大学物理学第三版第十章参考答案(北京邮电 赵近芳)

合集下载

大学物理第三版第10章部分习题解答

大学物理第三版第10章部分习题解答

第10章部分习题解答
1 2 E3 2 0 2 0 0
(2)
E1 0 2 0 2 0
1

2

3
E2 2 0 2 0 0
E3 0 2 0 2 0
x
2010.5.22
第10章部分习题解答
P369题10.3.10 半径为R的无限长直圆柱体均匀带电,体 电荷密度为 .试求:场强分布,并画出E-r曲 线 解: 带电圆柱的电场分布具有 轴对称性,取半径为r,高为l,以 r l 带电圆柱的轴为轴的圆柱面为 高斯面(如图),则 R (1) 圆柱体内r<R
第10章部分习题解答
(1) (2) (3)
AAB q(U A U B ) 3.6 10 J
ACD q(UC U D ) 3.6 106 J
ABD q(U B U D ) 0
6
2010.5.22
第10章部分习题解答
P371题10.3.26 电荷Q均匀地分布在球体内,试求球内外 的电势 解: 场强分布为
A
s a
2a
1 1 q E ds q 4 6 0 24 0 s
注:只有交于A点三个面存在电通量
第10章部分习题解答 P372题10.3.32 正电荷q均匀分布在半径为R的细圆环上. 试求:(1) 环轴线上距环心为x处的点P的电势; (2) 通过电势梯度求P点的场强.
1 dq 解: (1) dU P 4πε0 r 1 q UP d q 4πε0 r 4πε0 r q 4πε0 x 2 R 2
Qr r 3 0 4 0 R
Q 4 0 r
2
E
(r R)

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。

1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。

1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

大学物理第十章课后习题答案

大学物理第十章课后习题答案
自治区精品课程—大学物理学
题库
第十章 静电场中的导体和电介质
一、 填空 1. 根据物质的导电性,可将物质分为 、 和 。 2. 从 物质 的 电结 构 来看 , 金属 导 体具 有 带负 电 的 和 带正 电 的 。 3. 导 体处 于静 电平 衡时 ,导 体内 部各 点 的场 强为 , 这称 为导 体的 条件。静电平衡下的导体是 ,导体的表面是 。 4. 导体处于静电平衡状态时,导体内处处 (填“有”或“无” )净余电荷, 电荷只能分布在导体的 上。 5. 对于孤立导体而言,表面上 的分布与表面曲率有关,表面曲率越大, 电荷面密度越 ,反之越 。 6. 空腔导体内部电场不受腔外电场的影响,接地导体空腔外部的电场不受腔内 电荷的影响,这种隔离作用称为 。 7. 孤立导体的 是指使导体升高单位电势所需的电荷,反映了导体 的性质。 8. 根据分子中正、 负电荷中心的分布, 可将电介质分为 分子和 分 子。将两类电介质放入电场中将分别发生 极化和 极化。 二、 简答 1. 2. 3. 4. 5. 6. 简述导体静电平衡的条件及特点。 简述静电屏蔽。 简述处于静电平衡的空腔导体,空腔内场强处处为零。 简述孤立导体的电容的计算公式及物理意义。 分别推导两个电容器串联和并联后的总电容的计算公式。 电介质的极化现象和导体的静电感应现象两者有什么区别?
并联: q = q1 + q2 , U = U1 = U 2 , C =
q q1 q2 = + = C1 + C2 。 U U U
6. 答:导体静电感应时会在导体表面出现感应电荷,电解质极化时在介质表面 出现极化电荷,是两种不同的电荷,静电平衡时导体内部场强为零,电解质极化 时内部场强不为零。 三、 计算 1. 证明:如图所示,设四个面上的电荷面密度分别为 σ 1 、 σ 2 、 σ 3 、 � σ 4 ,在 A 板内取一点 P1 ,设 en 是向右的单位法向矢量, 四个无限大

