数有一定的了解。

但是,对于比例的基本性质,他们可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、操作和思考,发现和总结比例的基本性质。

三. 教学目标1.知识与技能:理解和掌握比例的基本性质,能运用比例的基本性质解决实际问题。

2.过程与方法:通过观察、操作和思考,培养学生的观察能力和推理能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:理解和掌握比例的基本性质。

2.难点:比例的基本性质的发现和运用。

五. 教学方法1.情境教学法:通过创设生动有趣的情境,激发学生的学习兴趣。

2.启发式教学法:引导学生通过观察、操作和思考,发现和总结比例的基本性质。

3.合作学习法:鼓励学生与他人合作,共同解决问题。

六. 教学准备1.教具:多媒体课件、黑板、粉笔。

2.学具:学生用书、练习本、文具。

七. 教学过程导入(5分钟)教师通过多媒体课件展示一些生活中的比例现象,如房屋建筑中的比例、服装设计中的比例等,引导学生观察和思考:这些比例现象有什么共同的特点?呈现(10分钟)教师通过讲解和演示,呈现比例的基本性质:两内项之积等于两外项之积。

引导学生观察和思考:这个性质是如何得出的?它有什么意义?操练(10分钟)教师给出一些比例题目,让学生独立或合作完成。

如:已知比例 3:4=5:x,求 x 的值。

通过操练,让学生巩固对比例基本性质的理解和运用。

巩固(10分钟)教师通过一些实际问题,让学生运用比例的基本性质解决问题。

《比例的基本性质》教学设计优秀10篇

《比例的基本性质》教学设计优秀10篇

《比例的基本性质》教学设计优秀10篇比例的基本性质教学设计篇一一、教学目标1、使学生在理解比例的基本性质的基础上认识比例的“项”以及”“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质判断两个比能否组成比例。

教学重点比例基本性质。

教学难点应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

二、教学过程(一)复习铺垫1、上节课我们已经认识了比例?谁能说说什么是比例?2、哪组中的两个比可以组成比例?把组成的比例写出来。

(1)3:518:30(2)0.4:0.21.8:0.9(3)2:89:27提问:下面每组中两个比能组成比例吗?为什么?(二)探究新知1、把左边的三角形按比例缩小后得到右边的三角形。

(单位:厘米)(1)提问:你能根据图中的数据写出比例吗?(2)两个三角形底的比和高的比相等吗?3:62:4两个三角形高的比和底的比相等吗?2:43:6每个三角形底和高的比相等吗?3:26:4每个三角形高和底的比相等吗?2:34:62、(1)学生自学:组成比例的四个数,就是比例的各个部分,那么比例的各部分的名称是什么呢?请同学门自学课本第43页。

(2)学生汇报:组成比例的四个数叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

(板书)3:6=2:4外项内项内项外项(2)学生交流:你能说出其他三个比例的内项和外项是多少吗?(3)写成分数形式的比例,并说一说各比例外项和内项在哪里?(4)比较:比例和比有什么区别?3、(1)要求:观察黑板上的四个比例式,你有什么发现?(学生小组讨论、交流)(2)要求:计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?以3∶6=2∶4为例,指名来说明。

内项积是:62=12外项积是:34=1262=344、再写出一些比例,看看是否有同样的规律,学生自己任选两三个比例,计算出它的外项积和内项积。

5、如果用字母表示比例的四个项,即a:b=c:d,那么这个规律可以表示为()6、教师明确:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

比例性质及比例线段

比例性质及比例线段

比例性质及比例线段(初二4.16)一、知识点与方法概述:1、比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.2、(成)比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.3、黄金分割:如图,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.注意:1、AC 0.618AB;2、0.618叫做黄金比;3、一条线段有两个黄金分割点.4、平行线分线段成比例定理:三条平行线截两条直线,所得的线段对应成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(三角形一边平行线的性质)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(三角形一边平行线的判定定理)5、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况(如图1-图5):推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.已知:在梯形ACFD 中,CF AD //,AB=BC求证:DE=EF推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.已知:在△ACF 中,CF BE //,AB=BC 求证:AE=EF6、三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。

