高中数学必修二知识点、考点及典型例题解析
高中数学必修二知识讲解,巩固练习(复习补习,期末复习资料):21【基础】直线的倾斜角与斜率
直线的倾斜角与斜率【学习目标】1.了解直线倾斜角的概念,掌握直线倾斜角的范围;2.理解直线斜率的概念,理解各倾斜角是90时的直线没有斜率;3.已知直线的倾斜角(或斜率),会求直线的斜率(或倾斜角);4.掌握经过两点111(,)P x y 和222(,)P x y 的直线的斜率公式:2121y y k x x -=-(12x x ≠);5.熟练掌握两条直线平行与垂直的充要条件. 【要点梳理】要点一、直线的倾斜角平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,则α叫做直线的倾斜角.规定:当直线和x 轴平行或重合时,直线倾斜角为0,所以,倾斜角的范围是0180α≤<. 要点诠释:1.要清楚定义中含有的三个条件 ①直线向上方向; ②x 轴正向; ③小于180的角.2.从运动变化观点来看,直线的倾斜角是由x 轴按逆时针方向旋转到与直线重合时所成的角.3.倾斜角α的范围是0180α≤<.当0α=时,直线与x 轴平行或与x 轴重合.4.直线的倾斜角描述了直线的倾斜程度,每一条直线都有唯一的倾斜角和它对应.5.已知直线的倾斜角不能确定直线的位置,但是,直线上的一点和这条直线的倾斜角可以唯一确定直线的位置.要点二、直线的斜率 1.定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即tan k α=. 要点诠释:(1)当直线l 与x 轴平行或重合时,=0°,k=tan0°=0; (2)直线l 与x 轴垂直时,=90°,k 不存在.由此可知,一条直线l 的倾斜角一定存在,但是斜率k 不一定存在. 2.直线的倾斜角α与斜率k 之间的关系由斜率的定义可知,当α在(090),范围内时,直线的斜率大于零;当α在(90180),范围内时,直线的斜率小于零;当0α=︒时,直线的斜率为零;当90α=︒时,直线的斜率不存在.直线的斜率与直线的倾斜角(90除外)为一一对应关系,且在)090⎡⎣,和(90180),范围内分别与倾斜角的变化方向一致,即倾斜角越大则斜率越大,反之亦然.因此若需在)090⎡⎣,或(90180),范围内比较倾斜角的大小只需比较ααα斜率的大小即可,反之亦然.要点三、斜率公式已知点111(,)P x y 、222(,)P x y ,且12P P 与x 轴不垂直,过两点111(,)P x y 、222(,)P x y 的直线的斜率公式2121y y k x x -=-.要点诠释:1.对于上面的斜率公式要注意下面五点:(1) 当x 1=x 2时,公式右边无意义,直线的斜率不存在,倾斜角=90°,直线与x 轴垂直;(2)k 与P 1、P 2的顺序无关,即y 1,y 2和x 1,x 2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y 1=y 2时,斜率k=0,直线的倾斜角=0°,直线与x 轴平行或重合; (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到. 2.斜率公式的用途:由公式可解决下列类型的问题:(1)由1P 、2P 点的坐标求k 的值;(2)已知k 及1122,,,x y x y 中的三个量可求第四个量; (3)已知k 及1P 、2P 的横坐标(或纵坐标)可求12||PP ; (4)证明三点共线.要点四、两直线平行的条件设两条不重合的直线21,l l 的斜率分别为21,k k .若21//l l ,则1l 与2l 的倾斜角1α与2α相等.由21αα=,可得,即.因此,若21//l l ,则21k k =. 反之,若21k k =,则21//l l . 要点诠释:1.公式2121//k k l l =⇔成立的前提条件是①两条直线的斜率存在分别为21k k ,;②21l l 与不重合;2.当两条直线的斜率都不存在且不重合时,21l l 与的倾斜角都是90︒,则21//l l . 要点五、两直线垂直的条件设两条直线21,l l 的斜率分别为21,k k .若21l l ⊥,则121-=⋅k k . 要点诠释:1.公式12121-=⋅⇔⊥k k l l 成立的前提条件是两条直线的斜率都存在;αα21tan tan αα=21k k =2.当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直. 【典型例题】类型一:直线的倾斜角与斜率例1.设直线l 与x 轴的交点为P ,且倾斜角为α,若将其绕点P 按逆时针方向旋转45°,得到直线l 的倾斜角为α+45°,则( )A .0°≤α<90°B .0°≤α<135°C .0°<α≤135°D .0°<α<135° 【答案】D【解析】 ∵α,α+45°均为倾斜角,∴0180045180αα︒≤<︒⎧⎨≤+︒<︒⎩,∴0°≤α<135°.又∵直线l 与x 轴相交,∴α≠0°.故选D .【总结升华】 (1)倾斜角的概念中含有三个条件:①直线向上的方向;②x 轴的正方向;③小于平角的正角.(2)倾斜角是一个几何概念,它直观地描述且表现了直线对于x 轴正方向的倾斜程度.(3)平面直角坐标系中每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.(4)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可.例2.下列说法正确的是________.①若两直线的倾斜角相等,则两直线平行或重合;②若一直线的倾斜角为150°,则此直线关于y 轴的对称直线的倾斜角为30°; ③若α,2α,3α分别为三条直线的倾斜角,则α不大于60°; ④若倾斜角α=90°,则此直线与坐标轴垂直. 【答案】 ①②【解析】 若倾斜角相等,则两直线平行或重合,故①正确;若两直线关于y 轴对称,则其倾斜角互补,故②正确;当α=60°时,3α=180°,故③错误;若α=90°,则直线与x 轴垂直.故④错误.【总结升华】本题考查直线的倾斜角定义中的条件及倾斜角的取值范围.理解倾斜角的定义是解决此题的关键.举一反三:【变式1】 下图中各标注的直线的倾斜角是否正确?为什么?【答案】(1)不正确(2)不正确(3)不正确(4)不正确【解析】题图(1)中的角α的一边取的是x 轴的负方向,因此标注不正确; 题图(2)中的角α的一边取的是直线向下的方向,因此标注不正确;题图(3)中的角α的两边分别取的是x 轴的负方向和直线向下的方向,因此标注不正确,但是它的大小等于直线的倾斜角.题图(4)中的角α是x 轴正方向与直线向上方向所成的角,因此标注不正确.例3.如图所示,直线1l 的倾斜角130α=︒,直线1l 与2l 垂直,求1l ,2l 的斜率.【答案】1k =k 2=【解析】由图形可知,2190αα=+︒,则k 1,k 2可求. 直线1l的斜率11tan tan 30k α==︒=. ∵直线2l 的倾斜角2α=90°+30°=120°,∴直线2l 的斜率k 2=tan120°=tan(180°―60°)=―tan60°=【总结升华】(1)本例中,利用图形的形象直观挖掘出直线1l 与2l 的倾斜角之间的关系是解题的关键. (2)公式tan(180°-α)=-tan α是一个重要公式,它是求倾斜角为钝角时的直线斜率的关键,即把钝角的正切转化为锐角的正切.熟记30°,45°,60°角的正切值可快速求解.举一反三: 【变式1】(2016 山西曲沃县模拟)过两点A (3―m ―m 2,―2m ),B (m 2+2,3―m 2)的直线的倾斜角为135°,求m 的值.【答案】m =―2【解析】依题意可得:直线的斜率为―1 又直线过两点A (3―m ―m 2,―2m ),B (m 2+2,3―m 2)即:22223132m m m m m --+=----- 整理的2223121m m m m --=+-可求得m =―2或m =―1 经检验m =―1不合题意,故m =―2. 类型二:过两点的直线斜率公式的应用例3.经过下列两点的直线的斜率是否存在?如果存在,求其斜率. (1)(1,―1),(―3,2);(2)(1,―2),(5,―2);(3)(3,4),(―2,―5);(4)(3,0),(3,.【答案】(1)34-(2)0(3)95(4)不存在【解析】 当倾斜角α=90°时,斜率不存在;当α≠90°时,2121y y k x x -=-.(1)2(1)3314k --==---;(2)2(2)051k ---==-;(3)549235k --==--;(4)∵倾斜角α=90°,∴k 不存在.【总结升华】 应用斜率公式求斜率时,首先应注意这两点的横坐标是否相等,若相等,则这两点的连线必与x 轴垂直,即直线的倾斜角为90°,故其斜率不存在,也就不能运用斜率公式求斜率.事实上,此时若将两点坐标代入斜率公式,则其分母为零无意义,即斜率不存在;其次,在运用斜率公式时,分子的被减数与分母的被减数必须对应着同一点的纵坐标和横坐标.举一反三:【变式1】 直线l 过点A (1,2),B (m ,3),求l 的斜率.【答案】不存在或11m - 【解析】若m=1,此时l 的倾斜角为2π,显然直线斜率不存在,; 若m ≠1,则直线斜率存在,设此时斜率为k ,倾斜角为α,321tan 11k m m α-===--. 例4.已知A (a ,2),B (5,1),C (―4,2a )三点在同一条直线上,求a 的值. 【答案】2 或72【解析】 ∵A ,B ,C 三点共线,∴k AB =k BC ,∴2121545a a --=---,解得a=2或72a =. 故所求的a 的值为2或72.【总结升华】 由于直线上任意两点的斜率都相等,因此A ,B ,C 三点共线⇔A ,B ,C 中任意两点的斜率相等(如k AB =k AC ).斜率是反映直线相对于x 轴正方向的倾斜程度的,直线上任意两点所确定的方向不变,即在同一直线上任意不同的两点所确定的斜率相等.这正是利用斜率可证三点共线的原因.举一反三:【变式1】已知A (―3,―5),B (1,3),C (5,11)三点,试判断这三点是否在同一直线上. 【答案】在同一直线上【解析】由题意可知直线AB 的斜率35213AB k +==+,直线BC 的斜率113251BC k -==-.因为k AB =k BC ,即两条直线的斜率相同,并且它们过同一点B ,所以A ,B ,C 三点在同一直线上.例5.(2015春 三明月考)已知两点A (―3,4),B (3,2),过点C (2,―1)的直线l 与线段AB 有公共点,求直线l 的斜率k 的取值范围.【思路点拨】根据题意,画出图形,结合图形,求出满足条件的直线l 斜率k 的取值范围. 【答案】k ≤-1或k ≥3.【解析】如图所示, ∵A (―3,4),B (3,2),C (2,―1),∴14123AC k --==-+, 12323BCk --==-; 要使过点C 的直线L 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥3.【总结升华】本题考查了已知两点的坐标求直线斜率的应用问题,也考查了数形结合的应用问题.举一反三:【变式1】 已知直线l 过点(2,1)A -且与线段BC 相交,设(1,0),(1,0)B C -,则直线l 的斜率k 的取值范围是 .【答案】113k -≤≤-【解析】画出图形,数形结合类型三:两条直线平行的条件例6.已知1l 经过A (―3,3),B (―8,6),2l 经过21,62M ⎛⎫-⎪⎝⎭,9,32N ⎛⎫- ⎪⎝⎭,求证:12//l l . 【解析】 直线1l 的斜率为16338(3)5k -==----,直线2l 的斜率为26(3)3219522k --==---,∵k 1=k 2,∴12//l l .