离心泵习题测验

离心泵习题测验
离心泵习题测验

离心泵填空题

2在离心泵的运转过程中,是将原动机的能量传递给液体的部件,而则是将动能转变为静压能的部件。

3.离心泵的流量调节阀应安装在离心泵的位置上,而正位移泵调节阀只能安装在位置上。

4、用离心泵将一个低位敞口水池中的水送至敞口高位水槽中,如果改为输送密度为1100kg/m3但其他物性与水相同的溶液,则流量,扬程,功率。(增大,不变,减小,不能确定)

3、用一台离心泵输送某液体,当液体温度升高,其它条件不变,则离心泵所需的扬程,允许安装高度。

2、产品样本上离心泵的性能曲线是在一定的下,输送时的性能曲线。

3、用离心泵在两敞口容器间输液, 在同一管路中,若用离心泵输送ρ=1200kg.m-3 的某液体(该溶液的其它性质与水相同),与输送水相比,离心泵的流量,扬程,泵出口压力,轴功率。(变大,变小,不变,不确定)

3、在离心泵性能测定实验中,当水的流量由小变大时,泵入口处的压强。

3、泵的扬程的单位是,其物理意义是。

3、离心泵的泵壳制成蜗牛状,其作用是。

3、当地大气压为745mmHg,侧得一容器内的绝对压强为350mmHg,则真空度为_____________mmHg;侧得另一容器内的表压强为1360mmHg,则其绝对压强为___________mmHg。

5 离心泵的工作点是______________曲线与______________曲线的交点。

离心泵选择题

1、离心泵开动之前必须充满被输送的流体是为了防止发生()。

A 气缚现象

B 汽化现象

C 气浮现象

D 汽蚀现象

2、离心泵铭牌上标明的扬程是指( )

A. 功率最大时的扬程

B. 最大流量时的扬程

C. 泵的最大扬程

D. 效率最高时的扬程

3、离心泵停泵的合理步骤是;先开旁通阀,然后()。

A.停止原动机,关闭排出阀,关闭吸入阀

B.关闭吸入阀,停止原动机,关闭排出阀

C.关闭原动机,关闭吸入阀,关闭排出阀

D.关闭排出阀,停止原动机,关闭吸入阀

4、离心泵的压头是指()。

A.流体的升举高度;B.液体动能的增加;

C.液体静压能的增加;D.单位液体获得的机械能。

5、离心泵的扬程,是指单位重量流体经过泵后,以下能量的增加值( )

A. 包括内能在内的总能量

B. 机械能

C. 压能

D. 位能(即实际的升扬高度)

6、泵的总效率是指()。

A.理论流量与实际流量之比B.理论扬程与实际扬程之比

C.有效功率与轴功率之比D.传给液体的功率与输入功率之比

7、泵的容积效率是指()。

A.实际流量与理论流量之比B.实际扬程与理论扬程之比

C.有效功率与轴功率之比D.传给液体的功率与输入功率之比

8、离心泵的密封环()。

A.可只设动环B.可只设定环

C.必须同时设动环、定环D.A、B可以

9、离心泵输油时油温度下降不会导致()。

A.流量减小B.效率降低C.吸入压力降低D.功率明显增大

10、下列泵中不适合输送高粘度液体的泵的是()。

A.离心泵B.旋涡泵C.螺杆泵D.往复泵

11、泵的允许吸上真空高度为[Hs],则允许的几何吸高()。

A.大于[Hs] B.等于[Hs]-吸入阻力水头

C.等于[Hs]D.等于[Hs]-(吸入管阻力水头十吸入速度头)

12、叶轮式泵的汽蚀余量是指泵入口处()压力头之差。

A.液体压力头与泵内压力最低处B.液体压力头与液体气化时

C.总水头与泵内压力最低处D.总水头与液体气化时

13、一台试验用离心泵,开动不久,泵入口处的真空度逐渐降低为零,泵出口处的压力表也

逐渐降低为零,此时离心泵完全打不出水。发生故障的原因是( )

A. 忘了灌水

B. 吸入管路堵塞

C. 压出管路堵塞

D. 吸入管路漏气

14、离心泵的安装高度超过允许安装高度时,将可能发生( )现象。

A. 气膊

B. 汽蚀

C. 滞后

D. 过载

15、离心泵的特性曲线上未标出( )与流量的关系。

A .扬程

B .有效功率

C .必需起汽蚀余量

D .效率

16、离心泵的工况调节就其运行经济性来比较,哪种方法最好?( )

A .变速调节法

B .叶轮切割法

C .节流调节法

D .回流调节法

17、二台型号相同的离心泵单独工作的流量为Q ,压头为H ,它们并联工作时的实际流量、压头为 Q 并、H 并, 则( )。

##2A Q Q H H ?

== ##22B Q Q H H H ?=>> ?>>>>##C 2Q Q Q 2H H H ##2D Q Q Q H H ?>>=

18、如下图所示,从操作角度看,以下离心泵哪种安装方式合适( )。

19、用某一离心泵将一贮罐里的料液送至某高位槽 ,现由于某种原因,贮罐中料液液面升高,若其它管路特性不变,则此时流量将( )。

A 增大

B 减少

C 不变

D 不确定

20、离心泵调节流量方法中经济性最差的是( )调节。

A 节流

B 回流

C 变速

D 视具体情况而定

21、会使离心泵流量增大的是( )。

A 排出容器液面升高

B 排出压力增大

C 输油温度适当升高

D 输水温度升高

22、离心泵输油时油温下降不会导致( )。

A 流量减小

B 效率降低

C 吸入压力降低

D 功率明显增大

1.一台离心泵在转速为1450r/min时,送液能力为22m3/h,扬程为25m H2O。现转速调至1300r/min,试求此时的流量和压头。(19.7m3/h ;20m)

4.某离心泵用20℃清水进行性能试验,测得其体积流量为560m3/h ,出口压力读数为0.3MPa

(表压),吸入口真空表读数为0.03 MPa,两表间垂直距离为400mm ,吸入管和压出管内径分别为340mm 和300mm , 试求对应此流量的泵的扬程。(H =34m )

5.欲用一台离心泵将储槽液面压力为157KPa ,温度为40℃,饱和蒸汽压为8.12kPa ,密度为1100kg/m3 的料液送至某一设备,已知其允许吸上真空高度为5.5m ,吸入管路中的动压头和能量损失为1.4m ,试求其安装高度。(已知其流量和扬程均能满足要求)(Hg =8.22m )

6.用一台离心泵在海拔100m 处输送20℃清水,若吸入管中的动压头可以忽略,全部能量损失为7m ,泵安装在水源水面上3.5m 处,试问此泵能否正常工作。(不能)

3、用离心泵把水从水池送至高位槽,水池和高位槽都是敞口的,两液面高度差恒为13m,

管路系统的压头损失为Hf=3×105Q2;在指定的转速下,泵的特性方程为H=28-2.5×105Q2;(Q的单位为m3/s,H、Hf的单位为m)。则(1)泵的流量为m3/h。

如果用两台相同的离心泵并联操作,则水的总流量为m3/h。

有一循环管路如图所示,管路内安装一台离心泵,安装高度Hg = 3 m,在高效范围内,此

离心泵的特性曲线可近似表示为

2

5

10

433

.1

1.

23

v

e

q

H?