比例的意义和基本性质

比例的意义和基本性质

比例的意义和基本性质比例在我们的日常生活中无时无刻不存在,比例研究及应用早已不是新鲜的概念,从古至今比例一直是数学中重要的概念,在不同的学科中都有重要的地位。

在建筑学、几何学、艺术学以及工程学中,许多原则和过程都建立在比例的基础上。

本文将讨论比例的意义和基本性质。

首先,我们来看比例的定义。

比例的定义是指在相同的时间内两个不同的数量之间的比率。

比例可以用比例系数、比例常数或比例因子来表示,即:一份量与另一份量之比。

比例系数指两个量之间的比率,是一个无单位的量,而比例常数指两个量之间的恒定比率,是单位之间的比率,比例因子则指相同量级下两个数量之间的比率,可以是一个实数或分数。

比例在实际应用中可以分为两种,即实物比例和金钱比例。

实物比例是指两种物质的比例,它是指对一定量的物质保持一定比例关系。

例如,一袋红豆与一袋绿豆的比例是3:2,而一袋绿豆与一袋黑豆的比例是2:3。

金钱比例是指货币在不同数量物品中的单位比率。

例如,针对不同数量的香槟,每一瓶香槟的价格比率是一致的,比如一瓶20元,两瓶40元,四瓶80元,以此类推。

比例在现代社会中具有重要的意义和作用,它具有以下几个基本性质。

首先,比例是非常精确的,可以用数学上的语言表达出来,这使得它在实际应用中更加准确。

其次,比例是一种比较的概念,无论是实物比例还是金钱比例,都是用来衡量不同物体之间的比率或比较不同物体之间的价格。

第三,比例可以用来评价一个物品或事物,可以用来衡量它的质量或性能,如一个商品的价值,它的成本与收入比率,甚至对一个组织的改善水平等。

此外,比例也是美的追求的基石,它是一种几何学的规律,比如帕拉迪斯比例、金字塔比例和黄金分割比例等,它们被广泛的应用在建筑学和艺术学中。

总之,比例是无处不在的,它为组织节约成本、改善质量提供了可靠的参照,对艺术追求和实践中取得美感也有重要作用。

它不仅仅是一种量度,更是一种规律,一种理论,一种思想。

比例的性质9个公式三篇(最新)

比例的性质9个公式三篇(最新)

解比例的依据是比例的基本性质:两外项的积等于两内项的积.如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项.比例的基本性质:①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项.比例有四个项,分别是两个内项和两个外项.②比,如:教师和学生的~已经达到要求.③比重,如:在所销商品中,国货的~比较大.④比例写成分数的形式后,那么,左边的分母和右边的分子是内项左边的分子和右边的分母是外项.⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质.⑥正比例与反比例的相同点与不同点相同点不同点关系式正比例两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系.如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y÷x=k(一定)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系.如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:x×y=k(一定)比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构.比例分为比例尺和比例.表示两个比相等的式子叫做比例.判断两个比能不能组成比例,要看它们的比值是不是相等.组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.在比例里,两个外项的积等于两个内项的积.求比例的未知项,叫做解比例.比如:x:3=9:27解法:x:3=9:2727x=3×927x=27x=1⑥这有两道数学题,试着做做看吧!125% :7=4 :x125%x=4×71.25x=28x=28÷1.25x=22.513.5 :6=x :46x=13.5×46x=54x=54÷6x=9⑦比例具有如下性质:若a:b=c:d(b.d≠0),则有1) ad=bc2) b:a=d:c (a.c≠0)3) a:c=b:d ; c:a=d:b4) (a+b):b=(c+d):d5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)证明过程如下令 a:b=c:d=k,∵a:b=c:d∴a=bk;c=dk1)∴ad=bk*d=kbd;bc=b*dk=kbd∴ad=bc2) 显然b:a=d:c=1/k3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b4) ∵a:b=c:d∴(a/b)+1=(c/d)+1∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):da+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)且b/(a+b)=d/(c+d)=1/(k+1) ……①5) ∵b/(a+b)=d/(c+d)∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)∴a/(a+b)=c/(c+d)=k/k+1 ……② 即a:(a+b)=c:(c+d) a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c6) ②-①,等式两边同时相减得 (a-b)/(a+b)=(c-d)/(c+d)=(k-1)/(k+1)7) 做做此题:一个长方形,比例为2:3,长方形的面积是36平方厘米,求它的长和宽.(有意者,请做在后面.)假设长方形宽为2,长为3,那么:宽:2x2=4 长:3x3=9答:长方形的长是9,宽是4.将36分解质因数,发现有2和3的倍数,利用它们,得到结果.很累的(一)比例的性质定理:(1)a/c和b/c(a/c):(b/c)=(a/c)*(c/b)=a:b即(a/c):(b/c)=a:b(2)b/a和d/cb/a=1/(a/b)=1/(c/d)=d/c即b/a=d/c(即都倒过来仍相等)(3)(a+b)/b和(c+d)/d(a+b)/b=a/b+b/b=a/b+1=c/d+1=c/d+d/d=(c+d)/d即(a+b)/b=(c+d)/d(同理(a+b)/a=(c+d)/c(为下一题做准备))(4)(a+b)/(a-b)和(c+d)/(c-d) (a≠b,c≠d)因为(a+b)/b=(c+d)/d及(a+b)/a=(c+d)/c根据(2)的结论,所以有b/(a+b)=d/(c+d)和a/(a+b)=c/(c+d)两个等式相减所以a/(a+b)-b/(a+b)=c/(c+d)-d/(c+d)即(a-b)/(a+b)=(c-d)/(c+d)根据(2)的结论,有(a+b)/(a-b)=(c+d)/(c-d)表示两个比相等的式子叫做比例,是比的意义比例有4项,前项后项各2个.在比例里,两个外项的即等於两个内项的积,这叫做比的基本性质.比表示两个数相除;只有两个项:比的前项和后项。