【总结升华】判定两条不重合的直线是否平行的依据是:当这两条直线均不与x 轴垂直时,只需看它们的斜率是否相等即可,反过来,两条直线平行,则隐含着这两条直线的斜率相等(当这两条直线均不与x 轴垂直时).判定两条直线是否平行,只要研究两条直线的斜率是否相等即可,但是要注意斜率都不存在的情况,以及两条直线是否重合. 举一反三:【变式1】 判断下列各小题中的直线1l 与2l 是否平行.(1)1l 经过点A (―1,―2),B (2,1),2l 经过点M (3,4),N (―1,―1); (2)1l 的斜率为1,2l 经过点A (1,1),B (2,2);(3)1l 经过点A (0,1),B (1,0),2l 经过点M (―1,3),N (2,0) (4)1l 经过点A (―3,2),B (―3,10),2l 经过点M (5,―2),N (5,5). 【解析】 (1)11(2)12(1)k --==--,2145134k --==--,∵k 1≠k 2,∴1l 与2l 不平行.(2)k 1=1,221121k -==-, ∵k 1=k 2,∴1l ∥2l 或1l 与2l 重合. (3)101110k -==--,20312(1)k -==---, ∵k 1=k 2,∴1l ∥2l .(4)∵1l 与2l 都与x 轴垂直,∴1l ∥2l .【总结升华】 k 1=k 2⇔1l ∥2l 是针对斜率都存在的直线,对于斜率不存在或可能不存在的直线要注意利用图形求解.例7.已知ABCD 的三个顶点的坐标分别是A (0,1),B (1,0),C (4,3),求顶点D 的坐标. 【答案】 (3,4)【解析】 解法1:设D (m ,n ),线段AC 的中点为E (2,2),所以线段BD 的中点为E (2,2),则122022m n +⎧=⎪⎪⎨+⎪=⎪⎩,解得m=3,n=4,所以D (3,4). 解法2:设D (m ,n ),由题意得AB ∥DC ,AD ∥BC ,则有k AB =k DC ,k AD =k BC ,所以013104130041nmn m --⎧=⎪⎪--⎨--⎪=⎪--⎩,解得m=3,n=4,所以D (3,4).【总结升华】 解决此类问题的关键是充分利用几何图形的几何性质,并用解析几何中的相关知识解决.解决本题的关键是如何利用平行四边形的几何性质,其出发点是已知平行四边形的三个顶点如何作出第四个顶点,这两种作法对应着两种解法. 类型四:两条直线垂直的条件例8.判断下列各题中1l 与2l 是否垂直.(1)1l 经过点A (―1,―2),B (1,2),2l 经过点M (―2,―1),N (2,1); (2)1l 的斜率为―10,2l 经过点A (10,2),B (20,3);(3)1l 经过点A (3,4),B (3,10),2l 经过点M (-10,40),N (10,40).【解析】 求出斜率,利用1l ⊥2l ⇔k 1k 2=-1进行判断,注意数形结合及斜率不存在的特殊情况. (1)12(2)21(1)k --==--,21(1)12(2)2k --==--,k 1k 2=1, ∴1l 与2l 不垂直; (2)k 1=-10,2321201010k -==-,k 1k 2=-1,∴1l ⊥2l ;(3)1l 的倾斜角为90°,则1l ⊥x 轴;24040010(10)k -==--,则2l ∥x 轴,∴1l ⊥2l .【总结升华】 判断两条直线是否垂直的依据是:在这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于―1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两条直线也垂直.例9.已知定点A (―1,3),B (4,2),以A ,B 为直径的端点,作圆与x 轴交于点C ,求交点C 的坐标.【答案】(1,0)或(2,0)【解析】 本题中有三个点A ,B ,C ,由于AB 为直径,C 为圆上的点,所以∠ACB=90°,因此,必有k AC ·k BC =―1.列出方程,求解即可.以线段AB 为直径的圆与x 轴的交点为C ,则AC ⊥CB .设C (x ,0),MJ 31AC k x -=+,24BC k x -=-.∴32114x x --⋅=-+-,去分母解得x=1或2. ∴C (1,0)或C (2,0).【总结升华】利用直线平行与垂直的条件解题,主要利用其斜率的关系,当然,在解题时要特别注意斜率不存在的情况,以及分类讨论的思想.本例中,利用∠ACB=90°,及两条直线垂直时斜率之间的关系,从而构造关于x 的方程,解之便求出其交点坐标,因此利用直线垂直与平行关系可构造相关方程,解之即可求出相关参数.本例中,当AC 或BC 的斜率不存在时,不满足AC ⊥BC ,这是很明显的事情(如图).故不需要对AC 或BC 斜率不存在的情形作讨论.举一反三: 【变式1】(2015春 海淀区期末)已知点A (a ,a )(a ≠0),B (1,0),O 为坐标原点.若点C 在直线OA 上,且BC 与OA 垂直,则点C 的坐标是( )A .11(,)22- B .(,)22a a - C .(,)22a a D .11(,)22【思路点拨】设C (x ,y ),利用点C 在直线OA 上,且BC 与OA 垂直得到关于x ,y 的方程组解之. 【答案】D【解析】设C (x ,y ),因为点C 在直线OA 上,且BC 与OA 垂直,所以11x y y x =⎧⎪⎨=-⎪-⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩;故选:D【巩固练习】1.以下两点确定的直线的斜率不存在的是( )A .(4,2)与(―4,1)B .(0,3)与(3,0)C .(3,―1)与(2,―1)D .(―2,2)与(―2,5) 2.过点P (-2,m ),Q (m ,4)的直线的斜率为1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4 3.如图,若图中直线的斜率分别为k 1, k 2, k 3,则( )321,,l llA.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 24.若直线1l ,2l 的倾斜角分别为1α,2α,且1l ⊥2l ,则( )A .1290αα-=︒B .1290αα+=︒C .12180αα+=︒D .1290αα-=︒ 5.直线122a y x =--与直线2y x =-+互相垂直,那么a 的值为( ) A .1 B .13- C .23- D .―26.(2015春 黄冈期末)已知直线1l :x +2ay ―1=0,与2l :(2a ―1)x ―ay -1=0平行,则a 的值是( )A .0或1B .1或14 C .0或14 D .147.已知点A (―1,3),B (3,1),点C 在x 轴上,且∠ACB=90°,则满足条件的点C 的个数为( )A .1B .2C .3D .4 8.已知函数2()log (1)f x x =+,且0a b c >>>,则()f a a ,()f b b ,()f c c 的大小关系为( ) A .()()()f a f b f c a b c >> B .()()()f a f b f c a b c <<C .()()()f b f a f c b ac>>D .()()()f a f c f b a c b<<9.已知点M (2m+3,m ),N (m -2,1),当m ∈________时,直线MN 的倾斜角为锐角;当m ∈________时,直线MN 的倾斜角为直角;当m ∈________时,直线MN 的倾斜角为钝角. 10.已知三点A (2,―3),B (4,3),(5,)2kC 在同一条直线上,则k=________. 11.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a 、b ∈R 且ab ≠0,则ab 的最小值为________. 12.(2016 湖南衡阳模拟)过A (m ,1)与B (―1,m )的直线与过点P (1,2),Q (―5,0)的直线垂直,则m =________. 13.(2016 浙江金华模拟)如果三条直线mx +y +3=0,x ―y ―2=0,2x ―y +2=0不能成为一个三角形三边所在的直线,求m 的值. 14.(2015春 淮安期中)直线mx +y +2=0与线段AB 有公共点,其中A (-2,3),B (3,2),求实数a 的取值范围.15.已知△ABC 的三个顶点坐标为A (2,4),B (1,―2),C (―2,3),求BC 边上的高AD 所在直线的斜率.【答案与解析】1.【答案】 D【解析】 选项D 中两点的横坐标相同,所以这两点确定的直线与x 轴垂直,因此直线的斜率不存在. 2.【答案】A【解析】 由斜率公式可求得m=1. 3.【答案】B 【解析】设直线的倾斜角分别为321,,ααα,则,根据正切函数的图像可得. 4.【答案】 D【解析】 方法一:特殊值法,令145α=︒,2135α=︒.方法二:如图,可得2390αα+=︒, ①13180αα+=︒, ②②-①,得1290αα-=︒.若1l 与2l 变换位置,则有2190αα-=︒. 5.【答案】D【解析】 ∵两直线垂直,∴()(1)12a -⨯-=-,∴a=―2.6.【分析】先检验当a =0时,是否满足两直线平行,当a ≠0时,两直线的斜率都存在,由21121a a a a ---=≠-,解得a 的值. 【答案】【解析】当a =0时,两直线的斜率都不存在,它们的方程分别是x =1,x =-1,显然两直线是平行的. 当a ≠0时,两直线的斜率都存在,故它们的斜率相等,由21121a a a a ---=≠-,解得:14a =. 综上,a =0或14,故选:C .【点评】本题考查两直线平行的条件,要注意特殊情况即直线斜率不存在的情况,要进行检验. 7.【答案】 B 【解析】 设C (x ,0),则有13131x x⋅=----,即3+(x ―3)·(x+1)=0.整理,得x 2―2x=0,∴x=0或x=2. 8.【答案】B321,,l l l παπαα<<<<<32120213k k k <<11【解析】该题从特殊值和常规方法都不容易找到解题的捷径,经仔细分析发现,其结构具务()()00f x f x x x -=-的特点,由此联想到利用斜率进行求解. 作出函数2()log (1)f x x =+的大致图象.由图可知,曲线上各点与原点连线的斜率随x 的增大而减小.因为0a b c >>>,所以()()()f a f b f c a b c<<.故选B. 9.【答案】(-∞,-5)∪(1,+∞) {}5- (―5,1)【解析】 112(23)5MN m m k m m m --==--+--,若直线MN 的倾斜角为锐角,则105MN m k m -=>--,有1050m m ->⎧⎨-->⎩或1050m m -<⎧⎨--<⎩.解得m <-5或m >1.其他同理可得. 10.【答案】12【解析】 由k AB =k AC 解方程可得.11.【分析】由题意知,两直线的斜率之积等于-1,得到a 、b 的关系,代入ab 的解析式变形后使用基本不等式,求得其最小值.【答案】2 【解析】由题意得22111a a b +-⨯=-,∴ 221a b a =+,∴222111a b a a+==+, ∴211|||(1)|||||2ab a a a a=⨯+=+≥,当且仅当a =1或a =-1时,取等号,故ab 的最小值为2, 故答案为2.【点评】本题考查两条直线垂直的性质,利用基本不等式求式子的最小值,注意检验最小值取得的条件是否具备.12.【答案】―2【解析】过点A (m ,1)与B (―1,m )的直线的斜率11m m ---,过点P (1,2),Q (―5,0)的直线的斜率为:201153-=+. 因为两条直线垂直,所以11113m m -⨯=---,解得m =―2. 故答案为:―2.13.【答案】―1或―2或34- 【解析】①mx +y +3=0与x ―y ―2=0平行时,m =―1,此时满足题意,所以m =―1;②mx +y +3=0与2x ―y +2=0平行时,m =―2,此时满足题意,所以m =―2;③联立x ―y ―2=-,2x ―y +2=0得20220x y x y --=⎧⎨-+=⎩,解得:46x y =-⎧⎨=-⎩,12即x ―y ―2=0与2x ―y +2=0的交点坐标为(―4,―6),根据题意所求直线过(―4,―6), 代入得,34m =-, 综上m 的值是―1或―2或34-. 14.【分析】由题意得直线y =―mx ―2过定点P (0,―2),作出图象求出边界直线的斜率,根据图象和条件求出实数m 的取值范围. 【答案】54(,)[,)23-∞-+∞ 【解析】由题意得,直线mx +y +2=0化为y =―mx ―2,则直线y =―mx ―2过定点P (0,―2),画出图象:∴直线P A 的斜率是325202+=---,直线PB 的斜率是224303+=-, ∵直线mx +y +2=0与线段AB 有公共点,∴直线mx +y +2=0在直线P A 和直线PB 之间,且直线PB 按逆时针转动,直线P A 按顺时针转动,则实数m 的取值范围是54(,)[,)23-∞-+∞, 15.【答案】35【解析】由题意可知BC 边所在直线的斜率为2351(2)3BC k --==---.因为AD ⊥BC ,所以135AD BC k k =-=,所以BC 边上的高AD 所在直线的斜率为35.。