-

=

(式中qv以m3/s表示),管

路总长为130 m,其中吸入管长为18 m(均为包括局部阻力的当量长度),管内径d = 50 mm,摩擦系数λ= 0.03。试求:

(1)管路内的循环水量;

(2)泵的进、出口压强。

4)在离心泵性能测定试验中,以20℃清水为工质,

对某泵测得下列一套数据:泵出口处压强为

1.2at(表压),泵汲入口处真空度为220mmHg,

以孔板流量计及U形压差计测流量,孔板的孔径为35mm,采用汞为指示液,压差计读数,孔流系数,测得轴功率为1.92kW,已知泵的进、出口

截面间的垂直高度差为0.2m。求泵的效率η。

5)IS65-40-200型离心泵在时的“扬程~流量”数据如下:

V m3/h 7.5 12.5 15

He m 13.2 12.5 11.8

端的垂直高度差为4.0m,管长80m(包括局部阻力的当量管长),输水管内径40mm,摩擦系数。试用作图法求工作点流量。

6)IS65-40-200型离心泵在时的“扬程~流量”曲线可近似用如下数学式表达:

,式中He为扬程,m,V为流量,m3/h。试按第5题的条件用计算法算出工作点的流量。

7)某离心泵在时的“扬程~流量”关系可用表示,式中He为扬程,m,V为流量,m3/h。现欲用此型泵输水。已知低位槽水面和输水管终端出水口皆通大气,二者垂直高度差为8.0m,管长50m(包括局部阻力的当量管长),管内径为40mm,摩擦系数。要求水流量15 m3/h。试问:若采用单泵、二泵并连和二泵串联,何种方案能满足要求?略去出口动能。

8)有两台相同的离心泵,单泵性能为,m,式中V的单位是m3/s。

当两泵并联操作,可将6.5 l/s的水从低位槽输至高位槽。两槽皆敞口,两槽水面垂直位差13m。输水管终端淹没于高位水槽水中。问:若二泵改为串联操作,水的流量为多少?

9)承第5题,若泵的转速下降8%,试用作图法画出新的特性曲线,并设管路特性曲线不变,求出转速下降时的工作点流量。

10)用离心泵输送水,已知所用泵的特性曲线方程为:。当阀全开时的管路特性曲线方程:(两式中He、He’—m,V—m3/h)。问:①要求流量12m3/h,此泵能否使用?②若靠关小阀的方法满足上述流量要求,求出因关小阀而消耗的轴功率。已知该流量时泵的效率为0.65。

11)用离心泵输水。在时的特性为,阀全开时管路特性为(两式中He、He’—m,V—m3/h)。试求:①泵的最大输水量;

②要求输水量为最大输水量的85%,且采用调速方法,泵的转速为多少?

12)用泵将水从低位槽打进高位槽。两槽皆敞口,液位差55m。管内径158mm。当阀全开时,管长与各局部阻力当量长度之和为1000m。摩擦系数0.031。泵的性能可用

表示(He—m,V—m3/h)。试问:①要求流量为110 m3/h,选用此泵是否合适?②若采用上述泵,转速不变,但以切割叶轮方法满足110 m3/h流量要求,以D、D’分别表示叶轮切割前后的外径,问D’/D为多少?

13)某离心泵输水流程如附图所示。泵的特性曲线为(He—m,V —m3/h)。图示的p为1kgf/cm2(表)。流量为12L/s时管内水流已进入阻力平方区。

若用此泵改输的碱液,阀开启度、管路、液位差及p值不变,求碱液流量和离心泵的有效功率。

14)某离心泵输水,其转速为,已知在本题涉及的范围内泵的特性曲线可用方程来表示。泵出口阀全开时管路特性曲线方程为:

(两式中He、He’—m,V—m3/h)。①求泵的最大输水量。②当要求水量为最大输水量的85%时,若采用库存的另一台基本型号与上述泵相同,但叶轮经切削5%的泵,需如何调整转速才能满足此流量要求?

15)某离心泵输水流程如图示。水池敞口,高位槽内压力为0.3at(表)。该泵的特性曲线方程为(He—m,V—m3/h)。在泵出口阀全开时测得流量为30 m3/h。

现拟改输碱液,其密度为1200kg/m3,管线、高位槽压力等都不变,现因该泵出现故障,换一台与该泵转速及基本型号相同但叶轮切削5%的离心泵进行操作,问阀全开时流量为多少?

16)以IS100-80-160型离心泵在海拔1500m高原使用。当地气压为8.6mH2O。以此泵将敞口池的水输入某设备,已知水温15℃。有管路情况及泵的性能曲线可确定工作点流量为60 m3/h,查得允许汽蚀余量。已算得汲入管阻力为2.3mH2O。问:最大几何安装高度是多少?

17)在第16题所述地点以100KY100-250型单汲二级离心泵输水,水温15℃,从敞口水池将水输入某容器。可确定工作点流量为100m3/h,查得允许汲上真空高度。汲水管内径为100mm,汲水管阻力为5.4mH2O。问:最大几何安装高度是多少?

18)大气状态是10℃、750mmHg(绝压)。现空气直接从大气吸入风机,然后经内径为800mm 的风管输入某容器。已知风管长130m,所有管件的当量管长为80m,管壁粗糙度,空气输送量为2×104m3/h(按外界大气条件计)。该容器内静压强为

1.0×104Pa(表压)。库存一台9-26型No.8离心式风机,,当流量为21982

m3/h,,其出风口截面为0.392×0.256m2。问:该风机能否适用?

19)以离心式风机输送空气,由常压处通过管道水平送至另一常压处。流量6250kg/h。管长1100m(包括局部阻力),管内径0.40m,摩擦系数0.0268。外界气压1kgf/cm2,大气温度20℃。若置风机于管道出口端,试求风机的全风压。[提示:1.风管两端压力变

化时,可视为恒密度气体,其值按平均压力计算。2.为简化计算,进风端管内气体压力视为外界气压。3.管道两端压差<104Pa]

20)以离心泵、往复泵各一台并联操作输水。两泵“合成的”性能曲线方程为:

,V指总流量。阀全开时管路特性曲线方程为:

,(两式中:He、He’—mH2O,V—L/s)。现停开往复泵,仅离心泵操作,阀全开时流量为53.8L/s。试求管路特性曲线方程中的K值。

例1 离心泵的工作点

用某一离心泵将一贮罐里的料液送至某高位槽,现由于某种原因,贮罐中料液液面升高,若其它管路特性不变,则此时流量将()。

A 增大

B 减少C不变 D 不确定

2.(14分)密度为900 kg/m3的某液体从敞口容器A经过内径为40 mm的管路进入敞口容器B,两容器内的液面高度恒定。管路中有一调节阀,阀前管长65 m,阀后管长25 m(均包括全部局部阻力的当量长度,进出口阻力忽略不计)。当阀门全关时,阀前后的压强表读数分别为80 kPa和40 kPa。现将调节阀

1.用泵将水从敞口储槽送至冷却塔内进行冷却,水池液面比泵入口处低2m,比冷却塔入口处低10 m ,冷却塔入口处要求压强为3×104Pa(表压),钢管内径100mm,吸入管路总长20m,泵后压出管路长80m(均包括所有局部阻力的当量长度)。要求流量为70 m3/h,求:(1)离心泵的扬程;(2)泵的有效功率;(3)泵入口处的压强。(ρ=1000kg/m3,μ=10-3Pa.s,λ=0.3164/Re0.25)(24分)

例 2 附图

例2 附图

解:该题实际上是分析泵的工作点的变动情况。工作点是泵特性曲线与管路特性曲线的交点,

其中任何一条特性曲线发生变化,均会引起工作点的变动,现泵及其转速不变,故泵的特性曲线不变。将管路的特性曲线方程式列出

2421212)(8v q g d d l g P P Z Z H πζλρ++-+-=

现贮槽液面升高,1Z 增加,故管路特性曲线方程式中的截距项数值减小,管路特性曲线的

二次项系数不变。由曲线1变为曲线2,则工作点由A 点变动至B 点。故管路中的流量增大,因此答案A 正确。

例2 离心泵压头的定义

离心泵的压头是指( )。 h

m ,Q 3m ,H

e

A 流体的升举高度;

B 液体动能的增加;

C 液体静压能的增加;

