三角恒等变换问题(典型题型)
三角恒等变换经典例题
三角恒等变换1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=- (2)βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan ba ϕϕϕ=== ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin = (2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a bb a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10.常见数据:sin15cos75cos15︒=︒=︒=︒= 3215tan -=︒, 3275tan +=︒,专题四 三角恒等变形各类题命题点1 和差公式的直接应用1.(2015课标1,2) 0000sin 20cos10cos160sin10-=( ).AB 1.2C - 1.2D2.(2017江苏,5)若1tan()46πα-=,则tan α=_____________ . 3.(2016·杭州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)=________.4.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-125.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·宁波期末考试)已知θ∈(0,π4),且sin θ-cos θ=-144,则2cos 2θ-1cos (π4+θ)等于( )A.23B.43C.34D.327.(2017浙江高考模拟训练冲刺卷四,4)已知4sin25θ=-,3cos 25θ=,则θ属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 命题点2 角的变换8.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255 D.55或5259.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.10.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.11.(2016·浙江五校联考)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)等于( )A.43 B .-43 C .-23 D .-3 命题点3 三角函数式的化简12.(2013重庆,9)004cos50tan 40-=()BC 1 13.化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);化简4cos 2sin 22+-14.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).15. 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.16.(2017·嘉兴第一中学调研)若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于A.12 B .-12C .2D .-2 命题点4 给值求值问题17.(2017课标全国3文,4)已知4sin cos 3αα-=,则sin2α=( ) 7.9A - 2.9B - 2.9C 7.9D18.(2016·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.19.(2013浙江,6)已知R α∈,sin 2cos αα+=则tan 2α=( ) 4.3A 3.4B 3.4C - 4.3D - 20.(2014江苏,15)已知(,)2παπ∈,sin α=(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。
专题12 简单的三角恒等变换(解析版)
于是 b + c = 2R (sinB + sinC )
=
43 3
sinB
+
sin
2 3
−
B
=
43 3
3 sinB + 2
3 2
cosB
=
4sin
B
+
6
.
因为 ABC 是锐角三角形且 A = , 3
所以由 C
2
,得
2 3
−
B
2
,因此
B
的取值范围是
6
,
2
.
6/7
( 而由
;(2)
−
2 2
,1
.
【解析】(1)由正弦定理得: sinA = sinBcosC + sinCsinB
因为: sinA = sin ( B + C ) = sinBcosC + cosBsinC
故 cosBsinC = sinCsinB 因为 sinC 0 ,所以 cosB = sinB 因为 0 B ,所以 B =
2
2
∴ A .
6
4
) ∵
a
=
2
,∴
a sinA
2
2,4
.又 b + c = a , sinB + sinC sinA
3/7
( ) ∴ b + c 2 2, 4 . sinB + sinC
( ) 故答案为 2 2, 4
7.(三角恒等变换在实际中的运用)如图,有一壁画,最高点 A 处离地面 6m,最低点 B 处离地面 3.5m.若 从离地高 2m 的 C 处观赏它,则离墙______m 时,视角 最大.
简单三角恒等变换典型例题
简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ⇔ )cos(sin sin cos cos βαβαβα±= (3)βαβαβαtan tan 1tan tan )tan( ±=± ⇔ 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2cos 2cos 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα2cos 24cos 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2sin 2cos 12αα=-因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα2sin 24cos 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值 (提示:βαπαπβπ++=--+)4()45(,只要求出)sin(βαπ++即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A +B 的弧度4、弦化切,即已知tan,求与sin,c os相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:① )10tan 31(50sin 0+ ② 035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-1、sin 20cos 40cos 20sin 40+的值等于( )A.14 B.2 C .12D .42、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3- B .3 C .13- D.133、c os5πcos 52π的值等于( )A .41 B .21 C .2 D .44、 已知02A π<<,且3cos 5A =,那么sin 2A 等于( )A.425 B .725 C .1225 D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于ﻩ( )A .1813ﻩB.223ﻩC.2213 D.1836、sin165º= ( ) A.21B.23C.426+ D .426- 7、si n14ºc os16º+sin76ºcos 74º的值是( )A.23 B.21 C.23 D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A.247 B.247- C .724 D .724- 9、化简2sin (4π-x )·sin(4π+x ),其结果是( ) A .sin 2x B .cos2x C.-cos 2x D.-sin 2x 10、s in12π—3cos 12π的值是 ( ) A.0 B. —2 C .2 D. 2 s in125π11、)( 75tan 75tan 12的值为︒︒-A .32 B.332 C. 32- D.332-。
三角恒等变换的常见题型
三角恒等变换的常见题型湖南浏阳九中 吴志华三角恒等变换也是高考复习的重点之一,三角函数的化简、求值及三角恒等式的证明是三角变换的基本问题。
历年高考中,在考察三角公式的掌握和运用的同时,还注重考察思维的灵活性和发散性,以及观察能力、运算及观察能力、运算推理能力和综合分析能力。
题型一:三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
例1.(06北京理,15)已知函数1)4()cos x f x xπ-=. 设α的第四象限的角,且tan α43=-,求()f α的值。
分析:先利用公式βαβαβαsin cos cos sin )sin(-=-将)42sin(π-x 展开,再利用公式x x 2cos 22cos 1=+将分子变换,从而将函数化简。
再利用αtan 的值求出ααcos ,sin 的值,最后得出)(αf 的值。
解析:xx xx x x x x x x x x f sin 2cos 2cos cos sin 2cos 2cos 2cos 2sin 1cos )42sin(21)(2-=-=+-=--=π∵α是第四象限的角且34tan -=α,∴53cos ,54sin =-=αα∴514sin 2cos 2)(=-=αααf 点评:能化简的先化简后求值,可以使计算简便题型二:三角函数的求值 三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
三角恒等变换经典例题
三角恒等变换经典例题删除明显有问题的段落,改写每段话如下:三角恒等变换半角公式是根据角度所在的象限来选择符号的。
1.两角和与差的正弦、余弦、正切公式:1)sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ2)cos(α+β)=cosαcosβ-sinαsinβ,cos(α-β)=cosαcosβ+sinαsinβ3)tan(α+β)=tanα+tanβ/(1-tanαtanβ),tan(α-β)=tanα-tanβ/(1+tanαtanβ)2.万能公式:tan(α-β)=tanα-tanβ/(1+tanαtanβ),tan(α+β)=tanα+tanβ/(1-tanαtanβ)3.角度的三角函数值:sinα=1/2,cosα=1/2,tanα=24.降幂公式:sin^2α=(1-cos2α)/2,cos^2α=(1+cos2α)/2,tan^2α=(1-cos2α)/(1+cos2α)5.辅角公式:asinθ+bcosθ=sqrt(a^2+b^2)sin(θ+φ),其中辅助角φ所在象限由点(a,b)所在的象限决定,sinφ=b/sqrt(a^2+b^2),cosφ=a/sqrt(a^2+b^2),tanφ=b/a6.二倍角公式:sin2α=2sinαcosα,cos2α=cos^2α-sin^2α=1-2sin^2α=2cos^2α-17.常见数据:sin15°=cos75°=(sqrt(6)-sqrt(2))/4,sin75°=cos15°=(sqrt(6)+sqrt(2))/4.1.cos2a = 1 + cos2a2.sin2a = 1 - cos2atan15° = 2 - √3.tan75° = 2 + √34.升幂公式:1) 1 + cosα = 2cos2α/22) 1 - cosα = 2sin2α/23) 1 ± sinα = (sinα ± cosα)2/24) 1 = sin2α + cos2α1.解:sin20cos10 - cos160sin10 = sin20cos10 + cos20sin10 = sin30 = 1/2,选B。