《比例的基本性质》教学设计15篇

《比例的基本性质》教学设计15篇

《比例的基本性质》教学设计《比例的基本性质》教学设计15篇作为一名教学工作者,通常会被要求编写教学设计,教学设计是实现教学目标的计划性和决策性活动。

那么应当如何写教学设计呢?以下是小编整理的《比例的基本性质》教学设计,仅供参考,大家一起来看看吧。

《比例的基本性质》教学设计1【教材分析】《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。

教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。

引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:“2.4×40○1.6×60”。

在此基础上,发现规律,揭示比例的基本性质。

“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。

个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。

【教学目标】1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

【教学重点】探索并掌握比例的基本性质。

【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。

【教学设想】:1、教学情境的呈现创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。

为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。

教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。

《比例的基本性质》课件

《比例的基本性质》课件
比例与代数
在代数中,比例关系可以通过方程式来表示和解 决。因此,掌握比例的基本性质对于学习代数具 有重要意义。
05 比例计算技巧与注意事项
比例计算中常用技巧
交叉相乘
在比例计算中,交叉相乘 是一种常用技巧。通过交 叉相乘,可以快速求出比 例中的未知项。
等比设数
当遇到复杂的比例关系时, 可以尝试设定一个公共的 比例系数,将问题简化为 等比数列的求解。
比例与其他数学概念的联系
比例与分数、百分数等数学概念有着密切的联系,可以相互转化和应用。
复杂比例问题的解决策略
对于复杂的比例问题,可以通过列方程、设未知数等方法进行解决。
自我评价与反思
对本节课知识点的掌握程度进 行评价,包括比例的定义、基 本性质和解比例的方法等。
反思在学习过程中的不足之处, 如理解不深入、应用不熟练等, 并提出改进策略。
比例与分数、小数、百分数之间转换
比例可以转换为分数形式,如a:b可以表示为a/b。
比例也可以转换为小数形式,通过计算a除以b得到的小数就是该比例的小数形式。
比例还可以转换为百分数形式,将a除以b得到的小数乘以100,再加上百分号即可 得到该比例的百分数形式。
02 比例基本性质介绍
比例第一基本性质(反比关系)
03
设计中的比例
在艺术设计、建筑设计和工业设计中,比例的运用对于作品的美感和实
用性至关重要。
数学问题解决中比例方法应用
等比关系
在数学问题中,当两个量的比值保持恒定时,我们称之为 等比关系。利用等比关系可以解决很多实际问题,如速度、 时间和距离之间的关系。
比例运算
比例运算包括求比例中的未知项、判断比例是否相等以及 利用比例进行单位换算等。

《比例的基本性质》(教案)六年级下册数学人教版

《比例的基本性质》(教案)六年级下册数学人教版

《比例的基本性质》教学设计一、教学内容:《比例的基本性质》是人教版数学六年级下册第四单元的内容,本课完成第41页例1及课堂活动,完成第43页练习八中的第4、5、6、7题。

