土木工程流体力学实验报告实验分析 与讨论答案
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学实验报告
实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
土木工程材料实验报告答案
土木工程材料实验报告答案土木工程材料实验报告答案1. 引言土木工程材料实验是土木工程学科中的重要一环,通过实验可以了解和掌握不同材料的性能特点,为工程设计和施工提供科学依据。
本报告旨在分析和总结在实验中所得到的数据和结论,以及对实验结果的解释和评价。
2. 实验目的本次实验的主要目的是研究不同土木工程材料的力学性能,包括抗压强度、抗拉强度、弹性模量等指标。
通过实验数据的收集和分析,可以评估材料的质量和可靠性,为工程设计和材料选择提供参考。
3. 实验方法本次实验采用标准试验方法进行,包括抗压试验和抗拉试验。
在抗压试验中,使用压力机对不同样品进行加载,测量样品在不同荷载下的变形和破坏负荷。
在抗拉试验中,使用拉力机对样品进行加载,测量样品在不同拉力下的变形和破坏荷载。
4. 实验结果根据实验数据的分析,得到以下结果:- 材料A的抗压强度为XXX,抗拉强度为XXX,弹性模量为XXX。
- 材料B的抗压强度为XXX,抗拉强度为XXX,弹性模量为XXX。
- 材料C的抗压强度为XXX,抗拉强度为XXX,弹性模量为XXX。
5. 结果解释和评价根据实验结果,可以得出以下解释和评价:- 材料A具有较高的抗压强度和抗拉强度,适用于承受大荷载的工程结构。
- 材料B的抗压强度和抗拉强度较低,适用于承受较小荷载的工程结构。
- 材料C的抗压强度和抗拉强度处于中等水平,适用于一般工程结构。
6. 结论综合以上结果和评价,可以得出以下结论:- 材料A在抗压和抗拉方面表现出色,适用于承受大荷载的工程结构。
- 材料B适用于承受较小荷载的工程结构。
- 材料C适用于一般工程结构。
7. 实验改进和展望本次实验中,由于时间和条件限制,仅对少数材料进行了测试。
未来可以扩大样品数量和种类,进行更全面的实验研究。
另外,可以进一步探索不同材料的性能特点,如耐久性、耐腐蚀性等,为实际工程应用提供更多的参考和选择。
8. 结语通过本次实验,我们了解了土木工程材料的力学性能,并对不同材料的适用范围有了更深入的认识。
土木工程流体力学实验报告实验分析与讨论答案
管路沿程阻力系数测定实验1. 为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影响实验成果?现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =,∑=0jh,由能量方程可得⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-γγ221121p Z p Z h f111222216.136.13H H h h H h h H p p +∆-∆-∆+∆+∆-∆+-=γγ112226.126.12H h h H p +∆+∆+-=γ∴ ()()122211216.126.12h h H Z H Z h f ∆+∆++-+=- )(6.1221h h ∆+∆=这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。
2.据实测m 值判别本实验的流动型态和流区。
f h lg ~v lg 曲线的斜率m=1.0~1.8,即fh 与8.10.1-v 成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。
3.本次实验结果与莫迪图吻合与否?试分析其原因。
通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。
但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。
对此必须认真分析。
如果由于误差所致,那么据下式分析d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2%误差时,可产生10%的误差。
Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。
如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。