三角恒等变换大题
三角恒等变换大题1.求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值和最小值.2.已知函数f (x )=4cos 4x -2cos 2x -1sin ⎝ ⎛⎭⎪⎫π4+x sin ⎝ ⎛⎭⎪⎫π4-x .(1)求f ⎝ ⎛⎭⎪⎫-11π12的值;(2)当x ∈⎣⎢⎡⎭⎪⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值.3.已知sin(π4+2α)·sin(π4-2α)=14,α∈(π4,π2),求2sin 2α+tan α-1tan α-1的值.4. 已知α是第一象限角,且cos α=513,求sin (α+π4)cos (2α+4π)的值.5.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α; (2)求f (x )的解析表达式;(3)若角α是一个三角形的最小内角,试求函数f (x )的值域.6.已知函数1)4()cos x f x x π-=.(Ⅰ)求()f x 的定义域;(Ⅱ)设α的第四象限的角,且tan α43=-,求()f α的值。
7.已知02πα<<,15tan 22tan 2αα+=,试求sin 3πα⎛⎫- ⎪⎝⎭的值.8.已知函数f (x )=⎝ ⎛⎭⎪⎫1+1tan x sin 2x +m sin ⎝ ⎛⎭⎪⎫x +π4sin ⎝ ⎛⎭⎪⎫x -π4.(1)当m =0时,求f (x )在区间⎣⎢⎡⎦⎥⎤π8,3π4上的取值范围;(2)当tan α=2时,f (α)=35,求m 的值.9.已知x R ∈,()211sin tan 222tan 2x f x x x x ⎛⎫⎪=- ⎪ ⎪⎝⎭.(1) 若02x π<<,求()f x 的单调的递减区间;(2) 若()2f x =,求x 的值.10.设函数f (x )=3sin x cos x -cos x sin ⎝ ⎛⎭⎪⎫π2+x -12.(1)求f (x )的最小正周期;(2)当∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的最大值和最小值.11.已知函数f (x )=2cos 2x +sin 2x -4cos x .(1)求f (π3)的值; (2)求f (x )的最大值和最小值.12.(1)已知10tan .22210πααβπβαβ<<<<,=,cos(-)=求的值 课堂活动区例1 解题导引 化简的原则是形式简单,三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.本题要充分利用倍角公式进行降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键.解 y =7-4sin x cos x +4cos 2x -4cos 4x=7-2sin 2x +4cos 2x (1-cos 2x )=7-2sin 2x +4cos 2x sin 2x=7-2sin 2x +sin 22x =(1-sin 2x )2+6,由于函数z =(u -1)2+6在[-1,1]中的最大值为z max =(-1-1)2+6=10,最小值为z min =(1-1)2+6=6,故当sin 2x =-1时,y 取得最大值10,当sin 2x =1时,y 取得最小值6.变式迁移1 解 (1)f (x )=(1+cos 2x )2-2cos 2x -1sin ⎝ ⎛⎭⎪⎫π4+x sin ⎝ ⎛⎭⎪⎫π4-x =cos 22x sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x =2cos 22x sin ⎝ ⎛⎭⎪⎫π2+2x =2cos 22x cos 2x =2cos 2x , ∴f ⎝ ⎛⎭⎪⎫-11π12=2cos ⎝ ⎛⎭⎪⎫-11π6=2cos π6= 3. (2)g (x )=cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4. ∵x ∈⎣⎢⎡⎭⎪⎫0,π4,∴2x +π4∈⎣⎢⎡⎭⎪⎫π4,3π4, ∴当x =π8时,g (x )max =2,当x =0时,g (x )min =1.例2 解题导引 (1)这类问题一般是先化简再求值;化简后目标更明确;(2)如果能从已知条件中求出特殊值,应转化为特殊角,可简化运算,对切函数通常化为弦函数.解 由sin(π4+2α)·sin(π4-2α)=sin(π4+2α)·cos(π4+2α)=12sin(π2+4α)=12cos 4α=14,∴cos 4α=12,又α∈(π4,π2),故α=5π12,∴2sin 2α+tan α-1tan α-1=-cos 2α+sin 2α-cos 2αsin αcos α=-cos 2α+-2cos 2αsin 2α=-cos 5π6-2cos 5π6sin 5π6=532.变式迁移2 解 (1)∵α是第一象限角,cos α=513,∴sin α=1213.∴sin (α+π4)cos (2α+4π)=22(sin α+cos α)cos 2α=22(sin α+cos α)cos 2α-sin 2α=22cos α-sin α=22513-1213=-13214.(2)cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=22(cos 2α-sin 2α),∵π2≤α<32π,∴3π4≤α+π4<74π. 又cos(α+π4)=35>0,故可知32π<α+π4<74π, ∴sin(α+π4)=-45,从而cos 2α=sin(2α+π2) =2sin(α+π4)cos(α+π4)=2×(-45)×35=-2425.sin 2α=-cos(2α+π2)=1-2cos 2(α+π4)=1-2×(35)2=725.∴cos(2α+π4)=22(cos 2α-sin 2α)=22×(-2425-725)=-31250.例3 解题导引 本题的关键是第(1)小题的恒等式证明,对于三角恒等式的证明,我们要注意观察、分析条件恒等式与目标恒等式的异同,特别是分析已知和要求的角之间的关系,再分析函数名之间的关系,则容易找到思路.证明三角恒等式的实质就是消除等式两边的差异,有目的地化繁为简,左右归一或变更论证.对于第(2)小题同样要从角的关系入手,利用两角和的正切公式可得关系.第(3)小题则利用基本不等式求解即可.(1)证明 由sin(2α+β)=3sin β,得sin[(α+β)+α]=3sin[(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α,∴tan(α+β)=2tan α.(2)解 由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy=2x , ∴y =x 1+2x 2,即f (x )=x 1+2x 2. (3)解 ∵角α是一个三角形的最小内角,∴0<α≤π3,0<x ≤3,设g (x )=2x +1x ,则g (x )=2x +1x ≥22(当且仅当x =22时取“=”).故函数f (x )的值域为(0,24].变式迁移3 证明 因为左边==2sin x cos x sin 2x -(cos x -1)2=2sin x cos x sin 2x -cos 2x +2cos x -1=2sin x cos x -2cos 2x +2cos x =sin x 1-cos x=sin x (1+cos x )(1-cos x )(1+cos x ) =sin x (1+cos x )sin 2x=1+cos x sin x =右边. 所以原等式成立.课后练习区1.D [∵0<α<π,3sin 2α=sin α,∴6sin αcos α=sin α,又∵sin α≠0,∴cos α=16,cos(α-π)=cos(π-α)=-cos α=-16.]2.C [因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4.所以tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=tan (α+β)-tan ⎝ ⎛⎭⎪⎫β-π41+tan (α+β)tan ⎝ ⎛⎭⎪⎫β-π4=322.]3.B [∵12=cos 2α=1-2sin 2α,∴sin 2α=14.又∵α∈⎝ ⎛⎭⎪⎫-π4,0,∴sin α=-12.]4.B [f (x )=2tan x +1-2sin 2x 212sin x=2tan x +2cos xsin x=2sin x cos x =4sin 2x∴f ⎝ ⎛⎭⎪⎫π12=4sin π6=8.]5.C [由cos 2B +3cos(A +C )+2=0化简变形,得2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴sin B =32.]6.-247解析 因为α为第二象限的角,又sin α=35,所以cos α=-45,tan α=sin αcos α=-34,所以tan 2α=2tan α1-tan 2α=-247.7.1- 2解析 ∵y =2cos 2x +sin 2x =sin 2x +1+cos 2x=sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1,∴当sin(2x +π4)=-1时,函数取得最小值1- 2.8.12解析 ∵cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-22,∴cos α+sin α=12.9.解 (1)∵sin 2α=2sin αcos α, ∴cos α=sin 2α2sin α,…………………………………………………………………………(2分) ∴原式=sin 40°2sin 20°·sin 80°2sin 40°·12·sin 160°2sin 80°=sin (180°-20°)16sin 20°=116.……………………………………………………………………(6分)(2)原式=3-4cos 2α+2cos 22α-13+4cos 2α+2cos 22α-1………………………………………………………(9分) =(1-cos 2α)2(1+cos 2α)2=(2sin 2α)2(2cos 2α)2=tan 4α.………………………………………………………(12分)10.