二、教材分析比例的知识在农业生产和日常生活中有广泛的应用。

这部分知识是在学习了比的知识和除法、分数等基础上教学的。

本节课内容是这个单元的第二节课,主要属于概念教学,为后面学习解比例,正、反比例的知识奠定了基础。

学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的实际问题。

三、教学目标的确定《新课程标准》明确了义务教学阶段数学课程的总目标应以知识与技能、过程与方法、情感和态度三方面来阐述,使学生得到充分、自由、和谐、全面地发展。

因此,以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:(1)知识与技能①认识比例各部分名称,理解并掌握比例的基本性质。

②能运用比例的意义或基本性质判断两个比能否成比例,并会组成比例。

③运用相关知识解决问题,提高解决问题的能力。

(2)过程与方法引导学生通过观察、比较、计算、交流探索新知。

(3)情感、态度与价值观在自主学习过程中体验发现数学规律的乐趣,培养学生用数学知识解决实际问题的能力。

四、教学重难点教学重点:理解比例的基本性质。

教学难点:运用比例的性质判断两个比能否组成比例,并能正确地组成比例。

五、教法与学法:根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算、观察、比较、概括、应用”的学习过程中掌握知识。

教学流程一、基本训练 导入新课1.基本训练 复习旧知师:同学们,上学期我们学过了有关比的知识,谁能说说你对比都有哪些了 解。

生:两个数相除就叫做两个数的比比的基本性质( 你能说说比的基本性质吗)、求比值(怎样求比值)、化简比.....2出示(1)2.8:7 1.2:3 (2)53159 师:这是什么?能组成比例吗?为什么?师:根据什么判断他们能组成比例?(预设)生:它们的比值相等师:关于比例我们有很多知识要学,今天这节课我们一起学习《比例的基本性质》。

《比例的基本性质》课件

《比例的基本性质》课件

在物理学中,比例关系也起着重要的作用。例如,在力学中,物体运动的距离与时间成正比,速度与距离成正比;在热学中,热量与温度成正比;在电学中,电流与电压成正比等。
这些比例关系是物理学的基本原理之一,对于解释自然现象和解决实际问题具有重要意义。
在工程领域,比例关系的应用也十分广泛。例如,在建筑设计、制造、施工等方面,比例尺的应用可以帮助我们准确地设计和制造各种物体。
详细描述
交叉乘积形式的表示方法是将比例中的两个数交叉相乘,例如,3:5可以表示为3×5的形式。这种表示方法能够展示两个数之间的乘积关系,并且有助于理解比例的性质和特点。
总结词
坐标轴上的表示方法是将比例的两个数分别作为横轴和纵轴上的坐标点,以图形的方式展示比例关系。
详细描述
在坐标轴上表示比例的两个数时,通常将一个数作为横轴,另一个数作为纵轴。通过这种方式,可以清晰地展示两个数之间的比例关系,并且可以通过图形的方式进行比较和计算。这种表示方法在数学、物理等学科中广泛应用。
无理数比例的特性
无理数比例具有无限不循环的小数表示形式,无法精确计算。但在某些情况下,它们表现出特殊的规律性和美感。
无理数比例的实例
圆周率π在几何学中具有重要地位,它表示圆的周长与其直径的比值。此外,音乐中的音阶也与无理数比例有关,如五声音阶中的“宫、商、角、徵、羽”对应着不同的频率比值。
要点三
分数的定义与性质
要点三
THANKS
感谢您的观看。
详细描述
04
CHAPTER
比例在实际生活中的应用
在统计学中,比例关系可以帮助我们描述数据的分布和变化规律。例如,通过比较不同年龄段、性别等人群的比例,可以了解人口分布的特点和趋势。
比例在数学中有着广泛的应用,如计算面积、体积、长度等。通过比例关系,我们可以快速地找到两个量之间的相对大小和关系。

人教版小学数学《比例的基本性质》说课稿

人教版小学数学《比例的基本性质》说课稿

小学数学《比例的基本性质》说课稿人教版小学数学《比例的基本性质》说课稿作为一名老师,往往需要进行说课稿编写工作,借助说课稿可以有效提升自己的教学能力。

我们应该怎么写说课稿呢?以下是小编精心整理的人教版小学数学《比例的基本性质》说课稿,仅供参考,欢迎大家阅读。

小学数学《比例的基本性质》说课稿1一、说教材(1)地位与作用《比例的基本性质》是人教版六年级下册第四单元第一节的内容,属于数与代数的知识。

本节课主要介绍了比例的基本性质,是在学生已经认识了比和比例的意义,掌握了一些常见的数量关系的基础上来学习的,为学生接下来学习正比例、反比例以及比例的应用打下了良好的基础。