高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)
4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。
人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)
目录不等关系与不等式 ................................................................................................. 错误!未定义书签。
考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。
高中数学必修2知识点加例题加课后习题
高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学必修2第二章知识点+习题+答案
__________________________________________________第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为D C B A α__________________________________________________A ∈LB ∈L => L αA ∈αB ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系α C · B·A · α P· αL β__________________________________________________ 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
【精品】高中数学 必修2_直线的一般式方程及综合 讲义 知识点讲解+巩固练习(含答案) _基础
直线的一般式方程及综合【学习目标】1.掌握直线的一般式方程;2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处;3.能利用直线的一般式方程解决有关问题.【要点梳理】要点一:直线方程的一般式关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.要点诠释:1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线.当B≠0时,方程可变形为A Cy xB B=--,它表示过点0,CB⎛⎫-⎪⎝⎭,斜率为AB-的直线.当B=0,A≠0时,方程可变形为Ax+C=0,即CxA=-,它表示一条与x轴垂直的直线.由上可知,关于x、y的二元一次方程,它都表示一条直线.2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0,也可以是1122x y-+=,还可以是4x―2y+2=0等.)要点二:直线方程的不同形式间的关系直线方程的五种形式的比较如下表:要点诠释:在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x 1≠x 2,y 1≠y 2),应用时若采用(y 2―y 1)(x ―x 1)―(x 2―x 1)(y ―y 1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同.要点三:直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.(1)从斜截式考虑已知直线111:b x k y l +=,222:b x k y l +=,12121212//()l l k k b b αα⇒=⇒=≠;12121211221tan cot 12l l k k k k παααα⊥⇒-=⇒=-⇒=-⇒=- 于是与直线y kx b =+平行的直线可以设为1y kx b =+;垂直的直线可以设为21y x b k=-+. (2)从一般式考虑:11112222:0,:0l A x B y C l A x B y C ++=++=1212120l l A A B B ⊥⇔+=121221//0l l A B A B ⇔-=且12210A C A C -≠或12210B C B C -≠,记忆式(111222A B C A B C =≠) 1l 与2l 重合,12210A B A B -=,12210A C A C -=,12210B C B C -=于是与直线0Ax By C ++=平行的直线可以设为0Ax By D ++=;垂直的直线可以设为0Bx Ay D -+=.【典型例题】类型一:直线的一般式方程例1.根据下列条件分别写出直线方程,并化成一般式:(1A (5,3);(2)过点B (―3,0),且垂直于x 轴;(3)斜率为4,在y 轴上的截距为―2;(4)在y 轴上的截距为3,且平行于x 轴;(5)经过C (―1,5),D (2,―1)两点;(6)在x ,y 轴上的截距分别是―3,―1.【答案】(130y -+-=(2)x+3=0(3)4x ―y ―2=0(4)4x ―y ―2=0(5)2x+y ―3=0(6)x+3y+3=0【解析】 (1)由点斜式方程得35)y x -=-30y -+-=.(2)x=―3,即x+3=0.(3)y=4x ―2,即4x ―y ―2=0.(4)y=3,即y ―3=0.(5)由两点式方程得5(1)152(1)y x ---=----,整理得2x+y ―3=0. (6)由截距式方程得131x y +=--,整理得x+3y+3=0. 【总结升华】本题主要是让学生体会直线方程的各种形式,以及各种形式向一般式的转化,对于直线方程的一般式,一般作如下约定:x 的系数为正,x ,y 的系数及常数项一般不出现分数,一般按含x 项、y 项、常数项顺序排列.求直线方程的题目,无特别要求时,结果写成直线方程的一般式.举一反三:【变式1】已知直线l 经过点A (―5,6)和点B (―4,8),求直线的一般式方程和截距式方程,并画图.【答案】2x -y+16=0 1816x y +=- 【解析】 所求直线的一般式方程为2x -y+16=0,截距式方程为1816x y +=-.图形如右图所示. 【高清课堂:直线的一般式 381507 例4】例2.ABC ∆的一个顶点为(1,4)A --,B ∠、C ∠ 的平分线在直线10y +=和10x y ++=上,求直线BC 的方程.【答案】230x y +-=【解析】由角平分线的性质知,角平分线上的任意一点到角两边的距离相等,所以可得A 点关于B ∠的平分线的对称点'A 在BC 上,B 点关于C ∠的平分线的对称点'B 也在BC 上.写出直线''A B 的方程,即为直线BC 的方程.例3.已知直线1:310l ax y ++=,2:(2)0l x a y a +-+=,求满足下列条件的a 的值.(1)12//l l ;(2)12l l ⊥.【思路点拨】利用直线平行和垂直的条件去求解。
高中数学必修二最全完整笔记
高中数学必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系第一章空间几何体1.1 空间几何体的结构一、空间几何体:占据着空间的一部分,只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫空间几何体。
1.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。
(1)面:围成多面体的各个多边形叫做多面体的面。
(2)棱:相邻两个面的公共边叫做多面体的棱。
(3)顶点:棱与棱的公共顶点叫做多面体的顶点。
2.旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何,叫做旋转体。
(1棱3.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
(1)底面:两个互相平行的面叫做棱柱的底面(简称底)。
(2)侧面:其余各面叫做棱柱的侧面。
(3)侧棱:相邻侧面的公共边。
(4)顶点:侧面与底面的公共顶点。
(5)简单性质:1.侧棱都相等,侧面都是平行四边形。
2.两个底面与平行于底面的截面是全等的。
3.各不相邻的侧棱所形成的斜面是平行四边形。
(6)棱柱的分类:1.按底面边多少分:n棱柱(n≥3)2.按侧棱与底面的关系分:垂直:直棱柱、正棱柱(底面为正多边形) 三棱柱四棱柱不垂直:斜棱柱1.底面为直角三角形 1.直平行六面体2.底面为等边三角形 2.正四棱柱3.底面为等腰直角三角形 3.正方体(非棱柱)4.棱锥:有一个面是多边形,其余各面都是有一公共点的三角形。
(1)底面:多边形面。
高中数学必修2立体几何专题线面垂直典型例题的判定与性质
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
高中数学必修2第三章知识点+习题+答案
高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
新教材苏教版高中数学必修第二册第十章三角恒等变换 知识点考点重点难点解题规律归纳总结