解 f (x )=3sin x cos x -cos x sin ⎝ ⎛⎭⎪⎫π2+x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1.…………………………………………………………………………(4分)(1)T =2π2=π,故f (x )的最小正周期为π.…………………………………………………(6分)(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值0,……………………………………………………………………………………………(10分) 当2x -π6=-π6,即x =0时,f (x )有最小值-32.……………………………………………………………………………………………(12分)11.解 (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.………………………………………………………………………(4分)(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x=3cos 2x -4cos x -1=3(cos x -23)2-73,x ∈R .………………………………………………………………(10分)因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取得最大值6; 当cos x =23时,f (x )取得最小值-73.…………………………………………………(14分)解 (1)当m =0时,f (x )=⎝ ⎛⎭⎪⎫1+cos x sin x sin 2x=sin 2x +sin x cos x =1-cos 2x +sin 2x 2=12⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫2x -π4+1,[3分]由已知x ∈⎣⎢⎡⎦⎥⎤π8,3π4,得2x -π4∈⎣⎢⎡⎦⎥⎤0,5π4,[4分] 所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,[5分]从而得f (x )的值域为⎣⎢⎡⎦⎥⎤0,1+22.[6分](2)f (x )=sin 2x +sin x cos x -m 2cos 2x=1-cos 2x 2+12sin 2x -m2cos 2x=12[sin 2x -(1+m )cos 2x ]+12,[8分] 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=45,cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-35.[10分] 所以35=12⎣⎢⎡⎦⎥⎤45+35(1+m )+12,[11分]解得m =-2.[12分]。
三角恒等变换常考题(含答案)
三角恒等变换基础题型一.选择题(共20小题,每小题5分)时间60分钟4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.5.若,则cos(π﹣2α)=()A.B.C.D.6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.7.若,则=()A. B.C.D.8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.715.已知,则sin2α的值为()A.B.C.D.16.cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣519.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.325.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣226.已知,则tanα=()A.﹣1 B.0 C.D.1三角恒等变换基础题型组卷参考答案与试题解析一.选择题(共30小题)4.(2017•泉州模拟)已知sin2α=,则cos2()=()A.﹣ B.C.﹣ D.【解答】解:==,由于:,所以:=,故选:D.5.(2017•焦作二模)若,则cos(π﹣2α)=()A.B.C.D.【解答】解:由,可得:sinα=.∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.故选D6.(2017•衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.【解答】解:∵sin(α+)+sinα=﹣,∴,∴,∴cos(α﹣)=,∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.故选C.7.(2017•商丘三模)若,则=()A.B.C.D.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.8.(2017•德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,则cosβ=cos[(β﹣α)+α]=cos(β﹣α)cosα﹣sin(β﹣α)sinα=×﹣(﹣)×=,所以β=.故选:C.9.(2017•青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,∵3cos2α=sin(﹣α),∴3(cos2α﹣sin2α)=(cosα﹣sinα),∴co sα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.10.(2017•大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.12.(2017•腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,则cos(2α+)=1﹣2sin2(α+)=,故选:C.13.(2017•榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣ B.﹣7 C.D.7【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.15.(2017•全国三模)已知,则sin2α的值为()A.B.C.D.【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,故选:C.16.(2017•山西一模)cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣【解答】解:cos15°•cos105°﹣cos75°•sin105°=cos15°•cos105°﹣sin15°•sin105°=cos(15°+105°)=cos120°=﹣.故选:A.17.(2017春•陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣ B.C.5 D.﹣5【解答】解:原式=.故选B.19.(2017春•福州期末)cos43°cos77°+sin43°cos167°的值是()A.B.C.D.【解答】解:cos43°cos77°+sin43°cos167°=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°﹣sin43°sin77°=cos(43°+77°)=cos120°=﹣cos60°=﹣.故选D.21.(2017春•荔城区校级期中)已知sinα+cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sina+cosa=,∴(sina+cosa)2=,∴1+2sinacosa=,∴sin2a=﹣.故选:A.23.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.24.(2016•肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.25.(2016•河南模拟)已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣2【解答】解:由tan(α﹣)==,得tanα=3.则=.故选:B.26.(2016•全国二模)已知,则tanα=()A.﹣1 B.0 C.D.1【解答】解:∵,∴cosα﹣sinα=cosα﹣sinα,∴cosα=sinα,∴tanα===﹣1.故选:A.29.(2017•玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.30.(2017•成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称C.在区间(0,)上为减函数D.关于直线x=对称【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为=π,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.。
三角恒等变换练习题及答案
1.已知cos ⎝⎛⎭⎫α+π3=sin ⎝⎛⎭⎫α-π3,则tan α的值为( ) A .-1 B .1 C. 3 D .- 3解析:选B 由已知得12cos α-32sin α=12sin α-32cos α,整理得⎝⎛⎭⎫12+32sin α=⎝⎛⎭⎫12+32cos α,即sin α=cos α,故tan α=1.2.3cos 15°-4sin 215°cos 15°=( )A.12B.22C .1 D. 2 解析:选D 3cos 15°-4sin 215°cos 15°=3cos 15°-2sin 15°·2sin 15°cos 15°=3cos 15°-2sin 15°·sin 30°=3cos 15°-sin 15°=2cos(15°+30°)=2cos 45°= 2.故选D.3.在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .4 2 B.30 C.29 D .2 5解析:选A ∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =4 2. 4.已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010 B.1010 C .-31010 D.31010解析:选C 因为α是第三象限的角,tan α=2,且⎩⎪⎨⎪⎧sin αcos α=tan α,sin 2α+cos 2α=1,所以cos α=-11+tan 2α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010,选C. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c ,则B =( ) A.π6 B.π4 C.π3 D.2π3 解析:选D 因为2b cos C =2a +c ,所以由正弦定理可得2sin B cos C =2sin A +sin C =2sin(B +C )+sin C =2sin B cos C +2cos B sin C +sin C ,即2cos B sin C =-sin C ,又sin C ≠0,所以cos B =-12,又0<B <π,所以B =2π3,故选D. 6.