大学物理习题及解答(第三版_北京邮电大学出版社)

大学物理习题及解答(第三版_北京邮电大学出版社)

大学物理习题及解答(第三版 北京邮电大学出版社)习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =-② 222a m g m T =-③联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α= 由①、②式消去t ,得 220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解: 2s m 83166-⋅===m f a x x2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=j i v ϖϖϖ(2)m 874134)167(21)4832122(21)21(220j i j i j t a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk e v )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m k e )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 答: (1)∵ t v m kv a d d =-= 分离变量,得m t k v v d d -=即 ⎰⎰-=v v t m t k vv 00d d mkt e v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===t t t m k m k e k mv t e v t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='000d k mv t e v x t m k (4)当t=k m时,其速度为 e v e v ev v k m m k 0100===-⋅-即速度减至0v 的e 1. 2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下(2) 2m 对地加速度为 22g a a a =-'= 方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a ϖϖϖ+='∴g g g a a a 25422221=+=+'= a a '=arctan θo6.2621arctan ==,左偏上. 2-6一质量为m 的质点以与地的仰角θ=30°的初速0v ϖ从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o 30,则动量的增量为 0v m v m p ϖϖϖ-=∆ 由矢量图知,动量增量大小为0v m ϖ,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p ϖϖϖ-=∆方向竖直向上, 大小mg mv mv p =--=∆)(12ϖ碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 作用在质量为10 kg 的物体上的力为i t F ϖ)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j ϖ6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t ϖϖϖϖ10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向, i p I i m p v ϖϖϖϖϖϖ111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则 ⎰⎰+-=+-=-=t t t F v m t m F v m p v m p 000000d )d (,ϖϖϖϖϖϖϖ于是⎰∆==-=∆t p t F p p p 0102d ϖϖϖϖϖ, 同理, 12v v ϖϖ∆=∆,12I I ϖϖ= 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去) 2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为 j t b i t a r ϖϖϖωωsin cos += 求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为 )cos sin (j t b i t a m v m p ϖϖϖϖωωω+-== 将0=t 和ωπ2=t 分别代入上式,得 j b m p ϖϖω=1,i a m p ϖϖω-=2,则动量的增量亦即质点所受外力的冲量为 )(12j b i a m p p p I ϖϖϖϖϖϖ+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t = (2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b a t =代入,得 b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k m m k km m ①又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=②2211v m v m mv +=③联立①、③解得 12)1(kv v k v -+=④将④代入②,并整理得21)(2v v km T -=于是有km T v v 21±= 将其代入④式,有m kT v v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取 km T v v m kT v v 2,221-=+=证毕. 2-12 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求F ϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化. 解: (1)由题知,合F ϖ为恒力, ∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合 J 452421-=--=(2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s k y ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212k mv A A =∆== ③即 222122k k ky =-所以,22=y 于是钉子第二次能进入的深度为 cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为n P r k r E /)(=, 试求质点所受保守力的大小和方向.解: 1d )(d )(+-==n r nk r r E r F 方向与位矢r ϖ的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆= 2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM G r mM G -=地月经整理,得R M M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M Gr M G E P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m kh gh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

大学物理简明教程第三版修订版赵近芳课后习题答案

大学物理简明教程第三版修订版赵近芳课后习题答案

第一章选择题1动量是矢量,因为速度方向不断改变,所以动量不断改变。

AB错。

角动量也是矢量。

但是做匀速圆周运动时的角动量是不断的。

所以正确的是C正确。

D错误。

2选C1、内力不能改变系统的质量,所以A不对;2、内力不能改变系统的总动量,所以B不对;3、内力不能改变系统的总角动量,所以D不对;4、内力可以对系统做功,能改变系统的总动能,所以C对;3C(1)这种说法是错误的。

保守力作正功时,系统内相应的势能减少。

(2)这种说法是对的。

(3)作用力和反作用力是作用在不同物体上的,虽然它们大小相等,方向相反,但它们所作的功不一定相等,它们所作的功的正负也未必相反,功的大小和正负与施力方向及受力物体的运动状态有关。