还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。
总之,这是尚待进一步探讨的问题。
管路局部阻力系数测定实验三、实验分析与讨论1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同?2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 由式gv h j 22ζ= 及()21d d f =ζ表明影响局部阻力损失的因素是v 和21d d 。
流体力学综合实验报告
流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。
本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。
实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。
通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。
实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。
实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。
实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。
同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。
实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。
通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。
实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。
这表明不同液体的粘度是不同的。
实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。
实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。
同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。
结论:通过以上实验,我们深入了解了流体的性质和运动规律。
我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。
此外,我们还发现,流体的流量和流速之间存在一定的关系。
这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学实验报告答案
流体力学实验报告答案实验名称:流体力学实验实验目的:1. 理解流体的性质以及流体流动规律;2. 掌握流速的测量方法;3. 学习流量计的使用,以及流量变化对管道流速和压力分布的影响;4. 探究雷诺数、流量和管道直径对管道压力、阻力系数的影响;5. 分析和计算流量、瞬时和平均流速、雷诺数等相关参数。
实验原理:1. 流体的性质:流体是一种没有固定形状、没有固定容积的物质。
它具有流动性、分子间的粘性、不可压缩性、容积变化、分子热运动等性质。
2. 流体流动规律:当流体沿管道流动时,由于慣性力、黏性力和壓力差等因素的作用,会产生压力、速度、流量等变化。
3. 测量方法流速的测量方法有瞬时法和积分法两种。
瞬时法适合于流速变化较慢的流体,积分法适用于流速变化较快的流体。
4. 流量计流量计是一种用于测量流量的设备,常用的有容积式流量计和速度式流量计两种。
5. 雷诺数雷诺数是衡量流体流动状态的重要参数,在流体流动中一般提到的雷诺数是指惯性力与黏性力之比。
实验装置:1. 管道:10m长、直径为50mm的圆管。
2. 流量计:速度式流量计。
3. 压力表:用于测量管道内的压力。
4. 流速计:用于测定流速。
5. 计时器:用于测定流量。
实验步骤:1. 打开水泵,将水从水箱中抽到管道中。
2. 连接流量计和压力表,记录不同流速下的压力、流量和流速。
3. 记录不同管道直径下的雷诺数、流量和压降。
4. 绘制压力和流量、流速和雷诺数的关系图。
5. 计算并分析实验数据,讨论雷诺数、管道直径、流量等变化对压力、阻力系数的影响。
实验结果:1. 流速计测量管道流速方式有瞬时测量和积分测量,经过比较后选择使用瞬时测量。