已知3cos 2α=4sin ⎝⎛⎭⎫π4-α,α∈⎝⎛⎭⎫π4,π,则sin 2α=( )A.79 B .-79 C.19 D .-19解析:选D 由题意知3(cos 2α-sin 2α)=22(cos α-sin α),由于α∈⎝⎛⎭⎫π4,π,因而cosα≠sin α,则3(cos α+sin α)=22,那么9(1+sin 2α)=8,sin 2α=-19. 7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43 D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,由面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).8.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则c b sin B=( ) A.32 B.233 C.33 D. 3解析:选B 由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,故A =π3.对于b 2=ac ,由正弦定理,得sin 2B =sin A sin C =32·sin C ,由正弦定理,得c b sin B =sin C sin 2B =sin C 32sin C =233.故选B. 9.已知x ∈(0,π),且cos ⎝⎛⎭⎫2x -π2=sin 2x ,则tan ⎝⎛⎭⎫x -π4=( ) A.13 B .-13 C .3 D .-3解析:选A 由cos ⎝⎛⎭⎫2x -π2=sin 2x 得sin 2x =sin 2x ,∵x ∈(0,π),∴tan x =2,∴tan ⎝⎛⎭⎫x -π4=tan x -11+tan x =13. 10.已知tan ⎝⎛⎭⎫α+π4=34,则cos 2⎝⎛⎭⎫π4-α=( ) A.725 B.925 C.1625 D.2425解析:选B 由tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=34,解得tan α=-17,所以cos 2⎝⎛⎭⎫π4-α=1+cos ⎝⎛⎭⎫π2-2α2=1+sin 2α2=12+sin αcos α,又sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-750,故12+sin αcos α=925. 11.已知tan ⎝⎛⎭⎫α-5π4=15,则tan α=________. 解析:tan ⎝⎛⎭⎫α-5π4=tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=15,解得tan α=32. 答案:3212.如图,已知两座灯塔A 和B 与海洋观察站C 的距离分别为a 海里和2a 海里,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 和B 的距离为________海里.解析:依题意知∠ACB =180°-20°-40°=120°,在△ABC 中,由余弦定理知AB =AC 2+BC 2-2AC ·BC cos 120°=7a 2=7a .即灯塔A 与灯塔B 的距离为7a 海里. 答案:7a13.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a =4,a sin B =3b cos A ,若△ABC 的面积S =43,则b +c =________.解析:由正弦定理,得sin A sin B =3sin B cos A ,又sin B ≠0,∴tan A =3,∴A =π3. 由S =12bc ×32=43,得bc =16,由余弦定理得,16=b 2+c 2-bc ,∴c 2+b 2=32,∴b +c =8.答案:8。
专题6 三角恒等变换题型篇
专题六三角恒等变换题型篇三角恒等变换的基本题型1.求值:三角函数的求值有三种类型(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如(),2()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角.2.化简:化简目标:项数尽量少、次数尽量低、尽量不含分母和根号.对能求出具体数值的,要求出值.3.证明:三角函数的求值有两种类型(1)无条件三角恒等式的证明:证明方法有:化繁为简法、左右归一法、变更论题法;(2)有条件三角恒等式的证明:可分为四类:①已知角度关系,证明函数关系;②已知函数关系证明角度关系;③已知函数关系证明函数关系;④三角形内的边角恒等式的证明.证明方法除了注意到无条件三角恒等式的证明方法外,还用到直推法与代入法两种方法.4.三种题型的相互关系:考点一给角求值【方法总结】解给角求值问题的解题策略解决给角求值问题的关键是两种变换:一是角的变换,注意各角之间是否具有和差关系、互补(余)关系、倍半关系,从而选择相应公式进行转化,把非特殊角的三角函数相约或相消,从而转化为特殊角的三角函数;二是结构变换,在熟悉各种公式的结构特点、符号特征的基础上,结合所求式子的特点合理地进行变形.【例题选讲】[例1](1)(2015·全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°=()A .-32B .32C .-12D .12答案D解析sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=12,故选D .(2)cos 10°(1+3tan 10°)cos 50°的值是________.答案2解析原式=cos 10°+3sin 10°cos 50°=2sin(10°+30°)cos 50°=2sin 40°sin 40°=2.(3)计算:cos 10°-3cos(-100°)1-sin 10°=________.答案2解析cos 10°-3cos(-100°)1-sin 10°=cos 10°+3cos 80°1-cos 80°=cos 10°+3sin 10°2·sin 40°=2sin(10°+30°)2·sin 40°= 2.(4)sin 50°(1+3tan 10°)=________.答案1解析sin50°(1+3tan10°)=sin50°(1+tan60°·tan10°)=sin50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos 60°-10°cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(5)计算:1+cos 20°2sin 20°-sin tan ________.答案32解析原式=2cos 210°4sin 10°cos 10°-sin10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin(30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32.【对点训练】1.sin 35sin 25cos35cos 25︒-︒︒-︒的值等于()A .3B .-C .3D .32.计算sin 110°sin 20°cos 2155°-sin 2155°的值为()A .-12B .12C .32D .-323.计算:1-cos 210°cos 80°1-cos 20°=()A .22B .12C .32D .-224.求值:cos 20°cos 35°1-sin 20°=()A .1B .2C .2D .35.2cos 10°-sin 20°sin 70°的值是()A.12B.32C.3D.26.cos85°+sin25°cos30°cos25°等于()A.-32B.22C.12D.17.(1+tan18°)·(1+tan27°)的值是()A.3B.1+2C.2D.2(tan18°+tan27°) 8.4sin80°-cos10°sin10°=()A.3B.-3C.2D.22-39.4cos50°-tan40°等于()A.2B.2+32C.3D.22-110.计算:3cos10°-1sin170°=.11.[2sin50°+sin10°(1+3tan10°)]·2sin280°=.12.求值:(3+tan30°tan40°+tan40°tan50°+tan50°tan60°)·tan10°.考点二给值求值【方法总结】解给值求值问题的一般步骤(1)先化简条件式子或待求式子;(2)观察已知条件与所求式子之间的联系(从三角函数的名及角入手);(3)将已知条件代入所求式子,化简求值.【例题选讲】[例2](1)已知α为第二象限角,且sin2α=-2425,则cosα-sinα的值为()A.75B.-75C.15D.-15答案B解析因为sin2α=2sinαcosα=-2425,即1-2sinαcosα=4925,所以(sinα-cosα)2=4925α为第二象限角,所以cosα<sinα,则cosα-sinα=-7 5.(2)已知sin2ααtan(α-β)=12,则tan(α+β)等于()A.-2B.-1C.-211D.211答案A 解析由题意,可得cos2α=-45,则tan2α=-34,tan(α+β)=tan[2α-(α-β)]=tan 2α-tan(α-β)1+tan 2αtan(α-β)=-2.(3)已知tan 2α=-22,且π4<α<π2,则2cos 2α2-sin α-12sin 的值是()A .2B .-2C .-3+22D .3-22答案C解析因为π4<α<π2,所以tan α>0,所以由tan2α=2tan α1-tan 2α=-22可得tan α=2.原式=2cos 2α2-1-sin απ4cos α+cos π4sin =cos α-sin αcos α+sin α=1-tan α1+tan α=1-21+2=-3+22.故选C .(4)已知αβ=35,=-1213,则cos(α+β)=.答案-3365解析∵α∴π4-α-π2,=35,∴=-45,∵=-1213,∴=1213,又∵β,π4+β∴=513,∴cos(α+β)==513×35-1213×45=-3365.(5)设α为锐角,若=45,则sin α的值为.答案17250解析∵α为锐角且=45>0,∴α+π6∈∴=35.∴αsin 2-π4=sin π4-cos π4=2sin-222cos 1=2×35×45-222×-1=12225-7250=17250.(6)已知α且2sin 2α-sin α·cos α-3cos 2α=0,=.答案268解析∵α2sin 2α-sin α·cos α-3cos 2α=0,则(2sin α-3cosα)·(sin α+cos α)=0,又∵αsin α+cos α>0,∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=213,sin α=313,=22(sin α+cos α)(sin α+cos α)2+(cos 2α-sin 2α)=24cos α=268.【对点训练】13.已知α是第三象限的角,且tan α=2,则()A .-1010B .1010C .-31010D .3101014.