本题答案应选(C)。

4选A,因为木块相对于斜面静止,那么如果斜面有一个水平方向上的加速度的话,木块也有同样的水平加速度, 但是对于他两个组成的系统来看,并没有受到外界的水平方向上的力来产生、维持这个加速度,所以系统在水平方向上来讲是不可能有加速度的,所以A正确5分析对AB受力分析,由于在撤去外力瞬间,弹簧未来的及变化,根据牛顿第二定律判断加速变化解答解:由于AB向右运动,当撤去外力瞬间,由于惯性,AB还是向右运动,由于弹簧还未来得及变化,故B继续向前加速运动,A向前减速运动,故a A <0,a B>0故选:C点评本题主要考查了对物体的受力分析,抓住撤去外力的瞬间,弹簧的弹力不变即可。

填空题:解答题和后面章节的课后答案请关注.微-.信.公众号:学糕1未断线前,T的竖直分力和重力是一对平衡力。

T=mg/cosθ断线瞬间:打破平衡力,T和重力的合力方向斜向下Tˊ=mgcosθT:Tˊ=1/cosθ²2、I=∫F*dt=140;动量定理:I=P2-P1=M*(V2-V1)得V2=243、因为F与X成一次函数关系所以可以用平均作用力来表示F=(4+54)/2=29N位移S=10M所以W=FS=290J当然也可以作出F关于X的图像:所包围的面积就是功W=(4+54)×10/2=290J4、02-v2=2asa=-v2/(2s)-μmg=maμ=a/g=v2/(2gs)物体加速度大小为v2/(2s),物体与水平面的摩擦系数为v2/(2gs)。

赵近芳-大学物理学答案--全

赵近芳-大学物理学答案--全

大学物理学(北邮第三版)赵近芳等编著 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理学-(第3版.修订版)-北京邮电大学出版社-下册--第十章-习题10标准答案..

大学物理学-(第3版.修订版)-北京邮电大学出版社-下册--第十章-习题10标准答案..

习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。

[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。

[答案:B](4)一个100匝的圆形线圈,半径为5厘M ,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。

[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度。

[答案:aIπμ220,方向垂直正方形平面] (2)计算有限长的直线电流产生的磁场用毕奥——萨伐尔定律,而用安培环路定理求得(填能或不能)。

[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为。

电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为。

[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将。

大学物理学 (第3版 修订版) 赵近芳 下册 第九到十五章

大学物理学   (第3版 修订版) 赵近芳 下册      第九到十五章

大学物理学(第3版修订版)赵近芳下册第九到十五章大学物理学-(第3版修订版)赵近芳下册--第九到十五章练习99.1选择题(1)正方形的两条对角线分别放置电荷q,另外两条对角线分别放置电荷q。

如果Q 的合力为零,则q与q的关系为:()(a) q=-23/2q(b)q=23/2q(c)q=-2q(d)q=2q[答案:a](2)下面说法正确的是:()(a)如果高斯平面上的电场强度处处为零,则该平面中一定没有电荷;(b)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(c)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(d)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

【答:D】(3)半径为R的导体球表面上的表面点电荷密度为σ,那么从球体(a)σ/ε0(b)σ/二ε0(c)σ/四ε0(D)σ/八ε0开始R处的电场强度()[答案:c](4)在电场中的导体内部的()(a)电场和电势为零;(b)电场不为零,电势为零;(c)电势和表面电势相等;(d)电势低于表面电势。