2. 测量不同流量下的压力和流量,发现流量与管道内压力呈线性关系,而流速则随流量的增加而减小。
3. 测定不同管道直径下的雷诺数、流量和压降,结果表明,当管道直径增大时,雷诺数减小,压降也相对减小。
4. 从实验结果分析,可知管道内的压力、流量和流速与雷诺数、管道直径、流量之间存在着密切的关系。
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P<0时,试根据记录数据,确定水箱内的真空区域。
B,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学实验报告
流体力学实验报告引言:流体力学是研究流体在力的作用下的运动以及与周围环境的相互作用的科学。
通过实验可以验证和探究流体力学的理论,并且为工程应用提供基础数据和实际模型。
本实验旨在通过实验方法来观察和研究流体力学的一些基本现象和原理。
一、流体静力学实验1. 实验目的:观察流体在静力平衡下的性质,并验证帕斯卡定律。
2. 实验原理:静力学是研究流体在平衡状态下的力学性质。
帕斯卡定律是指任何一个封闭容器内的压力是相等的。
3. 实验步骤:将液体注入一个封闭容器,通过改变液位的高度,观察容器内的压力变化。
二、流体动力学实验1. 实验目的:研究流体在运动状态下的一些基本特性,如阻力、涡旋等。
2. 实验原理:动力学是研究流体在运动状态下的力学性质。
通过实验可以观察到流体在管道中的流速分布、阻力特性等现象。
3. 实验步骤:通过实验装置产生流体流动,改变管道形状、粗糙度等条件,观察流速和阻力的变化。
三、流体振荡实验1. 实验目的:观察流体振动的一些特性,如共振现象。
2. 实验原理:当外力的频率与流体固有振荡频率相等时,会出现共振现象。
流体振动实验可以用于研究振动频率、振幅等。
3. 实验步骤:通过实验装置产生流体振动,并改变外力的频率,观察流体的共振现象。
四、流体流量实验1. 实验目的:研究流体在管道中的流速和流量分布。
2. 实验原理:流量是单位时间内通过管道横截面的流体体积。
通过实验可以测量流速和流量,研究流体在管道中的流动情况。
3. 实验步骤:使用流量计等装置来测量流速和流量,并改变管道直径、液体粘度等条件,观察其对流动的影响。
结论:通过以上实验,我们观察到了流体力学的一些基本现象和原理,并验证了帕斯卡定律等流体力学的理论。
这些实验为理论研究和工程应用提供了实际数据和模型。
进一步深入研究流体力学的实验,有助于我们更好地理解和应用流体力学的相关知识。
最新大工《土木工程实验(二)》实验报告答案
最新大工《土木工程实验(二)》实验报告答案由于您提供的标题是关于《土木工程实验(二)》的实验报告答案,我将为您提供一个实验报告的基本框架和内容,但请注意,具体的实验报告答案应基于实际进行的实验和所得数据。
实验目的:1. 理解并掌握土木工程中基本材料的力学性质测试方法。
2. 学习如何使用相关仪器设备进行精确测量。
3. 分析实验数据,提高解决实际工程问题的能力。
实验内容:1. 材料抗压强度测试- 描述实验准备,包括试件的制备和标识。
- 记录使用的压力测试机型号及校准情况。
- 描述实验过程,包括加载速率、加载方式等。
- 记录实验数据,包括最大承载力、破坏形态等。
2. 土壤抗剪强度测定- 说明实验的目的和土壤样本的获取过程。
- 描述所使用的直剪仪或三轴仪的操作方法。
- 列出不同含水量下的抗剪强度数据。
- 分析含水量对土壤抗剪强度的影响。
3. 混凝土抗拉强度测试- 阐述实验的重要性和实验前的准备工作。
- 描述实验步骤,包括试件的尺寸、加载速率等。
- 记录并分析实验结果,讨论影响因素。
实验结果与分析:- 汇总所有实验数据,制作表格和图表以便于观察和比较。
- 对实验结果进行分析,解释可能的偏差和误差来源。
- 根据实验结果,提出对土木工程材料选择和应用的建议。
结论:- 总结实验的主要发现和结论。
- 讨论实验结果对土木工程实践的意义。
- 提出可能的改进方向和未来研究的建议。
请注意,以上内容是一个通用的实验报告框架,具体的实验报告答案需要根据实际实验的过程和结果来编写。
如果您有具体的实验数据或者需要帮助分析的内容,请提供详细信息,我将根据您提供的数据来帮助您完成实验报告。
工程流体力学及水力学实验报告及分析讨论