第十章三角恒等变换10.1两角和与差的三角函数....................................................................................... - 1 -10.1.1两角和与差的余弦.................................................................................... - 1 -10.1.2两角和与差的正弦.................................................................................... - 5 -10.1.3两角和与差的正切.................................................................................... - 8 -10.2二倍角的三角函数............................................................................................. - 11 -10.3几个三角恒等式................................................................................................. - 15 - 10.1两角和与差的三角函数10.1.1两角和与差的余弦知识点两角和与差的余弦公式(1)两角差的余弦公式C(α-β):cos(α-β)=cos αcos β+sin αsin β.(2)两角和的余弦公式C(α+β):cos(α+β)=cos αcos β-sin αsin β.cos(90°-30°)=cos 90°-cos 30°成立吗?[提示]不成立.重点题型类型1两角和与差的余弦公式的简单应用【例1】求下列各式的值:(1)cos 40°cos 70°+cos 20°cos 50°;(2)cos 7°-sin 15°sin 8°cos 8°;(3)12cos 15°+32sin 15°.[解](1)原式=cos 40°cos 70°+sin 70°sin 40°=cos(70°-40°)=cos 30°=3 2.(2)原式=cos(15°-8°)-sin 15°sin 8°cos 8°=cos 15°cos 8°cos 8°=cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45°=2+6 4.(3)∵cos 60°=12,sin 60°=32,∴12cos 15°+32sin 15°=cos 60°cos 15°+sin 60°sin 15°=cos(60°-15°)=cos45°=2 2.1.两角和与差的余弦公式中,α,β可以是单个角,也可以是两个角的和或差,在运用公式时常将两角的和或差视为一个整体.2.在运用公式化简求值时,要充分利用诱导公式构造两角和与差的余弦结构形式,然后逆用公式求值.提醒:要重视诱导公式在角和函数名称的差异中的转化作用.类型2已知三角函数值求角【例2】已知锐角α,β满足sin α=55,cos β=31010,求α+β的值.以同角三角函数的基本关系为切入点,求得cos α,sin β的值,在此基础上,借助cos(α+β)的公式及α+β的范围,求得α+β的值.[解]因为α,β为锐角,且sin α=55,cos β=31010,所以cos α=1-sin2α=1-15=255,sin β=1-cos2β=1-910=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.由0<α<π2,0<β<π2,得0<α+β<π.因为cos(α+β)>0,所以α+β为锐角,所以α+β=π4.已知三角函数值求角,一般分三步:第一步:求角的某一三角函数值(该函数在所求角的取值区间上最好是单调函数);第二步:确定角的范围,由题意进一步缩小角的范围; 第三步:根据角的范围写出所求的角. 类型3 给值求值问题【例3】 (对接教材P 51例3)已知sin α=-45,sin β=513,且π<α<3π2,π2<β<π,求cos(α-β).[解] ∵sin α=-45,π<α<3π2, ∴cos α=-1-sin 2α=-35.又∵sin β=513,π2<β<π, ∴cos β=-1-sin 2β=-1213,∴cos(α-β)=cos αcos β+sin αsin β=⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-45×513=1665.1.(变条件)若将本题改为已知sin α=-45,sin β=513,且π<α<2π,0<β<π2,求cos(α-β).[解] ∵sin β=513,0<β<π2, ∴cos β=1-sin 2β=1213. 又sin α=-45,且π<α<2π,①当π<α<3π2时,cos α=-1-sin 2α=-35,∴cos(α-β)=cos αcos β+sin αsin β=⎝ ⎛⎭⎪⎫-35×1213+⎝ ⎛⎭⎪⎫-45×513=-5665;②当3π2<α<2π时,cos α=1-sin 2α=35, ∴cos(α-β)=cos αcos β+sin αsin β=35×1213+⎝ ⎛⎭⎪⎫-45×513=1665.综上所述,cos(α-β)=-5665或1665.2.(变条件)若将本例改为已知sin α=-45,π<α<3π2,cos(α-β)=1665,π2<β<π.求sin β.[解] ∵sin α=-45,且π<α<3π2, ∴cos α=-1-sin 2α=-35. 又∵π2<β<π, ∴-π<-β<-π2, ∴0<α-β<π. 又cos(α-β)=1665,∴sin(α-β)=1-cos 2(α-β) =1-⎝ ⎛⎭⎪⎫16652=6365, ∴cos β=cos [α-(α-β)]=cos α·cos(α-β)+sin α·sin(α-β) =⎝ ⎛⎭⎪⎫-35×1665+⎝ ⎛⎭⎪⎫-45×6365=-1213, ∴sin β=1-cos 2β=513.1.利用和(差)角的余弦公式求值时,不能机械地从表面去套公式,而要变通地从本质上使用公式,即把所求的角分解成某两个角的和(差),并且这两个角的正、余弦函数值是已知的或可求的,再代入公式即可求解.2.在将所求角分解成某两角的和(差)时,应注意如下变换:α=(α+β)-β,α=β-(β-α),α=(2α-β)-(α-β),2α=[(α+β)+(α-β)],2α=[(β+α)-(β-α)]等.提醒:注意角的范围对三角函数值符号的限制.10.1.2 两角和与差的正弦知识点 两角和与差的正弦公式 (1)两角和的正弦公式:S (α+β):sin(α+β)=sin αcos β+cos αsin β. (2)两角差的正弦公式:S (α-β):sin(α-β)=sin αcos β-cos αsin β. (3)辅助角公式a sin x +b cos x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x , 令cos φ=a a 2+b 2,sin φ=ba 2+b 2,则有a sin x +b cos x =a 2+b 2(cos φsin x +sin φcos x )=a 2+b 2sin(x +φ),其中tan φ=ba ,φ为辅助角.重点题型类型1 两角和与差的正弦公式的简单应用 【例1】 求下列各式的值: (1)sin 163°sin 223°+sin 253°sin 313°; (2)2cos 55°-3sin 5°sin 85°.(1)从角和“形”入手,转化成两角和(差)的正弦求值. (2)注意角的差异与变换:55°=60°-5°,85°=90°-5°.[解] (1)原式=sin 163°sin(90°+133°)+sin(90°+163°)·sin(180°+133°) =sin 163°cos 133°-cos 163°sin 133° =sin(163°-133°)=sin 30°=12. (2)原式=2cos (60°-5°)-3sin 5°sin (90°-5°)=cos 5°+3sin 5°-3sin 5°cos 5°=cos 5°cos 5°=1.1.对于非特殊角的三角函数式,要想利用两角和与差的正弦、余弦公式求出具体数值,一般有以下三种途径:(1)化为特殊角的三角函数值; (2)化为正负相消的项,消去求值;(3)化为分子、分母形式,进行约分再求值.2.在进行求值过程的变换中,一定要本着先整体后局部的基本原则,先整体分析三角函数式的特点,如果整体符合三角公式,则整体变形,否则进行各局部的变换.提醒:在逆用两角和与差的正弦和余弦公式时,首先要注意结构是否符合公式特点,其次注意角是否满足要求.类型2 给值求值【例2】 已知0<β<π4,π4<α<3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫3π4+β=513,求cos(α+β)的值.注意⎝ ⎛⎭⎪⎫3π4+β-⎝ ⎛⎭⎪⎫π4-α=π2+(α+β),可通过求出3π4+β和π4-α的正、余弦值来求cos (α+β).[解] 由0<β<π4,π4<α<3π4得 -π2<π4-α<0,3π4<3π4+β<π. ∴cos ⎝ ⎛⎭⎪⎫3π4+β=-1213,sin ⎝ ⎛⎭⎪⎫π4-α=-45,cos(α+β)=sin ⎝ ⎛⎭⎪⎫π2+α+β=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3π4+β-⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫3π4+βcos ⎝ ⎛⎭⎪⎫π4-α-cos ⎝ ⎛⎭⎪⎫3π4+βsin ⎝ ⎛⎭⎪⎫π4-α=513×35-⎝ ⎛⎭⎪⎫-1213×⎝ ⎛⎭⎪⎫-45=-3365.解此类问题的关键是把“所求角”用“已知角”表示出来(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(3)角的拆分方法不唯一,可根据题目合理选择拆分方式. 类型3 形如a sin x +b cos x 的函数的化简及应用【例3】 (对接教材P 54探究)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6-2cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π,求函数f (x )的值域.等式a sin x +b cos x =A sin (x +φ)中A 和φ一定存在吗?它们与a ,b 有什么关系?[解] f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6-2cos x=3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6,∵π2≤x ≤π, ∴π3≤x -π6≤5π6. ∴12≤sin ⎝ ⎛⎭⎪⎫x -π6≤1.∴函数f (x )的值域为[1,2].1.(变结论)本例条件不变,将函数f (x )用余弦函数表示. [解] f (x )=3sin x -cos x =2⎝ ⎛⎭⎪⎫32sin x -12cos x=2⎝ ⎛⎭⎪⎫sin x sin π3-cos x cos π3=-2⎝ ⎛⎭⎪⎫cos x cos π3-sin x sin π3=-2cos ⎝ ⎛⎭⎪⎫x +π3.2.(变结论)本例条件不变,求函数f (x )的单调区间. [解] f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,由2k π-π2≤x -π6≤2k π+π2,得2k π-π3≤x ≤2k π+2π3,与π2≤x ≤π取交集得π2≤x ≤2π3,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π2,2π3;由2k π+π2≤x -π6≤2k π+3π2,得2k π+2π3≤x ≤2k π+5π3,与π2≤x ≤π取交集得2π3≤x ≤π, ∴函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤2π3,π.此类问题的求解思路如下:首先将函数f (x )化简为f (x )=a sin x +b cos x 的形式;,然后借助辅助角公式化f (x )为f (x )=a 2+b 2sin (x +φ)的形式;最后,类比y =sin x 的性质,树立“x +φ”的团体意识研究y =f (x )的性质.10.1.3 两角和与差的正切知识点 两角和与差的正切公式T(α+β):tan(α+β)=tan α+tan β1-tan αtan β.T(α-β):tan(α-β)=tan α-tan β1+tan αtan β.