D 单位液体获得的机械能。

解:根据实际流体的机械能衡算式

He=(Z2-Z1)+(P2-P1)+(u22-u12)/2g+ΣHf

离心泵的压头可以表现为液体升举一定的高度(Z2-Z1),增加一定的静压能(P2-P1)/(g ρ),增

加一定的动能(u22-u12)/(2g)以及用于克服流体流动过程中产生的压头损失ΣHf 等形式,但本质上离心泵的压头是施加给单位液体(单位牛顿流体)的机械能量J(J/N=m).故答案D 正确。

例3离心泵的安装高度Hg 与所输送流体流量、温度之间的关系

分析离心泵的安装高度Hg 与所输送流体流量、温度之间的关系。

解:根据离心泵的必需汽蚀余量(NPSH)r ,计算泵的最大允许安装高度的计算公式为

[][]

5.0)()10(0+---=∑-r f v

g NPSH H g P g P H ρρ (1)

首先分析离心泵的必需汽蚀余量(NPSH)r 的定义过程。在泵内刚发生汽蚀的临界条件下,泵

入口处液体的静压能和动能之和(P1,min/g ρ+u12/2g)比液体汽化的势能(Pv/g ρ)多余的能量(uk2/2g+ΣHf(1-k))称为离心泵的临界汽蚀余量,以符号(NPSH)C 表示,即

∑-+=-+=)1(221min

,122)(K f K v c H g u g p g u g P NPSH ρρ (2) 由(2)式右端看出,流体流量增加,(NPSH )C 增加,即必须的汽蚀余量(NPSH)r 增加。

由(1)式可知,液体流量增加,泵的最大允许安装高度[]g

H 应减少。根据(NPSH)C 的定义可知,当流量一定而且流动状态已进入阻力平方区时(uk2/2g+ΣHf(1-k),均为确定值),(NPSH)C 只与泵的结构尺寸有关,故汽蚀余量是泵的特性参数,与所输送流体的蒸汽压PV 无关。由(1)式可知,若流体温度升高,则其PV 值增加,从而

[]g

H 应减小。

例4 离心泵的组合使用

现需用两台相同的离心泵将河水送入一密闭的高位槽,高位槽液面上方压强为1.5atm (表

压强),高位槽液面与河水水面之间的垂直高度为10m ,已知整个管路长度为50m (包括全部局部阻力的当量长度),管径均为50mm ,直管阻力摩擦系数λ=0.025。单泵

的特性曲线方程式为26100.150v e q H ?-=(式中He 的单位为m ;qv 的单位为m3/s )。通过计算比较该两台泵如何组合所输送的水总流量更大。

解:泵的组合形式分为串联和并联,由此单泵的特性曲线方程写出串联泵和并联泵的特性曲

线方程

26100.2100v e q H ?-=串 (1)

25105.250v e q H ?-=并 (2) 自河水水面至密闭高位槽液面列出管路特性曲线方程

g u d l l g P Z H e e 22∑++?+?=λρ 将有关数据代入

81

.92)050

.0785.0(050.050025.081.9100010013.15.110225????+???+=v e q H 整理得:

25103.315.10v e q H ?+= (3) 若采用串联,联立方程(1)(3)得

)/(102.633s m q V -?=串

若采用并联,联立方程(2)(3)得

)/(103.835s m q V -?=并

可见,对于该管路应采用串联,说明该管路属于高阻管路。为了充分发挥组合泵能够增加流

量,增加压头的作用,对于低阻管路,并联优于串联;对于高阻管路,串联优于并联。 例5 分支管路如何确定泵的有效压头和功率

用同一台离心泵由水池A 向高位槽B和C供水,高位槽B和C的水面高出水池水面A分别

为ZB =25m,Zc=20m 。当阀门处于某一开度时,向B槽和C槽的供水量恰好相等,即VB =VC =4s l /。管段长度,管径及管内摩擦阻力系数如下:

管段 管长(包括Σle ),m 管径,mm 摩擦系数λ

ED 100 75 0.025

DF 50 50 0.025

DG 50(不包栝阀门) 50 0.025

求(1)泵的压头与理论功率;

(2)支管DG中阀门的局部阻力系数。

离心泵性能测定实验报告

离心泵性能测定 一、实验目的: 1、了解离心泵的构造与特性,掌握离心泵的操作方法; 2、测定并绘制离心泵在恒定转速下的特性曲线。 二、实验原理: 离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。 实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。 泵的扬程He有下式计算: 而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N 测定时,流量Q可用涡轮流量计或孔板流量计来计量。轴功率N可用马达-天平式测功器或功率来表测量。 离心泵的性能与其转速有关。其特性曲线是某一恒定的给定转速(一般nl=2900PRM)下的性能曲线。因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。换算公式如下: 时, 三、装置与流程: 水由水箱1,经泵进口 阀2、离心泵4、出口阀8 9

涡轮流量计9,最后 流 10 8 6 回水 箱 7 3 5 4 2 1 四、操作步骤: 1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车 数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。 2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。在 操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。 3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功 率测定器示值。 数据取全后,先关闭泵出口阀,再停泵。 五、实验数据记录和数据处理:

水泵试题

水泵基础知识试题 姓名部门分数 一、选择题(每题1分,共20分) 1.离心泵在运行过程中,一般要求轴承温度不能超过( B ) A:65-70℃ B:75-80℃ C:85-90℃ 2.离心泵在启动时,应( B ) A:出口阀在打开状态, B: 出口阀在接近关闭状态 C: 出口阀在打开、关闭状态均可。 3.离心泵按叶轮的数量可分为( A ) A:单级泵和多级泵 B:单吸泵和多吸泵 C;卧式泵和立式泵 4.为防止汽蚀现象,离心泵在运行时,泵吸入口的液流压力必须此时液流温度的汽化压力。 A:大于 B:等于 C;小于( A ) 5. 水泵是输送和提升液体的机器,是转换能量的机械,它把原动机的机械能转换为被输送液体的 能量,使液体获得。( B ) (A)压力和速度 (B)动能和势能 (C)流动方向的变化 6.泵并联运行时,下列说法正确的是( A ) A:流量相加,扬程不变 B:流量不变,扬程相加 C:都相加 7.一般电动机启动电流为额定电流的倍。( B ) A:2-3倍 B:4-7倍 C:5-10倍 8.下列泵中,不是叶片式泵( B ) A混流泵B活塞泵C离心泵D轴流泵。 9.与低比转数的水泵相比,高比转数的水泵具有( C ) A流量小、扬程高B流量小、扬程低C流量大、扬程低D流量大、扬程高 10.叶片泵在一定转数下运行时,所抽升流体的比重越大(流体的其它物理性质相同),其理论扬程 ( C ) A越大B越小 C 不变 D 不一定 11.定速运行水泵从水源向高水池供水,当水源水位不变而高水池水位逐渐升高时,水泵的流量 ( B ) A保持不变B逐渐减小C逐渐增大D不一定

12.一台6极三相异步电动机接50HZ交流电源,额定转差率为,其额定转速为 A:1000 B:960 C:750 D:600 ( B ) 13. 离心泵按叶轮分为单吸泵和双吸泵( B) (A)叶片弯度方式 (B)进水方式 (C)前后盖板不同 (D)旋转速度 14. 关于水泵装置说法正确的是( C) (A)进水管道一般处于正压,出水管道一般处于负压 (B)安装在进水池水面以上的离心泵可以直接起动,无需充水 (C)安装在进水池水面以上的离心泵装置,起动前必须充水 (D)离心泵必须安装在进水池水面以下 15.离心泵的机械密封与填料密封相比,机械密封具有泄漏量小,消耗功率相当于填料密的 ( C )A:50% B:120%-150% C:10%-15% D:几乎为零 16.对不合格产品,为使其满足规定的要求,所采取的措施是 ( B )A:返修 B:返工 C:特许、让步 D:纠正措施 17.水泵振动最常见的原因是 ( B )A:汽蚀 B:转子质量不平衡 C:转子临界转速 D:平衡盘设计不良 18. 叶片泵在一定转数下运行时,所抽升流体的比重越大(流体的其它物理性质相同),其轴功率 (A ) (A)越大(B) 越小 (C )不变 ( D)不一定 19.渣浆泵在检修维修时,发现叶轮不好拆卸,这时应该通过拆卸叶轮。( C )A:涂润滑油 B:机械拆卸工具 C:叶轮拆卸环 20. 水泵的几个性能参数之间的关系是在一定的情况下,其他各参数随Q变化而变化,水泵厂通常用特性曲线表示。 ( D )