工程流体力学及水力学实验报告及分析讨论实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中: z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P B<0时,试根据记录数据,确定水箱内的真空区域。
,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ0。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学实验报告思考题答案
流体力学实验报告思考题答案实验三流量测量2、为什么Q计算与Q实际不相等?因为Q计算是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力。
3、本实验中,影响文透利管流量系数大小的参数及因素有哪些?哪个参数最敏感?实验五恒定流能量方程实验1、测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线沿程可升可降,线坡可正可负。
总水头线沿程只降不升,线坡恒为正。
水在流动过程中,依据一定边界条件,动能和势能可相互转换。
2、流量增加,测压管水头线有何变化?为什么?3、测点2.、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断面,表明均匀流各断面上,其动水压强按静水压强规律分布。
测点10、11在弯管的急变流断面上,表明急变流断面上离心惯性力对测压管水头影响很大。
4、答案:(1)减小流量、(2)增大喉管管径(3)降低相关管线的安装高程(4)改变水箱中的液体高度管道喉管的测压管水头随水箱水位同步升高,但水箱水位的升高对提高喉管的压强效果不明显。
实验七管道局部阻力系数测定实验产生突扩局部阻力损失的主要部位在突扩断面的后部。
产生突缩水头损失的主要部位是在突缩断面后。
为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或实验八管道沿程阻力系数测定实验1、为什么压差计的水柱差就是沿程水头损失?实验管道向下倾斜安装,是否影响实验结果?在管道中的水头损失直接反应与水头压力,测力水头两端压差就等于水头损失。
不影响实验结果。
但压差计应垂直,如果在特殊情况下无法垂直,可乘以倾斜角度转化值。
3、实际工作中的钢管中的流动,大多为光滑紊流或紊流过渡区,而水电站泄洪洞的流动,大多为紊流阻力平方区,其原因何在?4、管道的当量粗糙度如何测得?5、本次实验结果与莫迪图吻合与否?试分析其原因。
实验九雷诺实验2、雷诺数的物理意义是什么?为什么雷诺数可以用来判别流态?雷诺数等号右边的分子分母部分分别反映了流动流体的惯性力和粘滞力的大小,是惯性力对粘滞力的比值。
流体力学的实验报告
流体力学的实验报告流体力学的实验报告引言:流体力学是研究流体运动及其力学性质的学科,广泛应用于工程、物理学、地质学等领域。
本实验旨在通过一系列实验,探究流体在不同条件下的性质和行为,以加深对流体力学的理解。
实验一:流体静力学实验在这个实验中,我们使用了一个U型管,通过调节管内液体的高度,观察液体在管内的压力变化。
实验结果表明,液体的压力与液柱的高度成正比,且与液体的密度和重力加速度有关。
这一实验验证了流体静力学的基本原理,即压力在静止的液体中是均匀的。
实验二:流体动力学实验在这个实验中,我们使用了一个水平旋转的圆筒,将水注入圆筒内,然后通过旋转圆筒,观察水的运动情况。
实验结果表明,水在旋转圆筒中呈现出旋涡状的流动,且流速随着距离圆筒中心的距离增加而增加。
这一实验验证了流体动力学的基本原理,即在旋转系统中,流体的速度随着距离中心的距离而改变。
实验三:流体黏性实验在这个实验中,我们使用了一个粘度计,测量了不同液体的粘度。
实验结果表明,液体的粘度与其分子间相互作用力、温度和压力有关。
较高的粘度意味着液体的黏性较大,流动较困难。
这一实验验证了流体黏性的基本原理,即液体的黏度与流体内部分子的相互作用有关。
实验四:流体流速实验在这个实验中,我们使用了一个流速计,测量了液体在不同管道中的流速。
实验结果表明,管道的直径、液体的黏度和施加的压力差都会影响流体的流速。
较大的管道直径、较小的黏度和较大的压力差都会导致流体的流速增加。
这一实验验证了流体流速的基本原理,即流体在管道中的流速与管道的几何形状和施加的压力差有关。
结论:通过以上实验,我们深入了解了流体力学的基本原理和实际应用。
流体力学在工程领域中有着广泛的应用,例如水力学、气体力学、液压学等。
深入研究流体力学的原理和实验,有助于我们更好地理解和应用流体力学的知识,为工程设计和实际应用提供科学依据。