已知α是第二象限角,且tan α=-13,则sin 2α等于()A .-31010B .31010C .-35D .3515.已知sin α=35且α为第二象限角,则tan α()A .-195B .-519C .-3117D .-173116.已知tan(α+β)=2,tan β=3,则sin 2α=()A .725B .1425C .-725D .-142517.已知2=-79,则sin ()A .13B .±13C .-19D .1918.已知=12,且-π2<α<0,则2sin 2α+sin 2α=()A.-255B.-3510C.-31010D.25519.若α3cos2α=sin2α的值为()A.-118B.118C.-1718D.171820.已知sinα=-45,α∈3π2,2π,若sin(α+β)cosβ=2,则tan(α+β)=()A.613B.136C.-613D.-13621.设α为锐角,若=45,则sin α()A.1225B.2425C.-2425D.-122522.已知=14,则sin4θ+cos4θ的值为.23.已知=1010,θθ=.24.设α,β∈(0,π),sin(α+β)=513,tan α2=12,则cosβ=________.考点三给值求角【方法总结】解给值求角问题的一般步骤(1)界定角的范围,根据条件确定所求角的范围.(2)求角的某一个三角函数值.即根据已知条件,选取合适的三角函数求值.①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数,为防止增解最好选取在范围内单调的三角(0,π),选余弦函数较好;-π2,(3)结合三角函数值及角的范围写出所求的角.【例题选讲】[例3](1)已知α,β均为锐角,且cosα=255,cosβ=1010,则α-β=________.答案-π4解析∵α,β均为锐角,∴sinα=55,sinβ=31010.∴cos(α-β)=cosαcosβ+sin αsin β=255×1010+55×31010=22.又sin α<sin β,∴0<α<β<π2,∴-π2<α-β<0.故α-β=-π4.(2)已知cos α=17,cos(α-β)=1314,且0<β<α<π2,则β=________.答案π3解析由cos α=17,0<α<π2,得sin α=1-cos 2α=437.由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2(α-β)=3314.∵β=α-(α-β),∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12.∵0<β<π2,∴β=π3.(3)已知α,β,γ都是锐角,且tan α=12,tan β=15,tan γ=18,则α+β+γ=________.答案π4解析∵tan(α+β)=tan α+tan β1-tan αtan β=12+151-12×15=79,tan(α+β+γ)=tan(α+β)+tan γ1-tan(α+β)tan γ=79+181-79×18=1,∵α,β,γ∴α+β∈(0,π),又tan(α+β)=79>0,∴α+β∴α+β+γ∈(0,π),∴α+β+γ=π4.(4)在斜三角形ABC 中,sin A =-2cos B cos C ,且tan B ·tan C =1-2,则角A 的值为()A .π4B .π3C .π2D .3π4答案A解析由题意知,sin A =sin(B +C )=sin B cos C +cos B sin C =-2cos B cos C ,在等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,即tan A =1,因为0<A <π,所以A =π4.(5)已知α,β∈(0,π),tan α=2,cos β=-7210,则2α-β=________.答案-π4解析法一因为tan α=2>0,α∈(0,π),所以α同理可得β∈且tan β=-17.所以α-β∈(-π,0),tan(α-β)=tan α-tan β1+tan αtan β=3>0,所以α-β∈π所以2α-β∈(-π,0).又tan(2α-β)=tan[α+(α-β)]=tan α+tan(α-β)1-tan αtan(α-β)=-1,所以2α-β=-π4.法二因为tan α=2>1,α∈(0,π),所以α因为cos β=-7210,β∈(0,π),所以β所以2α-β-π2,因为tan(2α-β)=tan[α+(α-β)]=tan α+tan(α-β)1-tan αtan(α-β)=-1,所以2α-β=-π4.【评析】三角函数值的符号与角的范围有直接关系,借助三角函数值的符号可有效缩小角的范围.本题缩小角的范围分为两层:先由条件中tan α,cos β的符号缩小α,β的范围,得到α-β的范围,再由α-β的范围,结合tan(α-β)的符号进而缩小α-β的范围,得到2α-β的范围.难点是想到缩小α-β的范围.另外,本题还可以采用缩小三角函数值的范围来缩小角的范围.法二较法一在求角的范围上运算量小了许多,这也显示出运用三角函数值的范围缩小角的范围的优势.【对点训练】25.已知α,β均为锐角,且sin α=55,cos β=1010,则α-β=________.26.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为()A .3π4B .5π4C .7π4D .5π4或7π427.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________.28.若cos(α-β)=55,cos2α=1010,且α,β均为锐角,α<β,则α+β=.29.已知cos α=17,sin(α+β)=5314,0<α<π2,0<β<π2,则β=________.30.已知cos(α-β)=-1213,cos(α+β)=1213,且α-βα+β则β=.31.已知tanα=43,cos(α+β)=-1114,α,β均为锐角,则β=.32.若=-12,=32,其中π4<α<π2,π4<β<π2,则角α+β的值为________.33.定义运算|a b c d|=ad-bc.若cosα=17,|sinαsinβcosαcosβ|=3314,0<β<α<π2,则β=.34.在△ABC中,3sin A+4cos B=6,3cos A+4sin B=1,则C的大小为()A.π6B.56πC.π6或56πD.π3或23π35.已知tanα=17,tanβ=13,且α,β均为锐角,则α+2β的值为()A.3π4B.5π4C.π4D.2π336.已知tan(α-β)=12,tanβ=-17,α,β∈(0,π),则2α-β=________。
三角恒等变换问题(典型题型)
三角恒等变换问题三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。
例1 (式的变换---两式相加减,平方相加减)已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++=两式相加得,1322(cos sin sin cos )36αβαβ+-=化简得,59sin()72βα-=-即59sin()72αβ-=方法评析:式的变换包括:➢ 1、tan(α±β)公式的变用 ➢ 2、齐次式➢ 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) ➢ 4、两式相加减,平方相加减➢ 5、一串特殊的连锁反应(角成等差,连乘)例2 (角的变换---已知角与未知角的转化) 已知27sin()241025παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α,于是3tan 4α=-故333482534tan()31113tan 331παα-+-+===-+方法评析:1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.例3(合一变换---辅助角公式)设关于x的方程sin 0x x a +=在(0,2)π内有相异二解βσ和.求a 的取值范围.解:∵1sin 2(sin )2sin()23x x x x x π=+=+, ∴方程化为sin()32a x π+=-.∵方程sin 0x x a ++=在(0,2)π内有相异二解,∴sin()sin33x ππ+≠=. 又sin()13x π+≠± (1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--.方法评析:要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4( ,一题多解型)若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得 方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=. 方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=⎪⎪⎨⎪=-⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。
三角恒等变换常考题(含答案)
三角恒等变换基础题型一.选择题(共20小题,每小题5分)时间60分钟4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.5.若,则cos(π﹣2α)=()A.B.C.D.6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.7.若,则=()A. B.C.D.8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.715.已知,则sin2α的值为()A.B.C.D.16.cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣519.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.325.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣226.已知,则tanα=()A.﹣1 B.0 C.D.1三角恒等变换基础题型组卷参考答案与试题解析一.选择题(共30小题)4.(2017•泉州模拟)已知sin2α=,则cos2()=()A.﹣ B.C.﹣ D.【解答】解:==,由于:,所以:=,故选:D.5.(2017•焦作二模)若,则cos(π﹣2α)=()A.B.C.D.【解答】解:由,可得:sinα=.∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.故选D6.(2017•衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.【解答】解:∵sin(α+)+sinα=﹣,∴,∴,∴cos(α﹣)=,∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.故选C.7.(2017•商丘三模)若,则=()A.B.C.D.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.8.