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论

1.离心泵特性曲线测定 离心泵的性能参数取决于泵的部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作围,作为选泵的依据。 泵的扬程用下式计算: e 0H H H H =++真空表压力表 式中:H 真空表——泵出口处的压力,2mH O ; H 压力表——泵入口处的真空度,2mH O ; 0H ——压力表和真空表测压口之间的垂直距离0.2m 。 泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为

泵与风机考试试题,习题及复习资料

泵与风机考试试题 一、简答题(每小题5分,共30分) 1、离心泵、轴流泵在启动时有何不同,为什么? 2、试用公式说明为什么电厂中的凝结水泵要采用倒灌高度。 3、简述泵汽蚀的危害。 4、定性图示两台同性能泵串联时的工作点、串联时每台泵的工作点、仅有 一台泵运行时的工作点 5、泵是否可采用进口端节流调节,为什么? 6、简述风机发生喘振的条件。 二、计算题(每小题15分,共60分) 1、已知离心式水泵叶轮的直径D2=400mm,叶轮出口宽度b2=50mm,叶片 厚度占出口面积的8%,流动角β2=20?,当转速n=2135r/min时,理论 流量q VT=240L/s,求作叶轮出口速度三角形。 2、某电厂水泵采用节流调节后流量为740t/h,阀门前后压强差为980700Pa, 此时泵运行效率η=75%,若水的密度ρ=1000kg/m3,每度电费0.4元,求:(1)节流损失的轴功率?P sh; (2)因节流调节每年多耗的电费(1年=365日) 3、20sh-13型离心泵,吸水管直径d1=500mm,样本上给出的允许吸上真空 高度[H s]=4m。吸水管的长度l1=6m,局部阻力的当量长度l e=4m,设 沿程阻力系数λ=0.025,试问当泵的流量q v=2000m3/h,泵的几何安装高 度H g=3m时,该泵是否能正常工作。 (当地海拔高度为800m,大气压强p a=9.21×104Pa;水温为30℃,对应饱 和蒸汽压强p v=4.2365kPa,密度ρ=995.6kg/m3) 4、火力发电厂中的DG520-230型锅炉给水泵,共有8级叶轮,当转速为n =5050r/min,扬程H=2523m,流量q V=576m3/h,试计算该泵的比转 速。

离心泵单元仿真实训指导书

离心泵单元仿真实训指导书 阿拉善经济开发区中等职业学校 化工组 2011年4月

目录 一、工艺流程说明 (2) 1、离心泵工作原理基础 (2) 2、工艺流程简介 (3) 3、控制方案 (4) 4、设备一览 (4) 二、离心泵单元操作规程 (5) 1、开车操作规程 (5) 2、正常操作规程 (6) 3.停车操作规程 (6) 4、仪表及报警一览表 (7) 三、事故设置一览 (8) 四、仿真界面 (9) 附:思考题 (11)

一、工艺流程说明 1、离心泵工作原理基础 在工业生产和国民经济的许多领域,常需对液体进行输送或加压,能完成此类任务的机械称为泵。而其中靠离心作用的叫离心泵。由于离心泵具有结构简单,性能稳定,检修方便,操作容易和适应性强等特点,在化工生产中应用十分广泛,据统计超过液体输送设备的80%。所以,离心泵的操作是化工生产中的最基本的操作。 离心泵由吸入管,排出管和离心泵主体组成。离心泵主体分为转动部分和固定部分。转动部分由电机带动旋转,将能量传递给被输送的部分,主要包括叶轮和泵轴。固定部分包括泵壳,导轮,密封装置等。叶轮是离心泵中使液体接受外加能量的部件。泵轴的作用是把电动机的能量传递给叶轮。泵壳是通道截面积逐渐扩大的蜗形壳体,它将液体限定在一定的空间里,并将液体大部分动能转化为静压能。导轮是一组与叶轮旋转方向相适应,且固定于泵壳上的叶片。密封装置的作用是防止液体的泄漏或空气的倒吸入泵内。 启动灌满了被输送液体的离心泵后,在电机的作用下,泵轴带动叶轮一起旋转,叶轮的叶片推动其间的液体转动,在离心力的作用下,液体被甩向叶轮边缘并获得动能;在导轮的引领下沿流通截面积逐渐扩大的泵壳流向排出管,液体流速逐渐降低,而静压能增大。排出管的增压液体经管路即可送往目的地。与此同时,叶轮中心因为液体被甩出而形成一定的真空,因贮槽液面上方压强大于叶轮中心处,在压力差的作用下,液体不断从吸入管进入泵内,以填补被排出的液体位置。因此,只要叶轮不断旋转,液体便不断的被吸入和

离心泵及管路特性曲线测定

离心泵及管路特性曲线测定

实验四离心泵及管路特性曲线测定 一.实验目的 1. 熟悉离心泵的操作方法及实验中开闭阀门顺序; 2. 掌握实验原理; 3. 掌握离心泵特性曲线和管路特性曲线的 测定方法,表示方法,加深对离心泵性 能的了解; 4. 熟悉各种仪表的使用; 5. 掌握如何处理实验数据。 二. 实验仪器和药品 天津市鹏翔科技有限公司离心泵及管路特性实验装置1台 实验介质自来水 三. 实验原理 (一)离心泵特性曲线 离心泵是最常见的液体输送设备。在一定的型号和转速下,离心泵的扬程H、轴功 率N及效率η均随流量Q而改变。通常 通过实验测定出H—Q、N—Q及η—Q 关系,并用曲线表示之,成为离心泵特 性曲线。离心泵特定曲线是确定泵的适

泵的轴功率N=电动机的输出功率,KW 电动机的输出功率=电动机的输入功率×电动机的效率 泵的轴功率=功率表的读数×电动机效率,KW 1. η的测定 N Ne =η 其中102 1000ρρHQ g HQ Ne == KW 式中:η---泵的效率; N---泵的轴功率,KW Ne---泵的有效功率,KW H---泵的压头,m Q---泵的流量,m 3/s ρ---水的密度,Kg/m 3 (二)管路特性曲线 当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路特性有关,也就是说,在液体输送过程中,泵和管路二者是相互制约的。 管路特性曲线是指流体流经管路系统的流量与所需压头之间的关系。若将泵的特性曲线与

管路特性曲线绘在同一坐标图上,;两曲线交点即为泵在该管路的工作点。因此,如同通过改变阀门开度来改变管路特性曲线,求出泵的特性曲线一样,可通过改变泵转速来改变泵的特性曲线,从而得出管路特性曲线。泵的压头计算同上。 实验装置流程如下: 1—流量调节阀;2—管路调节阀;3—注水口阀门;4—放液阀; 5—单向阀:6—离心泵7—转子流量计;8 —放气口;9—水槽; 10—真空表P0;11—离心泵出口压力 P1;12管路压力P2; 13—漏斗