[答:C]9.2填空题(1)在静电场中,场强必须在电势不变的区域。

[答案:相同](2)如果在立方体的中心放置一个点电荷q,则通过表面的电通量为。

如果点电荷从中心移动到无穷远,总通量将为。

[答案:q/6ε0,将为零](3)电介质在电容器中的作用(a)-(b)-。

[答案:(a)提高电容器的容量;(b)延长电容器的使用寿命](4)如果电量Q在半径为r的球体中均匀分布,则球体内外的静电能之比为。

[答案:5:6]9.3电是Q的三点电荷,它们位于等边三角形的三个顶点上。

问:(1)什么样的电荷被放置在这个三角形的中心,以使这四个电荷达到平衡(也就是说,每个电荷与其他三个电荷的库仑力之和为零)?(2)这个平衡和三角形的边长有关吗?解决方案:如图9.3所示(1)以a处点电荷为研究对象,由力平衡知:q?为负电荷1q212cos30??4π? 0a24π?0qq?(32a)3解得q3q3(2)与三角形边长无关.图9.3图9.4图9.4两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2?,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解决方案:如图9.4所示tcos??mg??q2?tsin??f?1e?4π?0(2lsin?)2?Q什么罪?4.百万吨?9.5根据点电荷场强公式e?问题4??0r2,当所研究的场点非常接近源点电荷(R→ 0)、场强→∞,这是没有物理意义的,对此应如何理解?E解决方案:?q4π?0r2?当R?0时,带电体不再被视为点电荷,点电荷可通过上述公式计算场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6在真空中,有两个平行板a和B,相对距离为D,板面积为s,它们的电量分别为+Q和-Q。

《大学物理学》赵近芳 课后习题答案 北京邮电大学出版社

《大学物理学》赵近芳 课后习题答案 北京邮电大学出版社

0
∑ r = 8 cm 时,
q = p 4π (r3 3
− r内3 )

( ) E
=
ρ
4π 3
r 3 − r内2
≈ 3.48 ×10 4 N ⋅ C −1 , 方向沿半径向外.
4πε 0r 2
∑ r = 12 cm 时,
q
=
ρ
4π 3
(r外3

r内3)
( ) ∴
E
=
ρ
4π 3
r外 3
− r内3
≈ 4.10 ×104
通过圆平面的电通量.(α = arctan R ) x
∫ 解: (1)由高斯定理
Ev

v dS
=
q
s
ε0
立方体六个面,当 q 在立方体中心时,每个面上电通量相等

各面电通量 Φ e
=
q 6ε 0

(2)电荷在顶点时,将立方体延伸为边长 2a 的立方体,使 q 处于边长 2a 的立
方体中心,则边长 2a 的正方形上电通量 Φ e
ρ 3ε 0
(rv
− rv′)
=
ρ 3ε 0
OO' =
ρdv 3ε 0
∴腔内场强是均匀的.
8-14 一电偶极子由 q =1.0×10-6C 的两个异号点电荷组成,两电荷距离
d=0.2cm,把这电偶极子放在1.0×105N·C-1 的外电场中,求外电场作用于
电偶极子上的最大力矩.
解:

电偶极子
pv
N ⋅ C −1
沿半径向外.
4πε 0r 2
8-11 半径为 R1 和 R2 ( R2 > R1 )的两无限长同轴圆柱面,单位长度上分别

大学物理学习题全解-赵近芳版(10-17章)