(2017•德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,则cosβ=cos[(β﹣α)+α]=cos(β﹣α)cosα﹣sin(β﹣α)sinα=×﹣(﹣)×=,所以β=.故选:C.9.(2017•青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,∵3cos2α=sin(﹣α),∴3(cos2α﹣sin2α)=(cosα﹣sinα),∴co sα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.10.(2017•大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.12.(2017•腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,则cos(2α+)=1﹣2sin2(α+)=,故选:C.13.(2017•榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣ B.﹣7 C.D.7【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.15.(2017•全国三模)已知,则sin2α的值为()A.B.C.D.【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,故选:C.16.(2017•山西一模)cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣【解答】解:cos15°•cos105°﹣cos75°•sin105°=cos15°•cos105°﹣sin15°•sin105°=cos(15°+105°)=cos120°=﹣.故选:A.17.(2017春•陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣ B.C.5 D.﹣5【解答】解:原式=.故选B.19.(2017春•福州期末)cos43°cos77°+sin43°cos167°的值是()A.B.C.D.【解答】解:cos43°cos77°+sin43°cos167°=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°﹣sin43°sin77°=cos(43°+77°)=cos120°=﹣cos60°=﹣.故选D.21.(2017春•荔城区校级期中)已知sinα+cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sina+cosa=,∴(sina+cosa)2=,∴1+2sinacosa=,∴sin2a=﹣.故选:A.23.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.24.(2016•肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.25.(2016•河南模拟)已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣2【解答】解:由tan(α﹣)==,得tanα=3.则=.故选:B.26.(2016•全国二模)已知,则tanα=()A.﹣1 B.0 C.D.1【解答】解:∵,∴cosα﹣sinα=cosα﹣sinα,∴cosα=sinα,∴tanα===﹣1.故选:A.29.(2017•玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.30.(2017•成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称C.在区间(0,)上为减函数D.关于直线x=对称【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为=π,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.。
三角恒等变换(八大题型+精准练习)(学生版)-2025届高三数学
三角恒等变换(八大题型+精准练习)题型归类题型一、两角和与差的三角函数公式的应用题型二、两角和与差的三角函数公式的逆用与变形题型三、角的变换问题题型四、二倍角公式的应用题型五、给角求值题型六、给值求值题型七、给值求角题型八、三角恒等变换的综合应用题型一、两角和与差的三角函数公式的应用知识要点两角和与差的正余弦与正切①sin (α±β)=sin αcos β±cos αsin β;②cos (α±β)=cos αcos β∓sin αsin β;③tan (α±β)=tan α±tan β1∓tan αtan β;精准练习1.(24-25高三·山东泰安·开学考试)已知sin α+β =13,sin α-β =12,则tan αtan β=()A.15B.-15C.5D.-52.(24-25高三上·安徽·开学考试)已知sin α+β =-35,1tan α+1tan β=2,则sin αsin β=()A.-310B.15C.-15D.3103.(24-25高三·重庆·阶段练习)已知cos α+β =13,cos αcos β=12,则cos 2α-2β =()A.23B.19C.-19D.-134.(2025·广东·一模)已知sin α+π3 -sin α=23,则cos 2α+π3 =()A.-59B.-19C.19D.595.(2024·江西九江·二模)已知α,β∈0,π2 ,cos α-β =56,tan α⋅tan β=14,则α+β=()A.π3B.π4C.π6D.2π36.(24-25高三上·江苏徐州·开学考试)已知sin α-β =2cos α+β ,tan α-β =13,则tan α-tan β=()A.47 B.74C.45D.767.(2025·黑龙江大庆·一模)已知0<α<β<π,且sin α+β +cos α+β =0,sin αsin β=6cos αcos β,则tan α-β =()A.-1B.-12C.-16D.-178.(24-25高三上·河北张家口·开学考试)已知sin (α-β)=13,tan αtan β=4,则sin (α+β)=.题型二、两角和与差的三角函数公式的逆用与变形知识要点1、两角和与差的正切公式的变形tan α±tan β=tan (α±β)(1∓tan αtan β);tan α⋅tan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.2、辅助角公式a sin α+b cos α=a 2+b 2sin (α+ϕ)(其中sin ϕ=ba 2+b2,cos ϕ=aa 2+b2,tan ϕ=ba精准练习9.(23-24高一·黑龙江齐齐哈尔·期末)tan13°+tan32°+tan13°tan32°=()A.tan19°B.1C.-tan19°D.-110.(2024·福建泉州·模拟预测)若sin θ+3cos θ=2,则tan θ=()A.-3B.-33C.33D.3题型三、角的变换问题知识要点拆分角问题:①α=2⋅α2;α=(α+β)-β;②α=β-(β-α);③α=12[(α+β)+(α-β)];④β=12[(α+β)-(α-β)];⑤π4+α=π2-π4-α .注意:特殊的角也看成已知角,如常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-π4-α 等.11.(24-25高三·安徽·阶段练习)若cosα+βcosβ=1m,tanα+β=3cosβsinβ,则cos2α=()A.32m2-1 B.16m2-1 C.4m2-1 D.2m2-112.(2024·江苏镇江·三模)已知角α,β满足tanα=2,2sinβ=cos(α+β)sinα,则tanβ=()A.13B.17C.16D.213.(24-25高三·福建福州·开学考试)已知α,β∈(0,π),且cosα=35,sin(α-β)=513,则cosβ=()A.5665B.1665C.3365D.636514.(23-24高一·江苏南京·期末)若sin(α+β)=cos2αsin(α-β),则tan(α+β)的最大值为()A.62B.64C.22D.2415.(2024·黑龙江双鸭山·模拟预测)已知α,β∈0,π4,cos2α-sin2α=17,且3sinβ=sin(2α+β),则α+β的值为()A.π12B.π6C.π4D.π316.(23-24高三·天津·阶段练习)已知角α,β为锐角,tanα=32,sin(α-β)=2114,则tan2α-β的值为.17.(24-25高三·福建·阶段练习)已知tanα+β=4,tanα-β=-3,则tan2β=.题型四、二倍角公式的应用知识要点1、二倍角公式①sin2α=2sinαcosα;②cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α;③tan2α=2tanα1-tan2α;2、降次(幂)公式sinαcosα=12sin2α;sin2α=1-cos2α2;cos2α=1+cos2α2;3、半角公式sinα2=±1-cosα2;cosα2=±1+cosα2;tanα2=sinα1+cosα=1-cosαsin a.18.(2025·安徽·模拟预测)sin 2π12-sin 27π12=( ).A.32B.12C.-12D.-3219.(24-25高三·安徽亳州·开学考试)已知a ∈0,π2 ,sin3α=5sin a cos2α,则tan α值为()A.3B.32C.22D.120.(24-25高三·广西·阶段练习)已知sin π4+α =3sin π4-α ,则cos2α=()A.-45B.-35C.35D.4521.(24-25高三·云南昆明·阶段练习)已知3sin θ+π3 =cos θ+π6 ,则cos2θ=()A.-12B.17C.12D.3222.(23-24高一·江苏无锡·阶段练习)已知函数f (x )=cos 2ωx +sin ωx cos ωx -12(ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54B.74C.94D.11423.(24-25高三·江苏徐州·阶段练习)已知sin2α=23,α∈0,π4 ,则cos α+π4 =()A.66B.56C.306D.15324.(24-25高三·全国·阶段练习)已知4tan π121+tan2π12cos αsin β+π3=1,则tan (β-α)=()A.3B.33C.1D.23325.(多选)(2024·辽宁·模拟预测)已知α∈π2,π ,β∈0,π ,cos2α=-35,cos β-α =-210,则()A.tan α=-12B.sin β-α =-7210C.α+β=5π4D.cos αcos β=-3210题型五、给角求值知识要点(1)给角求值问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方法.(2)给角求值问题的一般步骤①化简条件式子或待求式子;②观察条件与所求之间的联系,从函数名称及角入手;③将已知条件代入所求式子,化简求值.精准练习26.