离心泵试题

离心泵试题 选择题 1、水泵的及水高度是指通过泵轴线的水平面与( C )的高差。当水平下降致超过最大吸水高度时,水泵将不能吸水。 A、水泵排口 B、水泵泵体出口 C、吸水平面 2、当水泵叶片入口附近压强降至该处水开始( A ),水泵将产生汽蚀现象,使水泵不能正常工作。 A、汽化成汽泡 B、凝结成冰 3、水泵运转中,由于叶轮前、后底盘外表面不平衡压力和叶轮内表面水动压力的轴向分力,会造成指向(B)方向的轴向力。 A、吸水口 B、吸水口方向 4、油泵的吸油高度比水泵小得多的原因主要是(C) A、油泵的结构使其吸力比水泵小 B、油液比重比水大得多 C、油液比水更易于汽化而产生汽蚀 5、水泵的标定扬程为150m,当实际扬程达到160m时该水泵将(B) A、不能把水扬送不能到位 B、能把水扬位,但流量、效率将会发生变化 6、离心泵在额定转速下运行时,为了避免启动电流过大,通常在( C ) A.阀门稍稍开启的情况下启动 B.阀门半开的情况下启动 C.阀门全关的情况下启动 D.阀门全开的情况下启动 7、两台同性能泵并联运行,并联工作点的参数为q、H。若管路特性曲线不变,改为其并并v 中一台泵单独运行,其工作点参数为q、H。则并联工作点参数与单台泵运行工作点单单v 参数关系为( B )

A.q=2q,H=H B.q<2q,H>H 并单并单并单并单vvvv C.q<2q,H=H D.q=2q,H>H 并单并单并单并单vvvv 8、对一台q—H曲线无不稳区的离心泵,通过在泵的出口端安装阀门进行节流调节,当将v 阀门的开度关小时,泵的流量q和扬程H的变化为( C ) v A.q与H均减小 B.q与H均增大 vv C.q减小,H升高 D.q增大,H降低 vv 9、离心泵,当叶轮旋转时,流体质点在离心力的作用下,流体从叶轮中心被甩向叶轮外缘,于是叶轮中心形成( B ) A.压力最大 B.真空 C.容积损失最大 D.流动损失最大 10、具有平衡轴向推力和改善汽蚀性能的叶轮是( C ) A半开式B开式C双吸式。 11、一般轴的径向跳动是:中间不超过( A ),两端不超过( A ) A0.05毫米0.02毫米 B0.1毫米0.07毫米 C0.05毫米0.03毫米 12、水泵各级叶轮密封环的径向跳动不许超过( A ) A0.08毫米B0.06毫米C0.04毫米 13、离心泵的效率等于( B ) A机械效率+容积效率+水力效率B机械效率×容积效率×水力效率C(机械效率+容积效率) 14、水泵发生汽蚀最严重的地方是( A ) A 叶轮进口处B.叶轮出口处C叶轮轮毂 15、输送水温高的水泵启动时,应注意( B ) A开入口即可启动B暖泵C启动后慢开出口门

离心泵及传热仿真

化工单元仿真实训 实训一离心泵单元 一. 工作原理简述 在工业生产和国民经济的许多领域,常需对液体进行输送或加压,能完成此类任务的机械设备称为泵,而其中靠离心作用工作的叫离心泵。由于离心泵具有结构简单、性能稳定、检修方便、操作容易和适应性强等特点,在化工生产中应用十分广泛,据统计超过液体输送设备的80%。所以,离心泵的操作是化工生产中最基本的操作。 离心泵由吸入管、排出管和离心泵主体组成。离心泵主体分为转动部分和固定部分。转动部分由电机带动旋转,将能量传递给被输送的部分,主要包括叶轮和泵轴。固定部分包括泵壳、导轮、密封装置等部分,叶轮是离心泵中使液体接受外加能量的部件。泵轴的作用是把电动机的能量传递给叶轮。泵壳是通道截面逐渐扩大的蜗壳形体,它将液体限定在一定的空间里,并能将液体大部分动能转化为静压能。导轮是一组与叶轮旋转方向相适应,且固定在泵壳上的叶片。密封装置的作用是防止液体的泄漏或空气体倒吸入泵内。 启动灌满了被输送液体的离心泵后,在电机的作用下,泵轴带动叶轮一起旋转,叶轮的叶片推动期间的液体转动,在离心力的作用下,液体被甩向叶轮边缘并获得动能;在导轮的引导下沿流通截面积逐渐扩大的泵壳流向排出管,液体流速逐渐降抵,而静压能增大。排出管的增压液体经管路即可往各目的地。与此同时,叶轮中心处因液体被甩出而形成一定的真空,因贮槽液面上方压强大于叶轮中心处,在压力差的作用下,液体不断地从吸入管进入泵内,以填补被排出液体的位置。因此,只要叶轮不断旋转,液体便不断地被吸入和排出。由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮。 离心泵的操作中有两种现象是应该避免的:气缚和气蚀。“气缚”是指在启动泵前没有灌满被输送液体或在运转过程中渗入了空气,因气体的密度远小于液体,产生的离心力小,无法把空气甩出去,导致叶轮中心所形成的真空度不足以将液体吸入泵内,尽管此时叶轮在不停地旋转,却由于离心泵失去了自吸能力而无法输送液体,这种现象就称为“气缚”。“气蚀”指的是当贮槽液面上的压力一定时,如叶轮中心的压力降低到等于被输送液体当前温度下的饱和蒸气压时,叶轮进口处的液体会出现大量气泡,这些气泡随液体进入高压区后又迅速被压碎而凝结,致使气泡所在空间形成真空,周围液体质点以极大速度冲向气泡中心,造成冲击点上有瞬间局部冲击压力,从而使叶轮等部分很快损坏,同时伴有泵体震动,并发出噪音,泵的流量、扬程和效率明显下降。这种现象就叫“气蚀”。

泵的性能曲线测定实验汇总

离心泵的特性曲线的测定 2010-11-28 00:12:33| 分类:默认分类|字号订阅 实验四、离心泵的特性曲线的测定 一、实验目的: 1.掌握离心泵操作,了解离心泵的结构和性能; 2.测定离心泵在一定转速下的特性曲线的测定。 3.测定离心泵的管路特性曲线 4.了解离心泵的工作点与流量调节 二、实验原理: 1.离心泵的特性曲线 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论扬程与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图-23的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,例如摩擦损失、环流损失等,因此,实际扬程比理论扬程小,且难以通过计算求得,因此通常采用实验方法,直接测定扬程、功率、效率与流量的关系,并将测得:H e~Q、N~Q和η~Q三条曲线称为离心泵的特性曲线。另外,根据此曲线可以得出离心泵的最佳操作范围,泵的高效率区作为选用离心泵的依据。 图2-23 离心泵的理论压头与实际压头 (1)泵的扬程He 在离心泵进出口管装设真空表和压力表的管截面列出柏努利方程式,(以单位重量液体为衡算标准)

则: (2-23) 由于两取压口紧靠离心泵进出口,因此直管段摩擦损失很小,其阻力损失归入离心泵的效率,故=0。 (2 -24)若离心泵进出口管径相同,则 u1=u2 上式可写成为: (2-25) (2-26) 式中:H压强表、H真空表——分别为压强表和真空表所测得的表压和真空度,以(m液柱)表示的数值。 h0——压强表和真空表中心之垂直距离。 (2)泵的轴功率N轴 离心泵从电机获得的实际功率(即单位时间内电机向离心泵输入的功)称离心泵的轴功率。 泵的轴功率和电机的电功率之间有如下的关系: N轴=N电·η电·η传(2-27)式中:N电——电动机的电功率,由功率表测得(KW); η电——电动机效率,取0.9; η传——传动效率,η传=1.0。 (3)泵的效率η 离心泵的有效功率Ne与轴功率之比称为效率。