流体力学实验报告
伯努利实验报告一、实验目的观察流体流经伯努利方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对伯努利方程的理解。
二、实验原理伯努利方程w h gvg p z g v g p z ++ρ+=+ρ+2222222111其中w h 为管路横截面1至横截面2的能量损失,包括局部能量损失与沿程能量损失。
本实验中可以通过测压管指示4个位置的静水头和总水头,两两比较静水头的大小,并用伯努利方程解释静水头差异的原因。
如图所示,四个测压点位置从左至右标记为1、2、3、4,每个测压点连接2根测压管,分别指示静水头(gp z ρ+)和总水头(g v g p z 22++ρ),方便进行原理分析。
图3 伯努利实验管2点与1点相比,位置水头一致,但是由于管径增加,流速减小,因此2点速度水头减小,若不计能量损失,导致压强水头增加。
3点与1点相比,位置水头、速度水头均一致,但是由于能量损失,导致3点压强水头减小。
4点与3点相比,速度水头一致,位置水头减小,导致压强水头增加,但是由于能量损失原因,压强水头增加幅度有所降低,静水头降低。
在实验过程当中,同学们可以随意选取两点,分析其水头变化的原因。
三、实验数据记录四、实验数据处理(1)流量大小(2)各测点静水头与总水头的高度差(总水头-静水头)五、实验分析与讨论(1)选择两测点,比较能量损失与总水头的大小关系,并计算能量损失占总水头的百分比。
(2)哪个测点总水头与静水头的差值最小,试分析原因。
(3)在实验过程中,为何需要事先把测压管上端阀门全都打开?(4)测压皮管测量总水头,若皮管最边缘的铜管开口没有与伯努利管轴线垂直,则测量出来的总水头比真实数值偏大还是偏小?为什么?六、实验中出现的问题汇总并思考如何避免这些问题文丘里实验报告一、实验目的掌握文丘里流量计测量管道流量的原理。
二、实验原理文丘里流量计原理如图所示管道中,1和2为两测点,其中测点2处横截面直径明显减小,假设1点横截面静压强为p 1,流速为v 1,直径为d 1;测点2横截面静压强为p 2,流速为v 2,直径为d 2。
流体静力学实验(包括实验数据结果及思考题)
实验报告:流体静力学实验一、实验目的1、掌握用测压管测定流体静压强的技能。
2、验证不可压缩流体静力学基本方程。
3、通过对流体静力学现象的实验分析,进一步加深基本概念的理解,提高解决静力学实验问题的能力。
二、实验原理重力作用下不可压缩流体静力学基本方程为:c z gp=+ρ 式中:z 为单位重量液体的位能,也称位置水头;p/ρg 为单位重量液体的压能,也称压强水头。
如果自由表面压强p 0与当地大气压p a 压强相等时,液体内任一点相对压强可表示为:gh p ρ= 式中:h 为液体自由表面下任一点液体深度。
三、实验装置1-水箱 4-上水阀 7-调节水箱12 3 4 5123 456789减压常压升压箱体图1图22-气阀5-水泵8-A、B孔3-进水阀6-上水管路9-测压管(1-5)图1为实际实验仪器图,图2为实验仪器内部构造示意图。
图2中左侧水箱及调节水箱部分在图1中封闭在左侧的箱体内。
水箱内液面压强的大小通过箱体面板上减压、常压、升压三个按钮来改变。
四、实验步骤1、记录A、B点位置标高。
2、打开电源开关,按下减压按钮,同时观察测压管,使水箱形成一定的负压,然后松开按钮,待测压管水位稳定后,读取1~5号测压管读数。
3、按下常压按钮,同时观察测压管,使水箱为常压状态,然后松开按钮。
4、按下升压按钮,同时观察测压管,使水箱形成一定的正压,然后松开按钮,待测压管水位稳定后,读取1~5号测压管读数。
5、按下常压按钮,使水箱液面恢复常压状态,关闭电源。
五、实验原始记录1、记录有关常数A点位置标高=0 ㎝, B点位置标高= 3 ㎝2、记录测量值管号次数各测压管液面标高读数(㎝)1 2 3 4 51 p0>p a175.0 325.7 258.1 180.2 237.52 p0<p a263.0 274.5 310.0 263.8 232.0六、实验数据计算1、计算在上述两次测定(p0>p a和p0<p a)中的A点、B点及水箱液面的绝对压强和相对压强。
工程流体力学及水力学实验报告及分析讨论
工程流体力学及水力学实验报告及分析讨论实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或 (1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P B<0时,试根据记录数据,确定水箱内的真空区域。