(23-24高三·甘肃·阶段练习)计算12cos 35π+cos 25πcos 45π()A.2B.-12C.-1D.-227.(多选)(23-24高三·安徽合肥·阶段练习)下列代数式的值为14的是()A.cos 275°-sin 275°B.tan15°1+tan 215°C.cos36°cos72°D.2cos20°cos40°cos80°28.(23-24高三·吉林长春·阶段练习)cos20°1+cos20°tan20°+3 =.29.(2024·广东深圳·模拟预测)计算:cos72°cos -36° =.30.(23-24高三·安徽·期中)tan20°+4sin20°=.31.(2024高三·全国·专题练习)化简求值:cos36°cos72°+sin50°1+3tan10° -cos20°cos80°1-cos20°.32.(2024高一·湖南株洲·竞赛)1-2sin 25°2sin10°-2cos10°=.33.(11-12高一·全国·课后作业)3tan12°-34cos 212°-2 sin12°=.题型六、给值求值知识要点给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式精准练习34.(2024·河南新乡·模拟预测)设cos20°=a ,则13tan50°-1=()A.1-a 23B.a 2+12C.aD.a 235.(24-25高三上·江苏徐州·开学考试)已知sin α+π3 +sin α=23,则cos 2α+π3=()A.-1927B.-19C.19D.192736.(24-25高三·湖南衡阳·开学考试)已知cosα+β=6-24,sinα⋅sinβ=24,则cos2α-2β=()A.12B.22C.32D.137.(24-25高三·云南昆明·阶段练习)若sin160°=m,则sin40°=()A.-2mB.-2m1-m2C.-2m1+m2D.2m1-m238.(24-25高三·四川绵阳·开学考试)已知sin4θ2-cos4θ2=35,θ∈0,π,则1+sin2θcos2θ-sin2θ+cosθ=()A.-2635B.-325C.-314D.-172839.(24-25高三·安徽·阶段练习)若cosα+βcosβ=1m,tanα+β=3cosβsinβ,则cos2α=()A.32m2-1 B.16m2-1 C.4m2-1 D.2m2-140.(24-25高三·贵州黔东南·开学考试)已知α∈0,π,且cosα+π4=13,则cos2α=()A.429B.±429C.79D.±7941.(2024·山东淄博·二模)设β∈0,π2,若sinα=3sin(α+2β),tanβ=22,则tan(α+2β)=()A.-24B.24C.-22D.2242.(2024·江西宜春·模拟预测)已知α∈π2,3π4,tanπ4+α=12tanπ4-α,则1-sin2α4cos2α=() A.6+42 B.6-42 C.17+122 D.17-12243.(2024·湖南衡阳·模拟预测)已知cosπ5-α=13,则sin11π10+2α=()A.79B.-79C.429D.-42944.(2024·安徽合肥·三模)已知2sinα=1+23cosα,则sin2α-π6=()A.-18B.-78C.34D.7845.(2024·河北保定·三模)已知锐角α,β(α≠β)满足sin α+2cos α=sin β+2cos β,则sin (α+β)的值为()A.31010B.255C.35D.4546.(2024·福建泉州·模拟预测)已知α,β均为锐角,sin 2α-β =253cos α+sin β,则sin α-β =()A.255B.55C.23D.5347.(2024·重庆·三模)已知α∈0,π3,且2sin2α=4cos α-3cos 3α,则cos2α=()A.29B.13C.79D.22348.(2024·山西·三模)若sin2α=33,sin β-α =66,且α∈π4,π ,β∈π,3π2 ,则cos α+β =()A.5+26B.306C.63D.25-26题型七、给值求角知识要点给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.精准练习49.(23-24高一·江苏盐城·期中)已知tan α=-13,tan β=2,且α,β∈0,π ,则α+β的值为()A.π4B.3π4C.5π4D.7π450.(23-24高一·河南·阶段练习)已知0<α<π2,1+sin2α sin π7=2cos 2π14cos2α,则α=()A.3π14B.5π28C.π7D.π1451.(多选)(2023·山西·模拟预测)已知0<β<α<π4,且sin α-β =13,tan α=5tan β,则()A.sin αcos β=56B.sin βcos α=112C.sin2αsin2β=536D.α+β=π352.(2024·陕西铜川·模拟预测)若α∈-π2,π2 ,且cos2α=sin π4-α ,则α的值为.53.(2024高三·江苏·专题练习)已知α为锐角,且sin α+sin α+π3 +sin α+2π3=3,则α=.54.(23-24高三·河北石家庄·阶段练习)若α,β∈0,π2 ,cos α-β2=32,sin α2-β =-12,则α+β=.题型八、三角恒等变换的综合应用知识要点(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)形如y =a sin x +b cos x 化为y =a 2+b 2sin (x +φ),可进一步研究函数的周期性、单调性、最值与对称性.精准练习55.(2024·广东珠海·一模)函数f x =23sin 2ωx +sin 2ωx +2π3,其中ω>0,其最小正周期为π,则下列说法错误的是()A.ω=1B.函数f x 图象关于点π3,3对称C.函数f x 图象向右移φφ>0 个单位后,图象关于y 轴对称,则φ的最小值为5π12D.若x ∈0,π2,则函数f x 的最大值为3+156.(22-23高三上·河北唐山·开学考试)已知α,β∈0,π2 ,且1+sin βcos β=tan π4+α ,则()A.2α=βB.α=βC.α+β=π2D.α+β=π57.(2024·宁夏吴忠·模拟预测)下列四个函数中,最小正周期为2π的是()A.f x =cos 2x +sin x cos xB.f x =1-cos2x2sin x cos xC.f x =cos x +π3+cos x -π3 D.f x =sin x +π6cos x +π6 58.(多选)(2023·河北保定·三模)已知f x =23cos 2x +2sin x cos x -3,则()A.f x =2cos 2x -π6B.f x 的图象的对称轴方程为x =2k π-π3k ∈Z C.f 2023π =3D.f x 在-3π2,-π2上单调递减59.(2024高三·全国·专题练习)设f x =2sin x cos x -2sin 2x -π4.当x ∈0,π2 时,f x +π6 =-13,则cos2x 的值为.60.(24-25高三上·河南·开学考试)已知函数f x =sin2x +sin 2x -π3在区间0,m 上有且仅有2个零点,则实数m 的取值范围为.61.(24-25高三·福建·阶段练习)已知函数f x =22cos 2x +22sin x cos x .(1)将f x 化成f x =A cos ωx +φ +B A >0,ω>0,φ <π 的形式;(2)求f x 的单调区间;(3)若f x 在α,α+π4上的值域为a ,b ,求b -a 的取值范围.62.(24-25高三·北京·开学考试)已知函数f x =cos x 23sin x +cos x -sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)若f (x )在区间[0,m ]上有且只有两个零点,求m 的取值范围.63.(22-23高三·陕西榆林·阶段练习)已知平面向量m =sin x -π6 ,12 ,n =cos x ,12.(1)若m ⊥n ,x ∈0,π2,求实数x 的值;(2)求函数f (x )=m ⋅n的单调递增区间.64.(24-25高一·全国·期末)设f (x )=2sin x cos x +2sin x +π4 ⋅sin π4-x .(1)当x ∈-π2,0时,求f (x )的最大值和最小值;(2)已知f -α2 =33,且当π2≤α≤2π时,求f (α)的值.。
数学课程三角恒等变换练习题及答案
数学课程三角恒等变换练习题及答案1. 练习题1.1 简单练习题1. 计算下列三角函数值,并化简为有理数:(1) sin 30°(2) cos 45°(3) tan 60°2. 利用三角恒等变换证明以下等式:(1) sin^2 x + cos^2 x = 1(2) 1 + tan^2 x = sec^2 x3. 使用三角恒等变换求解以下方程:(1) sin 2x = 0.5(2) cos 2x - sin 2x = 01.2 提高练习题1. 利用三角恒等变换化简下列表达式:(1) cos x + sin x + 1 - cos x(2) cot^2 x + 1 - csc^2 x2. 解下列方程:(1) 2 sin^2 x - 3 cos x - 1 = 0(2) tan^2 x + sec x = 22. 答案2.1 简单练习题答案1.(1) sin 30° = 1/2(2) cos 45° = 1/√2(3) tan 60° = √32. 证明以下等式:(1) 三角恒等变换:sin^2 x + cos^2 x = 1证明:根据三角恒等变换公式 sin^2 x + cos^2 x = 1代入 sin x = cos (90° - x),可得:cos^2 (90° - x) + cos^2 x = 1sin^2 x + cos^2 x = 1(2) 三角恒等变换:1 + tan^2 x = sec^2 x证明:根据三角恒等变换公式 1 + tan^2 x = sec^2 x代入 tan x = sin x / cos x,可得:1 + (sin x / cos x)^2 = (1 / cos x)^21 + sin^2 x / cos^2 x = 1 / cos^2 x(cos^2 x + sin^2 x) / cos^2 x = 1 / cos^2 x1 / cos^2 x = 1 / cos^2 x2.2 提高练习题答案1. 化简以下表达式:(1) cos x + sin x + 1 - cos x= sin x + 1(2) cot^2 x + 1 - csc^2 x= (cos^2 x / sin^2 x) + 1 - (1 / sin^2 x)= (cos^2 x + sin^2 x) / sin^2 x= 1 / sin^2 x2. 解以下方程:(1) 2 sin^2 x - 3 cos x - 1 = 0首先,利用三角恒等变换将方程中的 cos x 表示为 sin x:2 (1 - cos^2 x) - 3 cos x - 1 = 02 - 2 cos^2 x -3 cos x - 1 = 0-2 cos^2 x - 3 cos x + 1 = 0然后,令 t = cos x,将方程转化为关于 t 的二次方程:-2 t^2 - 3 t + 1 = 0解这个二次方程可得 t = -1 或 t = 1/2。
三角恒等变换大题(含详细解答)