(2)教学目标1、知识与技能目标:掌握比例各部分的名称,并理解比例的基本性质。

2、过程与方法目标:通过自主探究、小组合作,培养学生的参与、体验意识,发展学生的运算能力及数感;3、情感态度与价值观目标:激发学生读书热情,并且喜欢学习数学。

(3)重点、难点理解比例的基本性质,根据乘法算式写出正确的比例。

二、说学情学生已经初步认识了比和比例的意义,具备一定的数感和运算能力。

六年级的学生思维活跃、好奇心强,正从具体形象思维向抽象逻辑思维过渡。

三、说教法和学法在教学中我将采用实践探究法为主,提问法和讲授法为辅的教学方法,引导学生自主探究、同桌交流和小组合作。

四、说教学过程(一)图片导入,引入新课(5分钟)首先投影出示不同长宽比的故事书、科学书,请学生根据书本下方的长宽比数据写出比例,顺势揭题。

(二)交流讨论,探求新知(20分钟)1、教师讲授,认识比例各部分名称多媒体课件出示比例:2、4:1、6=60:40,然后向学生讲解:组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内向。

2、小组合作,探究比例的基本性质先独立思考,再小组合作,探究问题“你能发现内项和外项之间的关系吗?”,在比例里,两个外项的积等于两个内项的积。

进一步帮助学生明确:这就是比例的性质。

比例的性质

比例的性质

比例的性质【热门资讯】比例的性质是指组成比例的四个数,叫做比例的内项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

下面是本站为大家带来的,希望能帮助到大家!比例的性质 1解比例的依据是比例的基本性质:两外项的积等于两内项的积.如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项.比例的基本性质:①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项.比例有四个项,分别是两个内项和两个外项.②比,如:教师和学生的~已经达到要求.③比重,如:在所销商品中,国货的~比较大.④比例写成分数的形式后,那么,左边的分母和右边的分子是内项左边的分子和右边的分母是外项.⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质.⑥正比例与反比例的相同点与不同点相同点不同点关系式正比例两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系.如果用字母x、y 表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y÷x=k(一定)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系.如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:x×y=k(一定)比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构.比例分为比例尺和比例.表示两个比相等的式子叫做比例.判断两个比能不能组成比例,要看它们的比值是不是相等.组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.在比例里,两个外项的积等于两个内项的积.求比例的未知项,叫做解比例.比如:x:3= 9:27解法:x:3=9:2727x=3×927x=27x=1⑥这有两道数学题,试着做做看吧! 125% :7=4 :x125%x=4×71.25x =28x =28÷1.25x =22.513.5 :6=x :46x=13.5×46x=54x=54÷6x=9⑦比例具有如下性质:若a:b=c:d(b.d≠0),则有1) ad=bc2) b:a=d:c (a.c≠0)3) a:c=b:d ; c:a=d:b4) (a+b):b=(c+d):d5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)证明过程如下令 a:b=c:d=k,∵a:b=c:d∴a=bk;c=dk1)∴ad=bk*d=kbd;bc=b*dk=kbd∴ad=bc2) 显然b:a=d:c=1/k3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b4) ∵a:b=c:d∴(a/b)+1=(c/d)+1∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):da+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)且b/(a+b)=d/(c+d)=1/(k+1) ……①5) ∵b/(a+b)=d/(c+d)∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)∴a/(a+b)=c/(c+d)=k/k+1 ……② 即a:(a+b)=c:(c+d)a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c6) ②-①,等式两边同时相减得 (a-b)/(a+b)=(c-d)/(c+d) =(k-1)/(k+1)7) 做做此题:一个长方形,比例为2:3,长方形的面积是36平方厘米,求它的长和宽.(有意者,请做在后面.)假设长方形宽为2,长为3,那么:宽:2x2=4 长:3x3=9答:长方形的长是9,宽是4.将36分解质因数,发现有2和3的倍数,利用它们,得到结果.很累的比例的性质 1(1)a/c和b/c(a/c):(b/c)=(a/c)*(c/b)=a:b即(a/c):(b/c)=a:b(2)b/a和d/cb/a=1/(a/b)=1/(c/d)=d/c即b/a=d/c(即都倒过来仍相等)(3)(a+b)/b和(c+d)/d(a+b)/b=a/b+b/b=a/b+1=c/d+1=c/d+d/d=(c+d)/d即(a+b)/b=(c+d)/d(同理(a+b)/a=(c+d)/c(为下一题做准备))(4)(a+b)/(a-b)和(c+d)/(c-d) (a≠b,c≠d)因为(a+b)/b=(c+d)/d及(a+b)/a=(c+d)/c根据(2)的结论,所以有b/(a+b)=d/(c+d)和a/(a+b)=c/(c+d)两个等式相减所以a/(a+b)-b/(a+b)=c/(c+d)-d/(c+d)即(a-b)/(a+b)=(c-d)/(c+d)根据(2)的结论,有(a+b)/(a-b)=(c+d)/(c-d)表示两个比相等的式子叫做比例,是比的意义比例有4项,前项后项各2个.在比例里,两个外项的即等於两个内项的积,这叫做比的基本性质.比表示两个数相除;只有两个项:比的前项和后项。