公式T(α±β)有何结构特征和符号规律?[提示](1)结构特征:公式T(α±β)的右侧为分式形式,其中分子为tan α与tan β的和或差,分母为1与tan αtan β的差或和.(2)符号规律:分子同,分母反.重点题型类型1条件求值问题【例1】已知tan(α+β)=5,tan(α-β)=3,求tan 2α,tan 2β,tan⎝⎛⎭⎪⎫2α+π4.2α=(α+β)+(α-β),2β=(α+β)-(α-β),tan⎝⎛⎭⎪⎫2α+π4可以用tan 2α表示出来.[解]tan 2α=tan[(α+β)+(α-β)]=tan(α+β)+tan(α-β)1-tan(α+β)tan(α-β)=5+31-5×3=-47,tan 2β=tan[(α+β)-(α-β)]=tan(α+β)-tan(α-β)1+tan(α+β)tan(α-β)=5-31+5×3=18,tan⎝⎛⎭⎪⎫2α+π4=1+tan 2α1-tan 2α=1-471+47=311.求解此类问题的关键是明确已知角和待求角的关系;求解时要充分借助诱导公式、角的变换技巧等实现求值.倘若盲目套用公式,可能带来繁杂的运算.类型2 给值求角【例2】 已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,求α+β.利用根与系数的关系求tan α+tan β及tan αtan β的值,进而求出tan (α+β)的值,然后由α+β的取值范围确定α+β的值.[解] 因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33<0,tan αtan β=4>0,所以tan α<0,tan β<0.又因为α,β∈⎝ ⎛⎭⎪⎫-π2,π2,所以α,β∈⎝ ⎛⎭⎪⎫-π2,0,所以-π<α+β<0.又因为tan(α+β)=tan α+tan β1-tan αtan β=-331-4=3,所以α+β=-2π3.1.给值求角的一般步骤 (1)求角的某一三角函数值; (2)确定角的范围;(3)根据角的范围写出所求的角. 2.选取函数时,应遵照以下原则 (1)已知正切函数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.类型3 T (α±β)公式的变形及应用【例3】 已知△ABC 中,tan B +tan C +3tan B tan C =3,且3tan A +3tan B =tan A tan B -1,试判断△ABC 的形状.当一个代数式中同时出现“tan α+tan β”及“tan α tan β”两个团体时,我们可以联想哪些公式解题?[解] ∵3tan A + 3 tan B =tan A tan B -1, ∴3(tan A +tan B )=tan A tan B -1, ∴tan A +tan B 1-tan A tan B=-33,∴tan(A +B )=-33.又∵0<A +B <π,∴A +B =5π6,∴C =π6. ∵tan B +tan C +3tan B tan C =3,tan C =33, ∴tan B +33+tan B =3,tan B =33, ∴B =π6,∴A =2π3,∴△ABC 为等腰三角形.1.公式T (α+β),T (α-β)是变形较多的两个公式,公式中有tan α·tan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β)).三者知二可表示或求出第三个.2.一方面要熟记公式的结构,另一方面要注意常值代换.提醒:当一个式子中出现两角正切的和或差时,常考虑使用两角和或差的正切公式.10.2 二倍角的三角函数知识点 倍角公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan α.(1)T 2α对任意角α都成立吗?(2)倍角公式中的“倍角”只能是2α吗?[提示] (1)不是.所含各角要使正切函数有意义.(2)倍角公式中的“倍角”具有相对性,对于两个角的比值等于2的情况都成立,如6α是3α的2倍,3α是3α2的2倍.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.重点题型类型1 直接应用二倍角公式求值【例1】 (对接教材P 63例1)已知sin 2α=513,π4<α<π2,求sin 4α,cos 4α,tan 4α的值.[解] 由π4<α<π2,得π2<2α<π. 又因为sin 2α=513, 所以cos 2α=-1-sin 22α =-1-⎝ ⎛⎭⎪⎫5132=-1213. 于是sin 4α=2sin 2αcos 2α =2×513×⎝ ⎛⎭⎪⎫-1213=-120169;cos 4α=1-2sin 22α=1-2×⎝ ⎛⎭⎪⎫5132=119169;tan 4α=sin 4αcos 4α=-120169119169=-120119.对二倍角公式的理解及二倍角公式的应用形式对于“二倍角”应该有广义上的理解,如:8α是4α的二倍角;6α是3α的二倍角;4α是2α的二倍角;3α是32α的二倍角;α2是α4的二倍角;α3是α6的二倍角;…,又如α=2·α2,α2=2·α4,….类型2逆用二倍角公式化简求值【例2】化简:2cos2α-12tan⎝⎛⎭⎪⎫π4-αsin2⎝⎛⎭⎪⎫π4+α.[解]原式=2cos2α-12sin⎝⎛⎭⎪⎫π4-αcos⎝⎛⎭⎪⎫π4-α·cos2⎝⎛⎭⎪⎫π4-α=2cos2α-12sin⎝⎛⎭⎪⎫π4-α·cos⎝⎛⎭⎪⎫π4-α=2cos2α-1cos 2α=cos 2αcos 2α=1.1.三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.2.解决此类非特殊角的求值问题,其关键是利用公式转化为特殊角求值,要充分观察角与角之间的联系,看角是否有倍数关系,能否用二倍角公式求值,是否是互余关系,能否进行正弦与余弦的互化;要充分根据已知式的结构形式,选择公式进行变形并求值.类型3活用“倍角”关系巧解题【例3】已知sin⎝⎛⎭⎪⎫π4-x=513,0<x<π4,求cos 2xcos⎝⎛⎭⎪⎫π4+x的值.本题中角“π4-x”与角“π4+x”有什么关系?如何借助诱导公式实现cos 2x与sin⎝⎛⎭⎪⎫π4+x的转换?[解]∵⎝⎛⎭⎪⎫π4-x+⎝⎛⎭⎪⎫π4+x=π2,∴sin⎝⎛⎭⎪⎫π4-x=cos⎝⎛⎭⎪⎫π4+x=513,又0<x<π4,∴π4<x+π4<π2,∴sin⎝⎛⎭⎪⎫π4+x=1213.∴cos 2xcos⎝⎛⎭⎪⎫π4+x=sin⎝⎛⎭⎪⎫π2+2xcos⎝⎛⎭⎪⎫π4+x=2sin⎝⎛⎭⎪⎫π4+x cos⎝⎛⎭⎪⎫π4+xcos⎝⎛⎭⎪⎫π4+x=2sin⎝⎛⎭⎪⎫π4+x=2413.1.(变结论)本例条件不变,求cos 2x.[解]∵0<x<π4,∴0<π4-x<π4,由sin⎝⎛⎭⎪⎫π4-x=513,得cos⎝⎛⎭⎪⎫π4-x=1213,cos 2x=sin⎝⎛⎭⎪⎫π2-2x=sin 2⎝⎛⎭⎪⎫π4-x=2sin⎝⎛⎭⎪⎫π4-x cos⎝⎛⎭⎪⎫π4-x=2×513×1213=120169.2.(变结论)本例条件不变,求sin 2x-2sin2x1-tan x的值.[解]∵⎝⎛⎭⎪⎫π4-x+⎝⎛⎭⎪⎫π4+x=π2,∴cos⎝⎛⎭⎪⎫π4+x=sin⎝⎛⎭⎪⎫π4-x=513.∵sin 2x-2sin2x1-tan x=2sin x cos x-2sin2x1-sin xcos x=2sin x(cos x-sin x)cos x-sin xcos x=2sin x cos x=sin 2x,又sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x =1-2×25169=119169.∴sin 2x -2sin 2x 1-tan x=119169.当遇到π4±x 这样的角时可利用角的互余关系和诱导公式,将条件与结论沟通.cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x .类似这样的变换还有:(1)cos 2x =sin ⎝ ⎛⎭⎪⎫π2+2x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x ;(2)sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =2cos 2⎝ ⎛⎭⎪⎫π4-x -1;(3)sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x 等.提醒:在使用二倍角公式时要特别注意公式中的系数,防止出错.10.3 几个三角恒等式知识点1 积化和差与和差化积公式 (1)积化和差公式sin αcos β=12[sin(α+β)+sin(α-β)],cos αsin β=12[sin(α+β)-sin(α-β)], cos αcos β12[cos(α+β)+cos(α-β)], sin αsin β=-12[cos(α+β)-cos(α-β)]. (2)和差化积公式sin α+sin β=2sin α+β2cos α-β2, sin α-sin β=2cos α+β2sin α-β2, cos α+cos β=2cosα+β2cos α-β2, cos α-cos β=-2sinα+β2sin α-β2.知识点2 半角公式与降幂公式半角公式降幂公式sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α,tan α2=sin α1+cos α=1-cos αsin αsin 2α=1-cos 2α2, cos 2α=1+cos 2α2, tan 2α=1-cos 2α1+cos 2α设tan α2=t ,则sin α=2t 1+t 2,cos α=1-t 21+t 2,tan α=2t1-t 2.重点题型类型1 应用和差化积或积化和差求值【例1】 求sin 220°+cos 250°+sin 20°·cos 50° 的值. [解] 原式=1-cos 40°2+1+cos 100°2+12(sin 70°-sin 30°)=1+12(cos 100°-cos 40°)+12sin 70°-14 =34+12(-2sin 70°sin 30°)+12sin 70° =34-12sin 70°+12sin 70° =34.套用和差化积公式的关键是记准、记牢公式,为了能够把三角函数式化为积的形式,有时需要把常数首先化为某个角的三角函数,然后再化积,有时函数不同名,要先化为同名再化积,化积的结果能求值则尽量求出值来.类型2 万能代换公式的应用 【例2】 设tan θ2=t ,求证:1+sin θ1+sin θ+cos θ=12(t +1).利用万能代换公式,分别用t 表示sin θ,cos θ,代入待证等式的左端即可证明.[证明] 由sin θ=2tan θ21+tan 2θ2及cos θ=1-tan 2θ21+tan 2θ2,得1+sin θ=⎝ ⎛⎭⎪⎫1+tan θ221+tan 2θ2=(1+t )21+t 2, 1+sin θ+cos θ=2⎝ ⎛⎭⎪⎫1+tan θ21+tan 2θ2=2(1+t )1+t2, 故1+sin θ1+sin θ+cos θ=12(t +1).在万能代换公式中不论α的哪种三角函数(包括sin α与cos α)都可以表示成tan α2=t 的“有理式”,将其代入式子中,就可将代数式表示成t 的函数,从而就可以进行相关代数恒等式的证明或三角式的求值.类型3 f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质【例3】 求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,7π24的最小值,并求其单调减区间.