水泵与水泵站考试计算题

六、计算题 (4小题,共50分): 1.已知某12SH 型离心泵的额定参数为Q=730 m 3/h ,H=10m ,n=1450 r/min 。试计算其比转数。(本小题10分) 解:30010 360012731145065.365.34343=?==H Q n n s 答:(略) 2. 如图所示取水泵站,水泵由河中直接抽水输入表压为196KPa 的高地密闭水箱中。已知水泵流量Q=160 L/s ,吸水管:直径D1=400mm ,管长L1=30m ,摩阻系数λ1=;压水管:直径D2=350mm ,管长L2=200m ,摩阻系数λ2= 。假设吸、压水管路局部水头 损失各为1m ,水泵的效率η=70%,其他标高见图。试计算水泵扬程H及轴功率N 。(本小题15分) 解:吸水管计算:s /m ....D Q v 271401431604π42211=??== m .....g v D l λh f 17081922714030028022 211111=???== (2分) 压水管计算:s /m ....D Q v 6613501431604π42222=??== m .....g v D l h f 332819266135020002902λ2 222222=???== (2分) 总水头损失为: m ...h h h f f 542332170221=++=++=∑ (2分) m H ST 50.6200.2000.3250.74=+-= (2 分) m h H H ST 00.6750.450.62=+=+=∑ KW QH N u 16.10500.6716.081.9=??==γ (2分) KW N N u 23.1507.016.105===η (2分) 答:(略) 4.已知某变径运行水泵装置的管道系统特 性曲线2350030Q H +=和水泵在转速为

离心泵性能测定实验

离心泵性能测定实验

离心泵性能测定实验 一、实验目的: 1、 了解离心泵的构造,掌握其操作和调节方法; 2、 测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围; 3、 测量管路特性曲线及双泵并联时特性曲线; 4、 了解工作点的含义及确定方法; 5、 测定孔板流量计孔流系数C 0与雷诺数Re 的关系(选做)。 二、基本原理: 1、离心泵特性曲线测定 离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。 在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。泵的扬程可由进、出口间的能量衡算求得: He = H 压力表 + H 真空表 + H 0 [ m ] 其中:H 真空表,H 压力表分别为离心泵进出口的压力 [ m ]; H 0为两测压口间的垂直距离,H 0= 0.3m 。 N 轴 = N 电机?η电机?η传动 [ kw ] 其中:η电机—电机效率,取0.9; η传动—传动装置的效率,取1.0; 102 ρ ??=He Q N [ kw ] 因此,泵的总效率为: 轴 N Ne = η 2、孔板流量计孔流系数的测定 孔板流量计孔板孔径处的流速u 0可以简化为: u 0=C 0(2gh )1/2 根据u 0和S 0,即可算出流体的体积流量Vs 为: Vs=u 0S 0=C 0S 0(2gh )1/2 或: Vs= C 0S 0(2△p/ρ)1/2 式中Vs ——流体的体积流量,m 3/s ; △ p ——孔板压差,Pa ; S 0——孔口面积,m 2; ρ——流体的密度,kg/m 3; C 0——孔流系数。

水泵与水泵站试题参考答案

《水泵与水泵站》试题A参考答案 姓名专业班级学号 一、名词解释(4小题,每小题分,共计10分): 1.水泵站 由抽水机(水泵、动力机、传动设备)、机房、管道、进出水构筑物、电力系统等所组成的多功能、多目标的综合水利枢纽。 2.扬程 单位重量水体从水泵的进口到出口所获得的能量。 3.轴功率 水泵泵轴的输入功率。 4.水锤

由于某种原因,使水力机械或管道内的运动要素发生急剧变化的现象。 二、空题(本题共 20个空,每空分,共 10分): 1.叶片泵可以分为离心泵、轴流泵、混流泵。离心泵的工作原理是利用装有叶片的叶轮的高速旋转时所产生的离心力来工作的泵。 2.水泵的功率主要有有效功率、轴功率、配套功率。 3.水泵的汽蚀危害有使水泵的性能变坏、使过流部件损坏、 产生噪音和震动,缩短机组的使用寿命。 4 .轴流泵应采用开阀启动方式,离心泵应采用关阀启动方式。5.根据其结构型式,泵房可分为分基型、干室型、湿室型、块基型。

6.压力管道的布置形式有平行布置、辐射状布置、并 联布置、串联布置。 三、单项选择题(四选一,每小题1分,共10分) 1.某台离心泵装置的运行功率为N,采用变阀调节后流量减小,其功率变由N为N',则调节前后的功率关系为。【 A】 AN'<NBN'=NCN>'NDN' ≥N 2.离心泵的叶片一般都制成【C】A旋转抛物线B扭曲面C柱状D球形 3.叶片泵在一定转数下运行时,所抽升流体的容重越大(流体的其它物理性质相同),其轴功率【 A 】 A越大B越小 C 不变 D 不一定 4.水泵调速运行时,调速泵的转速由1n变为2n时,其流量Q、扬程H 与转速n之间的关系符合比例律,其关系式为【 C 】 A (H1/H2)=(Q1/Q2)2=(n1/n2) B (H1/H2)=(Q1/Q n1/n2)2 2)=( C (H1/H2)=(Q1/Q2) 2=(n1/n2)2D (H1/H2) =(Q1/Q n1/n2) 2) =( 5. 当水泵站其它吸水条件不变时,随输送水温的增高,水泵的允许安装高度【 B 】 A将增大B将减小C保持不变D

水泵工考试题答案【最新版】

水泵工考试题答案 姓名:日期: 一选择题(每题2分,共20分) 1.离心泵在运行过程中,一般要求轴承温度不能超过( B ) 。 A;65-70℃B;75-80℃C;85-90℃ 2.一般电动机启动电流为额定电流的( B )倍 A;2-3倍;B;4-7倍;C;5-10倍; 3.离心泵在启动时,应 ( B ) 。 A;出口阀在打开状态B;出口阀在关闭状态 C;出口阀在打开、关闭状态均可 4.离心泵按叶轮的数量分为 ( A ) 。 A;单级泵和多级泵 B;单吸泵和双吸泵C;卧式泵和立式泵

5.为防止汽蚀现象,离心泵在运行时,其吸入口的液流压力必须 (A ) 此时液流温度的汽化压力。 A;大于 B;等于C;小于 6.扬程是把液体经泵后获得的机械能以 ( C ) 形式表示,其物理意义是液柱高度。 A;压力能 B;动能C;位能 7.泵的运行工况点是由哪两条曲线的交点所定(A )。 A;扬程-流量和效率-流量B扬程-流量和轴功率-流量C;效率-流量和轴功率-流量8.离心水泵启动后出口逆止门打不开的象征是( C )。 A;电流小,出口门前压力高;B;电流大,出口门前压力高; C;电流小,出口门前压力低; 9.泵串联运行时,下列说法正确的是(B )。 A;流量相加,扬程不变 B;流量不变,扬程相加C;都相加

10.泵并联运行时,下列说法正确的是(A )。 A;流量相加,扬程不变B;流量不变,扬程相加C;都相加 二、填空题(每空2分,共40分) 1.水泵启动前,应检查开启(轴承冷却水门)和( 盘根密封水门)。 2.泵的主要密封形式有(机械密封)和(填料密封)。 3.柱塞泵是根据泵的(行程)来调节流量的。 4.泵的型号为DG46-50×5,其中46指( 流量) ,50×5指( 扬程) 。 5、水泵正常运行中,应检查盘根滴水不超过( 30-60 )滴为准。 6.如果需一台低流量、高扬程的离心泵,则该离心泵应选用(多级单吸离心泵)。 7.在泵运行时,轴部的油位不得低于1/2,此时油起( 润滑)作