比例的基本性质是什么

比例的基本性质是什么

比例的基本性质是什么比例的基本性质包括比例的定义、比例的性质、比例的四则运算和比例的应用等。

1. 比例的定义:比例是指两个或多个有联系的数之间的比较关系。

比例可以表示为两个分数之间的等式,其中分子表示相等的部分,分母表示相等的整体。

2. 比例的性质:(1) 如果一比例中,先比与后比互为倒数,那么这个比例称为倒数比。

(2) 如果一比例中,分母相等,那么这个比例称为方比。

(3) 如果一比例中,分子相等,那么这个比例称为比例恒定。

(4) 如果有两个比例的倒比也是比例,那么它们互为倒比。

3. 比例的四则运算:(1) 乘法:如果两个比例的前项与后项依次相等,则它们的乘积也是一个比例,即(a:b) * (c:d) = (ac:bd)。

(2) 除法:如果两个比例的前项与后项分别相除,那么它们的商也是一个比例,即(a:b) / (c:d) = (ad:bc)。

(3) 倒数:如果一个比例的前项与后项互为倒数,那么它们的倒数也是一个比例,即(a:b)的倒数是(b:a)。

(4) 平方根:如果一个比例的前项与后项分别开平方,那么它们的平方根也是一个比例,即(a:b)的平方根是(√a:√b)。

4. 比例的应用:比例在实际生活中有着广泛的应用,如:(1) 比例在商品打折优惠、购物促销活动中的应用。

比如某商品价格原为100元,现在打8折,那么通过比例计算可得到打折后的价格为80元。

(2) 比例在地图的绘制中的应用。

比例尺可以帮助我们在地图上准确测量和表示实际距离。

(3) 比例在食谱中的应用。

食谱中的食材比例可以帮助我们控制食材的搭配和比例,达到合理膳食的目的。

(4) 比例在工程施工中的应用。

比例可以用于测量、计算和规划工程建设中的各个部分,确保施工的顺利进行。

综上所述,比例的基本性质包括比例的定义、性质、四则运算和应用。

比例是数学中重要的概念,在实际生活中有着广泛的应用。

《比例的基本性质》

《比例的基本性质》

基础练习题
总结词
掌握基础概念
详细描述
基础练习题主要涉及比例的基本概念和性质,例如比 例的定义、性质和分类等。通过解答这些题目,可以 帮助学生更好地理解比例的基本概念,为后续的学习 打下坚实的基础。
进阶练习题
总结词
应用基本性质
详细描述
进阶练习题主要涉及比例的基本性质的应用,例如比例的交叉乘积、比例的合比 性质等。通过解答这些题目,可以帮助学生掌握如何应用比例的基本性质进行计 算和证明,提高解题能力。
比例尺
在地图或图表中,比例尺 用于表示实际距离与图表 上距离之间的比例关系。
在物理问题中的比例应用
温度转换
在物理学中,比例常用于温度转 换,例如将摄氏度转换为华氏度