,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ0。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
土木工程基础实验水力学实验报告
导教师检查认可后,才能开始做实验准备。 第三条 查认可。 第四条 实验时,要严肃认真,正确操作,仔细观察,真实记录实验数据的 学生应独立完成实验准备工作。在启动设备之前,需经指导教师检
结果。不许喧闹谈笑,不做与实验无关的事,不动与实验无关的设备,不进入与 实验无关的场所。 第五条 第六条 实验中要注意安全,遵守《实验室安全规则》及有关的操作规程。 仪器设备发生不正常现象时,应及时报告指导教师。发生人身安全
一、静水压强实验报告 1、实验目的:
2、实验要求:
3、计算公式:
4、实验记录及计算值:
(实验仪器编号:
)
a、有关常数: A 点高程▽A= cm;B 点高程▽B = cm; B、量测记录表格: (注意指导和记录所示仪器与实际仪器的编号不同) 测管液面高程读数(cm) 容器内液面 测次 备注 压强工况 ▽1 ▽2 ▽3 ▽4 ▽5 ▽6 p0 = pa 1 1 p0 > pa 2 3 1 p0 < pa 2 3 记录: c、计算表格: 容器内液面 测次 压强工况 p0 pa p0 p a 1 1 2 3 1 2 3 指导教师(签字): 测管液面高程差(cm) ▽4-▽3 ▽6-▽5 ▽5-▽A
5、成果分析研究及小结
6、对仪器设备的使用上,用你所学的其他知识谈谈你对仪器设备的改进建 议。
五、管道沿程阻力实验报告
1、实验目的:
2、计算公式:
3、实验数据及计算值: 1) 有关常数: ①管道直径 d= ③计算长度 L= ⑤平均水温 t= ⑦实验时开始水温 t= 2) 量测记录表格 1:
项目 数 测 次 值
记录: 指导教师: (签字)
项 数 测
3)计算表格 实测 平均 目 流量 流速 Q v
最新土木流体的力学实践报告
关于土木流体的力学实践报告流体力学实验报告(土木10级)一、实验目的观察管道中不同流量下液体的流动状态的变化情况(层流、紊流及其转变情况),并通过实验测定管道内液体的下临界速度V c从而可以列表计算出下临界雷诺数Re c 。
二、实验内容在实验中观察层流、紊流的流态特征,通过实测测定下临界速度的方法计算出下临界雷诺数,并在实验后对雷诺数的影响因素进行分析。
三、实验原理层流条件下,流体质点不发生各向紊动和混杂,流动呈现规则有秩序的成层流动;紊流条件下,由于粘性力对质点的`束缚作用降低,质点容易偏离其原来的运动方向,形成无规则的脉动混杂甚至产生可见尺度的涡旋。
在本实验中,颜色水随玻璃管内主流一起流动,颜色水流线代表了管内主流的流动状态。
由流体力学可知:层流与紊流流态的判别标准就是下临界雷诺数 Rec,可表示为式中 d为玻璃管内径;ν为流体的运动粘性系数,μ为流体的动力粘性系数,ρ为流体的密度,V c 为流体的临界速度。
水的运动粘性系数ν与温度的关系为:四、实验装置与仪器 1、实验装置2、仪器设备:1)雷诺实验台1套; 2)酒精温度计1只;3)秒表1只;4)玻璃量杯1只(刻度为1000ml)。
二、实验步骤1、开启进水开关,向水箱内注水。
到达一定水位高度,并保持适当的溢流,使水箱内水位稳定。
在实验期间如出现水位变化时,应缓慢调节进水开关确保水箱内水位稳定。
2、打开玻璃管放水开关,待管内空气排出后,松开颜色水管开关使颜色水随玻璃管内主流一起流动。
3、缓慢关小放水开关降低管内流速,同时观察玻璃管内颜色水变动情况,直到颜色水变为一条稳定的直线,此时即为紊流转变为层流的下临界状态。
此时需要用体积法测量管道内的流量,即用量杯和秒表测量流量。
具体做法是:用量杯接住管道出口的流量,同时按下秒表计时,等量杯内接住一定量体积的液体后移开量杯并同时按下秒表停止计时,然后用体积除以时间即可计算出流量。
(测量三次取平均值)。
4、开大放水开关,使玻璃管内水流重新变为紊流状态;然后再缓慢关小放水开关,待玻璃管内颜色水变为一条直线时,再用量杯和秒表测量此时的流量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管路沿程阻力系数测定实验
1. 为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影
响实验成果?