三角恒等变换1.已知0<α<π4,0<β<π4且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值. 2.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 3.已知sin(2α-β)=35,sinβ=-1213,且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫-π2,0,求sinα 4.若cos(α+β)cos(α-β)=13,求cos2α-sin2β 5.函数y =12sin2x +sin2x ,x ∈R ,求y 的值域 6.已知0<α<π4,0<β<π4且3sinβ=sin(2α+β),4tan α2=1-tan2α2,求α+β的值. 7.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 8.已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数. 9 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值 10 若,22sin sin =+βα求βαcos cos +的取值范围 11 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+-- 12 已知函数.,2cos 32sinR x x x y ∈+=(1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象参考答案1. 解:由4tan α2=1-tan 2α2得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴2sin(α+β)cos α=4cos(α+β)sin α.∴tan(α+β)=2tan α.∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2,∴α+β=π4评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.2. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛ sin 2α+β2-⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β-⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.3. 解:∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2.∴π<2α-β<5π2.而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos (2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β=45×513-35×⎝⎛⎭⎫-1213=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130,又α∈⎝⎛⎭⎫π2,π,∴sin α=3130130. 评析:由sin(2α-β)求cos(2α-β)、由sin β求cos β,忽视2α-β、β的范围,结果会出现错误.另外,角度变换在三角函数化简求值中经常用到,如:α=(α+β)-β,2α=(α-β)+(α+β),⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2等. 4. 解析:∵cos(α+β)cos(α-β)=13, ∴12(cos2α+cos2β)=13, ∴12(2cos 2α-1+1-2sin 2β)=13, ∴cos 2α-sin 2β=13. 5. 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝⎛⎭⎫2x -π4+12 评析:本题是求有关三角函数的值域的一种通法,即将函数化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的模式.一般地,a cos x +b sin x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2cos x +b a 2+b 2sin x =a 2+b 2(sin φcos x +cos φsin x )=a 2+b 2sin(x +φ),其中tan φ=a b,也可以变换如下:a cos x +b sin x =a 2+b 2(cos φcos x +sin φsin x )=a 2+b 2cos(x -φ),其中tan φ=b a. 6. 解:由4tan α2=1-tan 2α2 得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, ∴2sin(α+β)cos α=4cos(α+β)sin α. ∴tan(α+β)=2tan α. ∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2, ∴α+β=π4. 评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.7. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛sin 2α+β2- ⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β- ⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.8. 解:(1)当0θ=时,()sin cos )4f x x x x π=+=+ 322,22,24244k x k k x k πππππππππ-≤+≤+-≤≤+()f x 为递增; 3522,22,24244k x k k x k πππππππππ+≤+≤++≤≤+()f x 为递减 ()f x ∴为递增区间为 3[2,2],44k k k Z ππππ-+∈; ()f x 为递减区间为5[2,2],44k k k Z ππππ++∈。
简单的三角恒等变换专题及答案
简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。
答案:B。
通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。
2.sin70°/(2cos10°-sin20°)的值是()。
答案:C。
通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。
答案:B。
通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。
答案:B。
通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。
5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。
答案:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换问题
三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。
例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2
3
αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221
cos 2cos sin sin 4ααββ++=
两式相加得,1322(cos sin sin cos )36
αβαβ+-= 化简得,59sin()72
βα-=- 即59sin()72
αβ-=
方法评析:式的变换包括:
1、tan(α±β)公式的变用
2、齐次式
3、 “1”的运用(1±sin α, 1±cos α凑完全平方)
4、两式相加减,平方相加减
5、一串特殊的连锁反应(角成等差,连乘)
例2 (角的变换---已知角与未知角的转化)
已知7sin()24
25π
αα-=
=,求sin α及tan()3
π
α+. 解:由题设条件,应用两角差的正弦公式得
)cos (sin 22)4sin(1027ααπα-=-=,即5
7
cos sin =-αα ①
由题设条件,应用二倍角余弦公式得 故5
1sin cos -=+αα ② 由①和②式得5
3sin =α,5
4cos -=α, 于是3
tan 4
α=-
故3
tan()34πα-+===
方法评析:
1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.
2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.
例3(合一变换---辅助角公式)
设关于x 的方程sin 0x x a ++=在(0,2)π内有相异二解βσ和.求a 的取值范围.
解: ∵1sin 2(sin )2sin()2
3
x x x x x π
+==+, ∴方程化为sin()32
a
x π
+=-.
∵方程
sin 0x x a ++=在(0,2)π内有相异二解,
∴sin()sin
3
3
2
x π
π
+≠=
.
又sin()13
x π
+≠± (1±时仅有一解),
∴
122a a <≠
且-, 即2a a <≠且
∴ a 的取值范围是(2,(3,2)--.
方法评析:要注意三角函数实根个数与普通方程的区别,这里不能忘记
(0,2)π这一条件.
例4( ,一题多解型)
若cos 2sin αα+=求tan α的值.
解: 方法一:(“1”的运用)
将已知式两端平方得
方法二:(合一变换)
(
)
αϕ
+=
1
tan
2
ϕ=,
再由()
sin1
αϕ
+=-知,()
2
2
k k
π
αϕπ
+=-∈Z,所以2
2
k
π
απϕ
=--,所以
sin
cos
2
tan tan2tan2
22sin
cos
2
k
π
ϕ
ππϕ
απϕϕ
πϕ
ϕ
⎛⎫
--
⎪
⎛⎫⎛⎫⎝⎭
=--=--===
⎪ ⎪⎛⎫
⎝⎭⎝⎭--
⎪
⎝⎭
方法三:(式的变换)
令sin2cos t
αα
-=,和已知式平方相加得2
55t
=+,故0
t=,即sin2cos0
αα
-=,故tan2
α=.
方法四:(与单位圆结合)
我们可以认为点()
cos,sin
Mαα
在直线2
x y
+=
而点M又在单位圆221
x y
+=
上,解方程组可得
5
x
y
⎧
=
⎪⎪
⎨
⎪=-
⎪⎩
,从而tan2
y
x
α==
.这个解法和用方程组
22
cos2sin
sin cos1
αα
αα
⎧+=
⎪
⎨
+=
⎪⎩
求解实质上是一致的.
方法评析:本题考查利用三角恒等变换求值的能力,试题的根源
是考生所常见的“已知()1
sin cos ,0,5
βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.
有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元,
想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。