压力计算
在流体力学中,比例关系可用于 计算压力差或流量,例如使用伯 努利定理来计算两点之间的压力
差。
化学反应速率
在化学中,反应速率通常与反应 物的浓度成正比,即反应速率与 反应物浓度的比例关系决定了反
挑战练习题
总结词:综合应用
详细描述:挑战练习题主要涉及比例的综合应用,例如比 例在几何、代数等领域的应用。通过解答这些题目,可以 帮助学生提高综合应用能力,加深对比例基本性质的理解 和应用。
感谢您的观看
THANKS
比的表示方法
通常用冒号或斜线表示比,例如a:b或a/b。 也可以用交叉乘法表示比,即a×c/b×c。
比的性质
比的性质包括反比、正比和等比。
正比是指两个量的比值是一个常数,即y=kx(值互为倒数。
等比是指两个量的比值是一个常数,即y=e^kx(k为常 数)。
比例的乘法运算
总结词
比例的乘法运算是将两个或多个比例相乘。

《比例的基本性质》教案

《比例的基本性质》教案
其次,实践活动环节,学生们分组讨论和实验操作表现得相当积极。他们通过解决实际问题,将比例知识应用到实际情境中,这有助于巩固所学知识。但在这一过程中,我也注意到有些小组在讨论时容易偏离主题,需要我在旁边适时引导,帮助他们集中注意力。
此外,学生小组讨论环节,大家对于比例在实际生活中的应用提出了许多有趣的见解,这让我感到很欣慰。然而,我也发现部分学生在分享成果时表达不够清晰,这可能是因为他们在之前的讨论中未能充分交流。因此,我考虑在下次课中,加强学生在讨论过程中的交流与表达能力的培养。
(3)通过设计不同类型的练习题,让学生在解决过程中灵活运用比例性质,提高解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《比例的基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较两个数量大小的情况?”比如,在购物时比较商品的价格,或者在烹饪时比较食材的比例。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索比例的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解比例的基本概念。比例是表示两个比相等的式子,它在数学中非常重要,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,如果两个物品的价格比为3:4,那么我们可以通过比例来计算它们的价格。
3.重点难点解析:在讲授过程中,我会特别强调比例的定义和比例的基本性质这两个重点。对于难点部分,比如比例性质的推导和应用,我会通过举例和比较来帮助大家理解。
4.对于学习困难的学生,可以适当进行课后辅导,帮助他们弥补知识漏洞。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与比例相关的实际问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题
比例的基本性质
年级

授课时间
授课教师
课型ቤተ መጻሕፍቲ ባይዱ
教学目标
1.了解比例的基本性质,即如果 ,那么ad=bc.
2.会对比例的基本性质进行变形.
重点:掌握比例的基本性质及其推导过程.
难点:对比例的基本性质进行变形.
自主学习任务
1、观看微课《比例的基本性质》
2、认真看教材第62页、63页,理解比例的基本性质得出的根据是什么
3、结合例1掌握比例的基本性质的三种变形的推导
4、完成平板上的检测和教材63页的练习并拍照上传
学情归纳
不能灵活应用比例的基本性质解决实际问题
课堂教学设计
教学步聚
教学内容与活动组织
设计意图
教学时间
自学反馈
展示课前自主学习任务完成情况。
1.提问检测比例的基本性质。
2.表杨优秀小组与个人,酌情奖励加分。
3.方法提示:根据具体情况截图
固化习惯
养成好的学习方法
(1-2)MIN
展示交流
答疑解惑
解决比例基本性质的应用。
1.学生找出错题中出现的问题,并说出解决方法。
2.教师针对学生回答进行总结
3.针对每一个问题类型用平板推题检测
解决个性和共性问题
(15—17)MIN
合作交流
知识的应用迁移,巩固提高
如果把2变成k呢?你还会吗?
如果不给2或k还会吗?
1、步骤完整,格式规范,字迹工整,拍照清晰并上传
2、按着要求互批
设计意图:规范学生答题过程,了解学习情况
对知识进行拓展延伸。
通过不同的教学活动,培养学生高阶思维能力。
(9-10)MIN
总结评价
从以下几方面进行总结:
1.学生总结收获与疑惑。
2.教师总结本节课学生表现。
梳理知识,帮助学生建构知识。
表彰优秀小组和优秀个人,固化习惯。
如:
1.独立思考2分钟找准解题思路
2.小组讨论3分钟,草稿纸上记下讨论结果,每组选一名发言人讲述,其他组补充
3.要求发言人条理清楚、声音洪亮、吐词清晰,根据情况加1-2分
设计意图:在自主学习的基础上,通过典型例题的学习,巩固所学知识。
培养学生的合作交流能力。
(9—11)MIN
检测提升
平板推送当堂检测
(1)MIN
课后
反思
相关文档
最新文档