现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =,
∑=0j
h
,由能量方程可得
⎪⎪⎭
⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛
+=-γγ221121p Z p Z h f
1112222
1
6.136.13H H h h H h h H p p +∆-∆-∆+∆+∆-∆+-=
γ
γ
11222
6.126.12H h h H p +∆+∆+-=
γ
∴ ()()1222112
16.126.12h h H Z H Z h f ∆+∆++-+=-
)(6.1221h h ∆+∆=
这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。
2.据实测m 值判别本实验的流动型态和流区。
f h l
g ~v lg 曲线的斜率m=1.0~1.8,即f
h 与8.10.1-v 成正比,表明流动为层流
(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。
3.本次实验结果与莫迪图吻合与否?试分析其原因。
通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。
但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。
对此必须认真分析。
如果由于误差所致,那么据下式分析
d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2%误差时,可产
生10%的误差。
Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。
如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。
还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。
总之,这是尚待进一步探讨的问题。
管路局部阻力系数测定实验
三、实验分析与讨论
1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同?
2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 由式
g
v h j 22
ζ= 及
()21d d f =ζ
表明影响局部阻力损失的因素是v 和21d d 。
由于有
突扩:2
211⎪⎪⎭⎫
⎝
⎛-=A A e ζ
突缩:⎪⎪⎭
⎫ ⎝
⎛-
=2
115.0A A s ζ 则有
()()2
12
212115
.0115.0A A A A A A K e s -=--==
ζζ 当 5.021〈A A
或
707.021〈d d
时,突然扩大的水头损失比相应的突然收缩的要大。
在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。
21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。
2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?
流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。
据此对于局部阻力损失的机理分析如下:
从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。
漩涡是产生损失的主要根源。
由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。
另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。
这样就造成了局部阻力损失。
从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。
而突缩段的漩涡在收缩断面均有。
突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。
可见产生突缩水头损失的主要部位是在突缩断面后。
从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。
如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆
1。
角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的21~10
突然收缩实验管道使用年份长以后,实测阻力系数减小,主要原因也在这里。
流体静力学实验
三、实验分析与讨论
1.同一静止液体内的测压管水头线是根什么线?
测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。
2.当p B <0时,试根据记录数据确定水箱内的真空区域。
0〈B p ,相应容器的真空区域包括以下三个部分:
(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。
(2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再箅一根直尺,试采用另外最简便的方法测定0γ。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。
4.如测压管太细,对测压管液面的读数将有何影响?
设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算
γ
θ
σd h cos 4=
式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。
常温
的水,m N 073.0=σ,30098.0m N =γ。
水与玻璃的浸润角θ很小,可以认为0.1cos =θ。
于是有
d h 7.29= (h 、d 均以mm 计)
一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。
5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部液体是同一等压面?
不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。
因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。
而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。
6.用图1.1装置能演示变液位下的恒定流实验吗?
观闭各通气阀门,开启底阀,放水片刻,可看到有空气由C 进入水箱。
这时阀门的出流就是变液位下的恒定水流。
因为由观察可知,测压管1的液面始终与C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。
这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。
医学上的点滴注射就是此原理应用的一例,医学上称这为马利奥特容器的变液位下恒定流。
7.该仪器在加气增压后,水箱液面将下降δ而测压管液面半升高H,实验时,若以p 0=0时的水箱液面作为测量基准,试分析加气增压后,实际压强(H+δ)与视压强H 的相对误差值.本仪器测压管内径为0.8cm,箱体内径为20cm.
答:加压后,水箱液面比基准面下降了δ,而同时测压管1、2的液面各比基准面升高了H,由水量平衡原理有
因而可略去不计。
对单根测压管容器若有D/d<=10或对两根测压管的容器D/d<=7时,便可使ε<=0.01.。