水泵模拟仿真

平顶山工业职业技术学院毕业设计(论文)说明书

第四章中央水泵房的模拟仿真 在整个水泵系统就地控制箱上的指示灯信号有:高压柜合闸、高压柜短接电抗器、电动阀开到位、电动阀关到位、电动阀过转矩、真空度。 由PLC柜上的触摸屏和上位计算机组成的网络监控,触摸屏安装的是嵌入版的MCGS组态软件,上位计算机安装的是网络版的MCGS组态软件,两种组态软件的监视画面基本相同。在组态软件的监视画面上,详细地显示了PLC控制系统各种工作状态和运行数据,使工作人员可以很方便地了解整个中原水泵系统的工作情况。 本设计采用的组态软件为北京昆仑通泰自动化软件科技有限公司研发的MCGS,具有功能完善、操作简便、可视性好、可维护性强的突出特点。通过与其他相关的硬件设备结合,可以快速、方便的开发各种用于现场采集、数据处理和控制的设备。 MCGS是能够在Microsoft各种32位Windows平台上运行的开发工具,MCGS 的体系结构由主控窗口、设备窗口、用户窗口、实时数据库和运行策略5部分组成,如图5-1所示。运行时,MCGS通过对现场实时数据的采集、处理,并以动画显示、流程控制、报警处理和报表输出等方式,防爆值班人员进行现场操作。MCGS嵌入版组态软件专门应用于嵌入式操作系统,它适应于应用系统对功能、可靠性、成本、体积、功耗等综合性能有严格要求的专用计算机系统。 图5-1 MCGS体系结构图 用MCGS创建工程的流程图,如下图所示:

图5-2 工程的流程图 4.1 用户窗口组态 在用户窗口中,通过对多个图形对象的组态设置,建立相应的动画连接,用清晰生动的画面反映工业控制过程。用户窗口是由用户来定义的、用来构成MCGS嵌入版图形界面的窗口。用户窗口是组成MCGS嵌入版图形界面的基本单位,所有的图形界面都是由一个或多个用户窗口组合而成的,它的显示和关闭由各种功能构件(包括动画构件和策略构件)来控制[10]。用户窗口相当于一个“容器”,用来放置图元、图符和动画构件等各种图形对象,通过对图形对象的组态设置,建立与实时数据库的连接,来完成图形界面的设计工作。如下图所示:

离心泵性能实验

实验名称:离心泵性能试验 一、实验目的及任务: 1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.测定管路的特性曲线。 4.熟悉个孔板流量计的构造、性能和安装方法。 5.测定孔板流量计的孔流系数。 二、实验原理: 1. 离心泵特性曲线的测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系可以通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可不免的会产生阻力损失,如摩擦损失、环流损失等,实际压头小于理论压头,且难以计算。因此,通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q、η-Q三条曲线称为离心泵的特性曲线。根据曲线可以找到最佳操作范围,作为选择泵的依据。 (1)泵的扬程 由伯努利方程,泵的实际压头He如下: 其中,动能项相比于压头项数量级很小,可以忽略;损失项由于管路较短,损失较小,可以忽略,因此得到:

式中——泵出口处的压力,mH2O ——泵入口处的压力,mH2O ——出口压力表和入口压力表的垂直距离,m (2)泵的有效功率和效率 泵在运转过程中存在能量损失,因此泵的实际和流量较理论低,而输入功率又比理论值高,有泵的总效率: 轴 轴电电转 式中——泵的有效功率,kW ——流量,m3/s ——扬程,m ——流体密度,kg/ m3 N轴——泵轴输入离心泵的功率,kW N电——电机的输入功率,Kw η电——电机效率,取0.9 η转——传动装置的效率,取1.0 2. 孔板流量计孔流系书的测定 孔板流量计的结构如图1所示。

图1 孔板流量计构造原理 在水平管路上装有一块孔板,其两侧接测压管,分别与压力传感器的两端连接。孔板流量计是根据流通通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压差作为测量依据。若管路的直径为d 1,锐孔的直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体的密度为ρ,孔板前测压导管截面处与缩脉截面处的速度和压强分别为u 1、u 2和p 1、p 2,根据伯努利方程,不考虑能量损失可得: 或 由于缩脉的位置随流速的变化而变化,缩脉处的截面积S 2难以知道,而孔口的面积已知,且测压口的位置不变,因此可以用孔口处的u 0代替u 2,考虑流体因局部阻力造成的能量损失,用校正系数C 校正后,有: 对不可压缩流体,根据连续性方程有: 整理得: 令 ,则可简化为: u d d

离心泵培训题库

离心泵试题库 一、填空:(每个空1分) 1.石化装置离心泵密封类型主要有2种,分别是:机械密封、填料密封。 2.离心泵主要工作部件有叶轮、轴、吸入管和排出管。 3.当离心泵输送不出液体时,主要原因有:排气不良、旋转方向不对、吸入过滤器堵塞、吸入阀未开等。 5.离心泵紧急情况下的切换,是指油喷出,电机起火,泵严重损坏等事故。6.离心泵的操作,必须用排出阀、调节流量,决不可用吸入阀来调节流量,以免抽空。7.对于泵的工作温度在80℃以上的泵,在运转前要充分进行预热暖机(用蒸汽或工作液)。预热速率为2~3℃/分左右。预热过程中要经常盘车,保证预热均匀。当泵壳外侧的温度达到工作温度的80%左右时才能启动泵。 8.离心泵加入的润滑油是N46防锈汽轮机油。 9.热油泵是指工作温度在200℃以上的泵。 10.切换泵时,应严格保证系统流量、压力不变原则,严禁抽空、抢量等事故发生。11.离心泵有不同的类型,按叶轮数目可分为:单级泵和多级泵。 12.离心泵在启动之前应罐满液体,此过程称为灌泵。 13.离心泵的主要性能参数有:转速、流量、扬程、功率和效率等。 14.由于液道入口附近某些局部低压区处的压力降低到液体饱和蒸汽压,导致部分液体汽化,并伴有局部高温、高压水击现象,称为:汽蚀。 15.泵的叶轮按结构形式可分为:闭式叶轮、半开式叶轮和开式叶轮。 16.高速泵也称高扬程泵,转速一般在10000rpm以上。 17.调节普通离心泵出口流量的方法有:出口阀调节、变转速调节、旁路调节和切割叶轮调节等。(填“台数调节、连接方式调节”也可。) 18.两台普通离心泵并联工作时,其总流量为各分支流量之和,扬程与单台泵扬程相同。19.两台普通离心泵串联工作时:总扬程等于同一流量下各泵扬程之和;流量等于单台泵流量。 20.离心泵各有其特性曲线,但一般都有共同特点:⑴:扬程随流量的增大而下降;⑵:功率随流量增大而上升;⑶效率先随流量增大而上升,达到最大值后便下降。 21.离心泵按进液方式可分为单吸式泵和双吸式泵。 22.离心泵按泵轴位置可分为卧式泵和立式泵。 23.离心泵按支撑方式可分为悬臂泵和双支撑泵。 24.离心泵的切割定律为Q/Q1=D/D1,H/H1=(D/D1)2,N/N1=(D/D1)3。 25.离心泵的比例定律为Q/Q1=n/n1,H/H1=(n/n1)2,N/N1=(n/n1)3。 26.防止气蚀的条件为NPSHa>NPSH。 27.NPSHa表示有效气蚀余量,NPSHr表示必须气蚀余量,NPSH表示允许气蚀余量。28.离心泵的两大主要危害因素是离心泵的气蚀和离心泵的轴向力。 29.气蚀对泵的危害有泵的性能突然下降和泵体产生振动和噪音。 30.泵的效率定义为有效功率/轴功率。 二、判断题:(每题1分) 1.为了节约能源,冬天备用离心泵可以停冷却水。(×) 2.离心泵在轴承壳体上最高温度为80℃,一般轴承温度在60℃以下。(√) 3.为避免气蚀现象,离心泵在安装时应尽量减少泵的入口阻力,选择合适的吸入高度,合

离心泵及液位的仿真实验

实验十一离心泵及液位的仿真实验 一、实验目的 二、基本原理 三、实验流程 四、实验步骤 五、思考题

实验目的 1.熟习离心泵的操作方法; 2.掌握离心泵特性曲线的测定方法、表示方法、 加深对离心泵性能的了解; 3.了解测定液位的一些常用方法,仿真系统测试 离心泵性能曲线的原理; 4.了解离心泵的一些常见故障及排除方法和技巧。