大学物理学习题全解-赵近芳版(10-17章)
显然, ,因此

由于δ≧0,所以 ,因此不论分子的速度的分布服从什么规律,都有 .
另外也可直接用平均值运算.
由于 ,展开得 ,
取平均值时得 .
因为 、 并且 ,所以 ,即 .证毕.
10.10将(11.19)式表示成以理想气体最可几速率vp为单位表示的形式,即令x = v/vp,若已知 ,试计算:
(1)分子速率小于最可几速率的分子占分子总数的百分比为多少?
当射线粒子能量全部转变成氖气的内能时,由公式 可得气体升高的温度为
= 1.28×10-6(K).
10.7某些恒星的温度达到108K的数量级,此时原子已不存在,只有质子存在,求:
(1)质子的平均动能是多少?
(2)质子的方均根速率多大?
[解答](1)质子的平动自由度为t= 3,平均平动动能为 = 2.07×10-15(J).
(2)nf(v)dv,n为分子数密度;
(3) ;
(4) ,vp为最可几速率;
(5) .
[解答](1)由公式dN/N = f(v)dv可知:f(v)dv表示分子数在速率区间v~v+dv之中分子数的比率dN/N.
(2)由于n = N/V,可得ndN/N =dN/V,因此nf(v)dv表示分子数在速率区间v~v+dv之中分子数密度.
(3) 表示分子在速率区间v1到v2之间的平均速率.
(4) 表示分子速率小于最可几速率的分子占分子总数的比率.
(5) 表示分子速率大于最可几速率的速率平方的平均值.
10.14质量为6.2×10-14g的微粒悬浮于27℃的液体中,观察到它的方均根速率为1.4cm·s-1.由这些结果计算阿佛加德罗常数NA.
当系统沿adc路径变化时,可得:Q1= ΔE1+A1,

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十章 习题10答案

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册  第十章 习题10答案

习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。

[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。

[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。

[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。

[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。

[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。

电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。

[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。

大学物理学(第三版)上下册 主编赵晓芳北京邮电大学出版社

大学物理学(第三版)上下册 主编赵晓芳北京邮电大学出版社

习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆; (2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。

物理学第三版课后习题答案第十章

物理学第三版课后习题答案第十章

[物理学10章习题解答]10-3两个相同的小球质量都是m,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。

由于电荷的斥力作用,使小球处于图10-9所示的位置。

如果 角很小,试证明两个小球的间距x可近似地表示为图10-9.解小球在三个力的共同作用下达到平衡,这三个力分别是重力m g、绳子的张力t 和库仑力f。

于是可以列出下面的方程式,(1),(2)(3) 因为 角很小,所以,. 利用这个近似关系可以得到,(4). (5) 将式(5)代入式(4),得,由上式可以解得.得证。

10-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.10-5氢原子由一个质子和一个电子组成。

根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29⨯10-11m。

质子的质量m = 1.67⨯10-27kg,电子的质量m = 9.11⨯10-31kg,它们的电量为±e =1.60⨯10-19c。

(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。

解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.10-6 边长为a的立方体,每一个顶角上放一个电荷q。

(1)证明任一顶角上的电荷所受合力的大小为图10-10.(2) f的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。

对于任一顶角上的电荷,例如b角上的q b,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。

由图10-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,****** f1的方向与x轴的夹角为45 。

大学物理第十章课后习题答案

大学物理第十章课后习题答案

10.1 解:O O B B B B 出圆弧进++=0其中两直线电流在O 点产生的磁感应强度为0,1/4圆电流在O 点产生的磁感应强度方向垂直纸面向里,大小为R IRIB B O 841200μμ=⨯==圆弧。

10.2解:d b c a B B B B B +++=中心如图a I a I B B a πμπμ0022/22224)45cos 22===︒(中心过中心平行于ad (如图竖直向上)。

10.3 解:1PI B方向垂直纸面向里,大小为d I πμ2102PI B方向纸面向右,大小为d I πμ220 21PI PI P B B B +=T I I d d I d I B B B PI PI P 52221022021022102.72)2()2(21-⨯=+=+=+=πμπμπμ方向在过P 垂直于1I 的平面内与2PI B 夹α角︒===--7.33)32()(1121tna B B tna PI PI α10.4解:两线圈在P 点产生的磁感应强度方向都在两圆心的连线上指向小圆(向左)}])([])([{22322122223221211021x b R R I x b R R I B B B PR PR P -++++=+=μ10.5 解:a bc d2I P 2PIra Idy r dya I rdI B d πμπμπμ422200===20044cos r a Iydyr y r a Idy dB dB x πμπμα=== 20044sin r a Ixdyr x r a Idy dB dB y πμπμα===由对称性可知⎰==0x Px dB Bx a a I x a x a a I x y x a Ix y x dy a Ix y x a Ixdy r a Ixdy dB B aaa aa a aa y Py 101101022022020tan 2)tan (tan 4]tan 144)(44--------=--==+=+===⎰⎰⎰⎰πμπμπμπμπμπμ10.6解:对于无限大平面载流导体板,即上题结果中a x <<,2π=x a arctgi u a I u B 00214==∴(i 为电流密度)(1) 在两面之间1i 产生的磁感强度大小为10121i u B =,方向垂直纸面向里。