[解] f (x )=53×1+cos 2x 2+3×1-cos 2x2-2sin 2x =33+23cos 2x -2sin 2x=33+4⎝ ⎛⎭⎪⎫32cos 2x -12sin 2x=33+4⎝ ⎛⎭⎪⎫sin π3cos 2x -cos π3sin 2x=33+4sin ⎝ ⎛⎭⎪⎫π3-2x =33-4sin ⎝ ⎛⎭⎪⎫2x -π3,∵π4≤x ≤7π24, ∴π6≤2x -π3≤π4. ∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22.∴当2x -π3=π4,即x =7π24时, f (x )取最小值为33-22.∵y =sin ⎝ ⎛⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,∴f (x )在⎣⎢⎡⎦⎥⎤π4,7π24上单调递减.1.(变结论)本例中,试求函数f (x )(x ∈R )的对称轴方程. [解] f (x )=33-4sin ⎝ ⎛⎭⎪⎫2x -π3,令2x -π3=π2+k π,k ∈Z ,得x =k π2+5π12,k ∈Z . 所以函数f (x )的对称轴方程为x =k π2+5π12,k ∈Z .2.(变条件)本例中,函数解析式变为f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12(x ∈R ),求f (x )的单调减区间.[解] ∵f (x )=3sin 2⎝ ⎛⎭⎪⎫x -π12+1-cos 2⎝ ⎛⎭⎪⎫x -π12=2⎣⎢⎡⎦⎥⎤32sin 2⎝ ⎛⎭⎪⎫x -π12-12cos 2⎝ ⎛⎭⎪⎫x -π12+1=2sin ⎝ ⎛⎭⎪⎫2x -π3+1,由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z , 得k π+5π12≤x ≤k π+11π12,k ∈Z ,∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .1.应用公式解决三角函数综合问题的三个步骤 (1)运用和、差、倍角公式和重要恒等式化简. (2)统一化成f (x )=a sin ωx +b cos ωx +k 的形式.(3)利用辅助角公式化为f (x )=A sin(ωx +φ)+k 的形式,研究其性质. 2.对三角函数式化简的常用方法 (1)降幂化倍角; (2)升幂角减半;(3)利用f (x )=a sin x +b cos x =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,化为“一个角”的函数.。
必修二数学知识点整理
必修二数学知识点整理一、立体几何初步。
(一)空间几何体。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 性质:侧棱都平行且相等;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等;按侧棱与底面是否垂直分为直棱柱和斜棱柱,底面是正多边形的直棱柱叫正棱柱。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等;底面是正多边形,且顶点在底面的射影是底面中心的棱锥叫正棱锥。
正棱锥的性质包括各侧棱相等,各侧面都是全等的等腰三角形等。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 性质:棱台的各侧棱延长后交于一点;棱台的上下底面是相似多边形;棱台的侧面积等于各个梯形面积之和。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体。
- 性质:圆柱的轴截面是全等的矩形;平行于底面的截面是与底面全等的圆;圆柱的侧面展开图是矩形,其长为底面圆的周长,宽为圆柱的高。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体。
- 性质:圆锥的轴截面是等腰三角形;平行于底面的截面是圆;圆锥的侧面展开图是扇形,扇形的弧长等于底面圆的周长,半径等于圆锥的母线长。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:圆台的轴截面是等腰梯形;平行于底面的截面是圆;圆台的侧面展开图是扇环。
7. 球。
- 定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体。
人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高
人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习圆的方程【学习目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.【要点梳理】【圆的方程370891 知识要点】 要点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.要点二:点和圆的位置关系 如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点三:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 要点四:几种特殊位置的圆的方程求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程. 要点六:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答. 【典型例题】类型一:圆的标准方程例1.求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++=又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x―a)2+(y―b)2=r 2; (2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( ) A .(x―4)2+(y+1)2=10 B .(x+4)2+(y―1)2=10C .(x―4)2+(y+1)2=100D .22(4)(1)x y -++=【答案】A例2.(2015秋 湖北宜昌月考)求下列各圆的标准方程: (1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y ―1=0切于点M (2,―1). 【思路点拨】(1)求出圆心和半径,即可求圆C 的方程;(2)设出圆心坐标,列方程组解之.其中由圆心在直线2x +y =0上得出一个方程;再由圆心到直线x +y ―1=0的距离即半径得出另一个方程.【答案】(1)22(1)20x y ++=;(2)22(1)(2)2x y -++= 【解析】(1)∵圆心在直线y =0上, ∴设圆心坐标为C (a ,0), 则|AC |=|BC |,= 即 22(1)16(3)4a a -+=-+, 解得a =―1,即圆心为(―1,0),半径||r AC ===, 则圆的标准方程为 22(1)20x y ++=, (2)设圆心坐标为(a ,b ),则20a b +=⎧⎪=解得a =1,b =-2,∴r =∴要求圆的方程为 22(1)(2)2x y -++=. 举一反三:【圆的方程370891 典型例题1】【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++= 【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-= 所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.类型二:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆. (1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1)3222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t―1<0117t ⇔-<<. (2)圆的方程化为[x―(t+3)]2+[y+(1―4t 2)]2=1+6t―7t 2. ∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤. ∴r的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【总结升华】 在本例中,当t 在1,17⎛⎫-⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程. 举一反三:【圆的方程370891 典型例题2】【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-=【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1),法二:线段AB 的中点为为75,22⎛⎫⎪⎝⎭,321523AB k -==-线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =,所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【变式2】判断方程ax 2+ay 2―4(a―1)x+4y=0(a≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a aa -⎛⎫- ⎪⎝⎭,半径2222||a a r a -+= 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 A .2a <-或23a > B .203a -<< C .20a -<< D .223a -<< 【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<. 例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程; (2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程. 【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x―2y―20=0(2)(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25 【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩. 故所求的圆的方程为x 2+y 2―4x―2y―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y―3=0.∴圆心是两中垂线的交点(2,1),∴半径22(21)(15)5r =++-=,∴所求的圆的方程为(x―2)2+(y―1)2=25,即x 2+y 2―4x―2y―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|. 设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3), ∴圆心在PQ 的垂直平分线上,即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ②由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴22(1)(2)5r a b =-+-=或5.