基本原理 离心泵一般由电动机带动。启动前须在离心泵的壳体内充满被输送的液体。当电机通过联轴结带动叶轮高速旋转时,液体受到叶片的推力同时旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外沿,以高速流入泵壳,当液体到达蜗形通道后,由于截面积逐渐扩大,大部分动能变成静压能,于是液体以较高的压力送至所需的地方。当叶轮中心的流体被甩出后,泵壳吸入口形成了一定的真空,在压差的作用下,液体经吸入管吸入泵壳内,填补了被排出液体的位置。

离心泵单元流程图画面

1检查各开关、手动阀门是否处于关闭状态。 2将液位调节器LIC置手动,调节器输出为零。 3将流量调节器FIC置手动,调节器输出为零。 4进行离心泵充水和排气操作。开离心泵入口阀V2,开离心泵排气阀V5,直至排气口出现蓝色点,表示排气完成,关阀门V5。 5为了防止离心泵开动后储水槽液位下降至零,将液位控制LIC置自动。 6在泵出口阀V3关闭的前提下,开离心泵电机开关PK1,低负荷起动电动机。

7开离心泵出口阀V3,由于FIC的输出为零,离心泵输出流量为零。 手动调整FIC的输出,使流量逐渐上升至6kg/s且稳定不变时投自动。 将液位控制LIC改为手动,调节LIC至(50±0.5)%后,置自动。 10当储水槽入口流量FI与离心泵出口流量FIC达到动态平衡时,离心泵开车达到正常工况。

离心泵实验

一、 实验题目 离心泵性能实验 二、 实验摘要 本实验使用转速为2900 r/min ,WB70/055型号的离心泵实验装置,以水为工作流体,通过调节阀门改变流量,测得不同流量下离心泵的性能参数,并画出特性曲线同时标定孔板流量计的孔流系数C 0,测定管路的特性曲线。实验中直接测量量有q v 、P 出、P 入、电机输入功率N 电、孔板压差ΔP 、水温T 、频率f ,根据上述测量量来计算泵的扬程He 、泵的有效功率Ne 、轴功率N 轴及效率η,从而绘制泵的特性曲线图;又由P 、q v 求出孔流系数C 0、Re ,从而绘制C 0-Re 曲线图,求出孔板孔流系数C 0;最后绘制管路特性曲线图。 关键词: 特性曲线图、孔流系数、He 、N 轴、η、q v 三、 实验目的及内容 1、解离心泵的构造,掌握其操作和调节方法。 2、定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。 四、实验原理 1、离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如下图的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He 式中: ——泵出口处的压力,mH 2O ; ——泵出口处的压力, mH 2O ; ——出口压力表与入口压力表的垂直距离, =0.2m 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为 轴 N Ne = η 102 e ρ QHe N = 式中 Ne ——泵的有效效率,kW ;

离心泵考试题

离心泵考试题 时间姓名成绩 一、填空题(每题1分,共30分) 1、石化装置离心泵密封类型主要有2种,分别是:机械密封、填料密封。 2、离心泵主要工作部件有叶轮、轴、吸入管和排出管。 3、当离心泵输送不出液体时,主要原因有:排气不良、旋转方向不对、吸入过滤器堵塞、吸入阀未开等。 4、离心泵有不同的类型,按叶轮数目可分为:单级泵和多级泵。 5、离心泵在启动之前应罐满液体,此过程称为灌泵。 6、离心泵的主要性能参数有:转速、流量、扬程、功率和效率等。 7、由于液道入口附近某些局部低压区处的压力降低到液体饱和蒸汽压,导致部分液体汽化, 8、并伴有局部高温、高压水击现象,称为:汽蚀。 * 9、泵的叶轮按结构形式可分为:闭式叶轮、半开式叶轮和开式叶轮。 10、高速泵也称高扬程泵,转速一般在10000rpm以上。 11、离心泵按进液方式可分为单吸式泵和双吸式泵。 12、离心泵按泵轴位置可分为卧式泵和立式泵。 13、气蚀对泵的危害有泵的性能突然下降和泵体产生振动和噪音。 14、泵的效率定义为有效功率/轴功率。 二、判断题:(每题2分,共20分) 1、为了节约能源,冬天备用离心泵可以停冷却水。(×) 2、离心泵在轴承壳体上最高温度为80℃,一般轴承温度在60℃以下。(√) 3、为避免气蚀现象,离心泵在安装时应尽量减少泵的入口阻力,选择合适的吸入高度,合理调节。(√) ) 4、泵的扬程高低与叶轮数目和转速快慢有关,与流量大小的变化有关,而与叶轮直径无关。(×) 5、若输送的液体粘度增加,则离心泵的流量减少,扬程降低,功率增加,效率降低。(√) 6、多级离心泵是在泵轴上安装一个或多个叶轮的离心泵。(×) 7、所有的离心泵都需要暖泵。(×) 8、单位时间内做功元件所给出的功率为轴功率。(×) 9、轴功率即泵的输入功率。(√) 10、离心泵电流超过额定值持续不降的情况下不需要进行紧急停车处理。(×) 三、选择题:(每题2分,共20分) 1.离心泵在轴承壳体上最高温度为80℃,一般轴承温度在( C )℃以下。 A、40; B、50; C、60; D、70 《 2、离心泵在额定转速下运行时,为了避免启动电流过大,通常在( C ) A.阀门稍稍开启的情况下启动 B.阀门半开的情况下启动 C.阀门全关的情况下启动 D.阀门全开的情况下启动 3、离心泵,当叶轮旋转时,流体质点在离心力的作用下,流体从叶轮中心被甩向叶轮外缘, 于是叶轮中心形成( B )

离心泵数值仿真指导教程

1.离心泵数值仿真指导教程 本章对离心泵数值仿流程和步骤进行详细说明。PumpLinx算例文件目录下会生成几个重要文件,其中“.sgrd”文件为网格文件,记录网格信息;“.spro”文件为工程文件,记录模型及边界条件设置信息;如需打开一个完整的算例,工程文件和网格文件缺一不可。“.stl”文件为PumpLinx支持的几何模型导入格式。 1.1离心泵几何模型导入 ?在CAD软件中将离心泵进口段、转子部分和蜗壳出口段分别以stl格式导出。 ?注意:在导出几何模型之前,需要将进口段、转子部分和蜗壳出口段分成三个部分,以便在进行数值仿真时可以顺利生成动/静流体域之间的交互面。如下图所示:

?运行PumpLinx软件,新建一个工程文件,界面如下: ?选择界面左边的Mesh窗口命令(一共4个窗口选项,分别是Mesh,Model,Simulation 和Result,分别代表各个步骤)。 ?选择Import/Export Geometry or Grid命令,点击Import Surface From STL Triangulation File,选择事先从CAD文件中导出的stl文件,如图所示:

?此步骤也可直接打开PumpLinx标准算例文件 “centrifugal_s_intial_stl_surface_v3.4.spro”,其默认存储路径为:C: /Program Files/Simerics/Tutorials/Centrifugal。 1.2 切分离心泵边界面 1.2.1 对离心泵流体域进行分区 ?点击Split/Combine Geometry or Grid命令,选择Split Disconnected命令对分块的几何模型进行切分。 ?几何体被分为pump_1,pump_2和pump_3三部分,分别将对应部分命名为Inlet,Rotor和Volute,即进口、转子和蜗壳三部分。 ?重命名pump_1为volute,即蜗壳出口部分; ?重命名pump_2为rotor,即转子部分; ?重命名pump_3为inlet,即进口部分。 1.2.2 切分并定义进口段边界面 ?选择进口段几何模型,设置75度分割角,点击Split by Angle选项,将进口段分为inlet_1,inlet_2和inlet_3三部分。

相关文档
最新文档