大学物理第三版第10章部分习题解答解读

大学物理第三版第10章部分习题解答解读

ABC
(3) 从D点移动到B点.
r
q1
a/2 a/2
D q2
第10章部分习题解答
解: 由电势叠加原理得
UA
q1
4 0r 4 0
q2 r2 a2
1.8103V
同理得
UC
3108
4 0 0.1
3108
4 0 0.06
1.8103V
UB UD 0
第10章部分习题解答
(1) AAB q(U A U B ) 3.6 10 6 J (2) ACD q(UC U D ) 3.6 10 6 J (3) ABD q(UB UD ) 0
解:点电荷处在中心,电力线呈球
对称分布发射,每个面上的电通量
+q
应相等.
E ds 6
E
ds
1
q
E ds
s
1q
s
6 0
0
s a
A
s
a
如果点电荷移到立方体的一个顶角上?
建立以顶点电荷为中心,棱边长为 2a,且与原棱边平行的大立方体.
对大立方体而言,每个面
的面积为 4a2 ,它又由4个 面积为a2 的小平面组成.
E3 2 0 2 0 0
2010.5.22
第10章部分习题解答
P369题10.3.10
半径为R的无限长直圆柱体均匀带电,体
电荷密度为 .试求:场强分布,并画出E-r曲
线
解: 带电圆柱的电场分布具有
轴对称性,取半径为r,高为l,以
带电圆柱的轴为轴的圆柱面为
lr
高斯面(如图),则
R
(1) 圆柱体内r<R
1
4 0
q2q3 r22

大学物理简明教程(赵近芳)习题10详解

大学物理简明教程(赵近芳)习题10详解

习题101.选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ](A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移.[答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ](A) λ / 4.(B) λ / (4n).(C) λ / 2.(D) λ / (2n).[答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是[](A) λ / 2.(B) λ / (2n).(C) λ / n.(D) λ / [2(n-1)].[答案:D](6)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ](A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[答案:B](7)波长λ=500 nm (1nm=10-9m)的单色光垂直照射到宽度a =0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。

大学物理学规范标准答案(北京邮电大学第3版)赵近芳等编著

大学物理学规范标准答案(北京邮电大学第3版)赵近芳等编著

大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v t sd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量, ∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理课后习题答案(第十章)-北京邮电大学出版社