故所求的圆的方程为(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x―2y―3=0或x 2+y 2+4x+4y―17=0. 解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0. ∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩.∴圆C 的方程为x 2+y 2+Dx+(3D―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0. ∴圆C 在x 轴上截得的弦长为212||4(117)x x D D -=--.将x=0代入得y 2+(3D―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为212||(38)4(117)y y D D -=---.由题意有224(117)(38)4(117)D D D D --=---,即D 2―4(11―7D)=(3D―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y―7=0或x 2+y 2+2x―2y―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】30,3⎛⎫ ⎪ ⎪⎝⎭,233,223433x y ⎛⎫+-= ⎪ ⎪⎝⎭ 类型三:点与圆的位置关系例5.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系. 【答案】M 在圆上 N 在圆外 Q 在圆内 【解析】∵圆的方程为(x ―5)2+(y ―6)2=10, 分别将M (6,9),N (3,3),Q (5,3)代入得 (6―5)2+(9―6)2=10,∴M 在圆上; (3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ |<r ;点P 在圆上⇔|PQ |=r ;点P 在圆外⇔|PO |>r .从数的角度来看,设圆的标准方程为(x ―a )2+(y ―b )2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a )2+(y 0―b )2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a )2+(y 0―b )2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a )2+(y 0―b )2<r 2.举一反三:【变式1】点(a +1,a ―1)在圆22240x y ay +--=的内部,则a 的取值范围是________. 【思路点拨】直接把点(a +1,a ―1)代入圆的方程左边小于0,解不等式可得a 的范围. 【答案】(-∞,1) 【解析】∵点(a +1,a ―1)在圆22240x y ay +--=的内部(不包括边界), ∴ 22(1)(1)2(1)40a a a a ++----<,整理得:a <1. 故答案为:(-∞,1). 类型四:轨迹问题 例6.(2016 广东中山市模拟)已知曲线C 上任意一点到原点的距离与到A (3,―6)的距离之比均为12. (1)求曲线C 的方程. (2)设点P (1,―2),过点P 作两条相异直线分别与曲线C 相交于B ,C 两点,且直线PB 和直线PC 的倾斜角互补,求证:直线BC 的斜率为定值.【思路点拨】(1)利用直接法,建立方程,即可求曲线C 的方程.(2)直线与圆的方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线BC 的斜率为定值.【答案】(1)22(1)(2)20x y ++-=;(2)直线BC 的斜率为定值12-. 【解析】(1)曲线C 上的任意一点为Q (x ,y ),221(1)(2)202x y =⇒++-= (2)证明:由题意知,直线PB 和直线PC 的斜率存在,且互为相反数,P (1,―2), 故可设P A :y +2=k (x ―1), 由2222222(1)(1)2(14)830(1)(2)20y k x k x k k x k k x y +=-⎧⇒++--++-=⎨++-=⎩因为点P 的横坐标x =1一定是该方程的解,故可得22831A k k x k +-=+, 同理,22831B k k x k --=+,所以(1)(1)2()12B A B A B A AB B A B A B A y y k x k x k k x x k x x x x x x ------+====----故直线BC 的斜率为定值12-. 【总结升华】本例求轨迹方程的方法是直接法.用直接法求曲线方程的步骤如下: (1)建系设点:建立适当的直角坐标系,设曲线上任一点坐标为M (x ,y ); (2)几何点集:写出满足题设的点M 的集合P ={M |P (M )};(3)翻译列式:将几何条件P (M )用坐标x 、y 表示,写出方程f (x ,y )=0; (4)化简方程:通过同解变形化简方程;(5)查漏除杂:验证方程表示的曲线是否为已知的曲线,重点检查方程表示的曲线是否有多余的点,曲线上是否有遗漏的点. 例7.已知定点A (4,0),P 点是圆x 2+y 2=4上一动点,Q 点是AP 的中点,求Q 点的轨迹方程. 【答案】(x―2)2+y 2=1【解析】 设Q 点坐标为(x ,y ),P 点坐标为(x ',y '),则4'2x x +=且0'2y y +=,即x '=2x―4,y '=2y .又P 点在圆x 2+y 2=4上,∴x '2+y '2=4,将x '=2x―4且y '=2y 代入得(2x―4)2+(2y)2=4,即(x―2)2+y 2=1.故所求的轨迹方程为(x―2)2+y 2=1.【总结升华】 本题是求轨迹时常用的方法——代入法,对于“双动点”问题,即若已知一动点在某条曲线上运动而求另一动点的轨迹方程时,通常用这一方法.代入法是先设所求轨迹的动点坐标为(x ,y ),在已知曲线上运动的点的坐标为(x ',y '),用x ,y 表示x ',y ',即x '=f (x,y),y '=g (x,y),并将它代入到已知曲线方程,即求出所求动点的轨迹方程.一般情况下,证明可以省略不写,如有特殊情况,可适当予以说明,即扣除不合题意的解或补上失去的解.举一反三:【变式1】已知定点A (2,0),点Q 是圆x 2+y 2=1上的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.【答案】222439x y ⎛⎫-+= ⎪⎝⎭【圆的方程370891 典型例题5】【变式2】平面内到两定点距离的比值是一个不等于1的常数的动点的轨迹是一个圆.【解析】以两定点所在的直线为x 轴,以两定点所在线段的中垂线为y 轴建立直角坐标系,设两定点分别为()1,0,(1,0)A B -,设动点(,)P x y ,则||(1)||PA c c PB =≠,c =,整理得:()2222221(1)(22)10cxc y c x c -+-+++-=所以222222101c x y x c ++++=-,即()22222221411c c x y c c ⎛⎫+++= ⎪-⎝⎭- 所以动点的轨迹是一个圆.。
(人教版)高中数学必修二_知识点、考点及典型例题解析(全)
必修二第一章 空间几何体 知识点:1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=3、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =5、空间几何体的表面积与体积⑴圆柱侧面积;lr S ⋅⋅=π2侧面⑵圆锥侧面积:lr S ⋅⋅=π侧面典型例题:★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A 21倍 B 42倍 C 2倍 D 2倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是A .28cm πB 212cm π. C 216cm π. D .220cm π二、填空题★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
必修二数学知识点归纳
必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。
以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。
旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。
2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。
平行投影:在一束平行光线照射下形成的投影,叫做平行投影。
5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。
画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。
已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。
已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。
6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。
必修二数学知识点归纳必看
必修二数学知识点归纳必看求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。
下面是小编给大家整理的一些必修二数学知识点归纳的学习资料,希望对大家有所帮助。
高二数学必修二知识点总结考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_提高