大学物理课后习题答案(第十章)-北京邮电大学出版社

习题十10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率t rd d =80cm ·s -1收缩时,求回路中感应电动势的大小.解: 回路磁通 2πr B BS m感应电动势大小40.0d d π2)π(d d d d 2trr B r B t t m V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i , 题10-2图则cos 2π21B R m同理,半圆形adc 法向为j,则 cos 2π22B R m∵ B 与i 夹角和B 与j夹角相等,∴45则cos π2R B m 221089.8d d cos πd dt BR t m V方向与cbadc 相反,即顺时针方向.题10-3图*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场中.B 与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势.解: 计算抛物线与CD 组成的面积内的磁通量aym yB x x y B S B 0232322d )(2d 2∴ vy B t y y B t m 21212d d d d∵ ay v 22∴ 212y a v则aByy a yBi 8222121i 实际方向沿ODC .题10-4图10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U .解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d m ∴ 0 MeNM即MN MeN又∵ba ba MNb a ba Iv l vB 0ln 2dcos 0所以MeN 沿NeM 方向,大小为 b a ba Iv ln20M 点电势高于N 点电势,即b a ba Iv U U N Mln 20题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以t Id d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [lnπ2d π2d π2000d ad b a b Ilr l r Ir l rIab bad dm(2)t I b a b d a d l t d d ]ln [ln π2d d 0 10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ∴ R Bf r R I m 22π10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势ADI vbvBb l B v d 2d )(01BC 产生电动势)(π2d )(02d a Ivbl B v C B∴回路中总感应电动势8021106.1)11(π2ad d Ibv V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: 22212160cos d klvt lv kt Blvt S B m∴ klvtt m d d即沿abcd 方向顺时针方向.题10-8图10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d dt ,0 ;题10-9图(a)题10-9图(b)在磁场中时0d d t,0 ; 出场时0d d t,0 ,故t I 曲线如题10-9图(b)所示.题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速 转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r 一小段 则320292d l Ob l B r rB同理302181d l Oa l B r rB ∴ 2261)92181(l B l B Ob aO ab(2)∵ 0 ab即0 b a U U∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v 平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则b a b a Iv r r a r Iv l B v b a b a BA AB lnd )211(2d )(00∵ 0 AB∴实际上感应电动势方向从A B ,即从图中从右向左, ∴b a ba Iv U ABln 0题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当t Bd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵bc ab act BR B R t t ab d d 43]43[d d d d 21tab d d 2 t BR B R t d d 12π]12π[d d 22∴t B R R acd d ]12π43[22∵ 0d d t B∴ 0 ac即 从c a 10-13 半径为R 的直螺线管中,有dt dB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m∴t B R R i d d )436π(22 ∵ 0d d t B∴0 i,即感应电动势沿acba ,逆时针方向. 题10-13图题10-14图10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示方向.试求: (1)ab 两端的电势差; (2)cd 两点电势高低的情况.解: 由 l S t B l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E 与ab 垂直∴ ll 0d 旋∴0 ab ,有b a U U(2)同理, 0d l E cddc旋∴0 c d U U 即d c U U题10-15图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为32300122ln π2d π2a a Iar rIa∴2ln π2012aIM10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S∴6012108.22ln π2a N I N M H (b)∵长直电流磁场通过矩形线圈的磁通012 ,见题10-16图(b)∴ 0 M题10-16图题10-17图10-17 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为l L 0In a ad .解: 如图10-17图所示,取r l S d d则a d aa d aa d d aa d Il r r rIl r l r I r πI )ln (ln 2πd )d11(π2d ))d (π22(0000a a d Illnπ0∴ a a d l I L lnπ0 10-18 两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221反串联时M L L L 221∴ M L L 415.04L L M H10-19图10-19 一矩形截面的螺绕环如题10-19图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为ba a bNIhr h r NIlnπ2d π200磁链a bIh N N lnπ220 ∴a bhN IL lnπ220(2)∵221LI W m∴a b hI N W m lnπ422010-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r 时 20π2R I B r∴4222002π82R r I B w m 取 r r V d π2d (∵导线长1 l )则R Rm I R rr I r r w W 0204320π16π4d d 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题十10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ 感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题10-2图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题10-3图*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场中.B与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势.解: 计算抛物线与CD 组成的面积内的磁通量⎰⎰=-==ay m y Bx x y B S B 0232322d )(2d 2ααΦ∴ v y B t y y B t m 21212d d d d ααε-=-=Φ-=∵ ay v 22= ∴ 212ya v =则 ααεaByy a yBi 8222121-=-= i ε实际方向沿ODC .题10-4图 10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr R I m22π==ε 10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题10-8图10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε;出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtB R B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →10-13 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题10-13图题10-14图10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题10-15图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Ia r r Ia S B b b S μμΦ⎰⎰==⋅= ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图10-17 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为πμlL 0=Inaad -. 解: 如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ10-18 两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H10-19图10-19 一矩形截面的螺绕环如题10-19图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ== ∴ ab hN IL ln π220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2R I B rμ=∴ 4222002π82R r I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I R rr I r r w W 0204320π16π4d d 2μμπ。

相关文档
最新文档