人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习平面【学习目标】1 .利用生活中的实物对平面进行描述;理解平面的概念,掌握平面的画法及表示方法.2 .重点掌握平面的基本性质.3 .能利用平面的性质解决有关问题.【要点梳理】[空间点线面之间的位置关系知识讲解】要点一、平面的基本概念1 .平面的概念:“平面”是一个只描述而不定义的原始概念,常见的桌面、黑板面、平静的水面等都给我们以平面的形象几何里的平面就是从这些物体中抽象出来的,但是,几何里的平面是无限延展的.要点诠释:(1) “平面”是平的(这是区别“平面”与“曲面”的依据);(2) “平面”无厚薄之分;(3) “平面”无边界,它可以向四周无限延展,这是区别“平面”与“平面图形”的依据.2 .平面的画法:通常画平行四边形表示平面.要点诠释:(1)表示平面的平行四边形,通常把它的锐角画成45 ,横边长是其邻边的两倍;(2)两个相交平面的画法:当一个平面的一部分被另一个平面遮住时,把被遮住的部分的线段画为虚线或者不画:3 .平面的表示法:(1)用一个希腊字母表示一个平面,如平面a、平面0、平面7等;(2)用表示平面的平行四边形的四个字母表示,如平面ABCD ;(3)用表示平面的平行四边形的相对两个顶点的两个字母表示,如平面AC或者平面BD ;4 .点、直线、平面的位置关系:(1)点A在直线a上,记作Awa;点A在直线a外,记作Ac a ;⑵点A在平面a上,记作Asa ;点A在平面a外,记作A氏a ;(3)直线I在平面a内,记作lua:直线I不在平面a内,记作l(za.要点二、平面的基本性质平面的基本性质即书中的三个公理,它们是研究立体几何的基本理论基础.1 .公理1:(1)文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;⑵符号语言表述:AeI , B G I , Awa, Bea =>I ca ;(3)图形语言表述:要点诠释:公理1是判断直线在平面内的依据.证明一条直线在某一平面内,只需证明这条直线上有两个不同的点在该平面内.“直线在平面内”是指“直线上的所有点都在平面内”2 .公理2:(1)文字语言表述:过不在一条直线上的三点,有且只有一个平面:(2)符号语言表述:A、B、C三点不共线=有且只有一个平面a ,使得Awa, Bea, Cea;(3)图形语言表述:要点诠释:公理2的作用是确定平面,是把^间问题化归成平面问题的重要依据.它还可用来证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三点”这一条件.“有且只有一个”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同义.(4)公理2的推论:①过一条直线和直线外一点,有且只有一个平面:②过两条相交直线,有且只有一个平面;③过两条平行直线,有且只有一个平面.(5)作用:确定一个平面的依据.3 .公理3:(1)文字语言表述:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线:(2)符号语言表述:Pwa nPnanP = l且P E I;(3)图形语言表述:要点诠释:公理3的作用是判定两个平面相交及证明点在直线上的依据.要点三、点线共面的证明所谓点线共面问题就是指证明一些点或直线在同一个平面内的问题.1 .证明点线共面的主要依据:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(公理1):②经过不在同一条直线上的三点,有且只有一个平面(公理2及期隹论).2 .证明点线共面的常用方法:(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;20辅助平面法:先证明有关的点、线确定平面。
高中数学必修2空间几何典型例题及讲解
数学必修2第一章一、学习目标:1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,能识别上述三视图与直观图所表示的立体模型。
二、重点、难点:重点:空间几何体中的棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征;空间几何体的三视图与直观图的画法。
难点:柱、锥、台、球结构特征的概括;识别三视图所表示的空间几何体;几何体的侧面展开图,计算组合体的表面积和体积。
三、考点分析:三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视。
在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中。
这部分知识主要考查学生的空间想象能力与计算求解能力。
1. 多面体棱柱、棱锥、棱台2. 旋转体圆柱、圆锥、圆台、球3. 三视图(1)正视图、侧视图、俯视图(2)三种视图间的关系4. 直观图水平放置的平面图形的直观图的斜二测画法表中S表示面积,c′、c分别表示上、下底面的周长,h表示高度,h′表示斜高,l 表示侧棱长。
5. 旋转体的面积和体积公式表中l、h分别表示母线长、高,r表示圆柱、圆锥与球冠的底面半径,r1、r2分别表示圆台上、下底面的半径,R表示半径。
知识点一柱、锥、台、球的结构特征例1. 下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱。
②两个底面平行且相似,其余各面都是梯形的多面体是棱台。
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台。
④直角三角形绕其一条边旋转得到的旋转体是圆锥。
⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台。
⑥用一个平面去截圆锥,底面和截面之间的部分是圆台。
⑦通过圆锥侧面上一点,有无数条母线。
⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修二
第一章 空间几何体 知识点:
1、空间几何体的结构
⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有: 圆柱、
圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相 邻两个四边形的公共边都互相平行, 由这些面所围成的多面 体叫做棱柱。
⑶棱台: 用一个平行于棱锥底面的平面去截棱锥, 底面与截面 之间的部分,这样的多面体叫做棱台。
5、空间几何体的表面积与体积
⑴圆柱侧面积; S 侧面 2 r I
典型例题: ★例 1:下列命题正确的是 ( )
A. 棱柱的底面一定是平行四边形 B. 棱锥的底面一定是三角形
C . 棱柱被平面分成的两部分可以都是棱柱 D. 棱锥被平面分成的两部分不可能都是棱锥
I 3a
3
、
球的体积公式: V 43 R 3 ,球的表面积公式: S
4
R 2
4、 柱体 V s h ,锥体 V 13s
S 1
h ,锥体截面积比: S2 h1
2 h 2
2、
长方体的对角线长 l a 2 b 2 c 2 ;正方体的对角线长
⑵圆锥侧面积: S 侧面
rl
★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()
12
A 2 倍
B 4 倍
C 2 倍
D 2倍
★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱
正视图侧视图俯视图
★★例4:一个体积为8cm3的正方体的顶点都在球面上,则球的表面积是
2
A.8 cm 2B12 cm . C 16 cm 2. D .20 cm
二、填空题
★例1:若圆锥的表面积为平方米,且它的侧面展开图是一个半圆,
则这个圆锥的底面的直径为 __________________ .
★例2:球的半径扩大为原来的 2 倍, 它的体积扩大为原来的
________ 倍 .
第二章点、直线、平面之间的位置关系知识点:
此平面内。
2、公理2:过不在一条直线上的三点,有且只有一个平面。
3、公理3:如果两个不重合的平面有一个公共点,那么它们
有且只有一条过该点的公共直线。
4、公理4:平行于同一条直线的两条直线平行.
5、定理:空间中如果两个角的两边分别对应平行,那么这两
个角相等或互补。
6、线线位置关系:平行、相交、异面。
7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。
8、面面位置关系:平行、相交。
9、线面平行:
⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与
此平面平行(简称线线平行,则线面平行)。
⑵性质:一条直线与一个平面平行,则过这条直线的任一平
面与此平面的交线与该直线平行(简称线面平行,则线线
平行)。
10、面面平行:
⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个
平面平行(简称线面平行,则面面平行)。
线平行(简称面面平行,则线线平行)。
11、线面垂直:
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就
说这条直线和这个平面垂直。
⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直(简称线线垂直,则线面垂直)⑶性质:垂直于同一
个平面的两条直线平行。
12、面面垂直:
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就
说这两个平面互相垂直。
⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直
(简称线面垂直,则面面垂直)。
⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直
于另一个平面。
(简称面面垂直,则线面垂直)典型例题:
★例1:一棱锥被平行于底面的平面所截,若截面面积与底面面积之比是1:2 ,则此棱锥的高(自上而下)被分成两段长度之比为
A、1: 2
D、1: ( 2 1)
c,a ,a b,c 与b不平行,则(
★★ 例3:有四个命题:①平行于同一直线的两条直线平行;②垂直于同一平面的两条直线平行;③平行于同一直线的两个平面平行;④垂直于同一平面的两个平面平行。
其中正确的是()
A .①②
B .②③
C .③④
D .①④
★★例4:在正方体ABCD A1B1C1D1中,E,F 分别是DC和CC1的中点.
例5:如图,在正方体ABCD-A1B1C1D1
中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C⊥1 平面
第三章知识点:
直线与方程
1、倾斜角与斜率:k tan 2 1
x2 x1
求证:D1E平面ADF
B、1:4 C 、1: ( 2 1)
★ 例2 :已知两个不同平面及三条不同直线a、b、c,
A. b// 且b与相交
B. b 且b//
C. b 与相交
D. b 且与不相交CB1D1
2、直线方程:
7、两平行线间的距离公式:
⑶
l 1 和 l 2 重合 A 1 B 2 A 2 B 1
B 1
C 2 B 2C 1
⑷
l 1 l 2 A 1A 2 B 1B 2 0.
⑴点斜式: y
y 0 k x x 0
⑵斜截式:
y
kx b
⑶两点式:
y
y 1 y 2 y 1
x x 1 x 2 x 1
⑷截距式: x y 1
a b
⑸一般式: Ax By C 0
3、对于直线: l 1 : y
k 1x b 1, l 2 : y k 2 x
k 1 k 2
⑴
l 1 // l 2
b 1
b 2
⑵
l 1和 l 2相交
k 1 k 2 ;
k 1 k 2
⑶
l 1和 l 2 重合
;
b 1 b 2
⑷ l 1 l 2
k 1k 2 1.
4、对于直线: l 1 : A 1x B 1 y C 1
0,
有:
l 2
: A 2 x B 2 y C 2
A 1
B 2
A 2
B 1
⑴ l 1 // l 2
;
B 1
C 2
B 2
C 1
⑵
l 1
和 l 2 相交
A 1
B 2 A 2 B 1
;
b 2 有:
5、两点间距离公
式:
6、点到直线距离公
式:
P 1P 2
Ax 0 By 0 C
2
y 2 y 1
典型例题:
第四章 圆与方程
知识点:
1、圆的方程:
22
⑴标准方程: x a 2
y b 2
r
⑵ 一般 方程: x 2 y 2 Dx Ey
r 1 D 2 E 2
4F .
2
2、直线与圆的位置关系 直线 Ax By C
0 与圆 (x
a)
2
d r 相离
0;
d r 相切
;
d r 相交
0.
3、两圆位置关系: d
O 1O 2
⑴外离: d R r ;
⑵外
切
:d
⑶相交: R r d R
r ; ⑷内切
⑸内含: d R r .
4、空间中两点间距离公
式:
P 1P 2 x
,其中圆心为 (a,b) ,半径为 r .
F 0. 其中圆心 为 ( D , E
) ,半径 为 22
22
(y b)2 r 2的位置关系有三种 :
R r ; d R r ;
典型例题:
★例 1:圆心在直线 y=2x 上,且与 x 轴相切与点( -1 , 0)的圆的标准方程是
★★ 例 2:已知 圆C: x 2 y 2 4,
(1) ___________________________________________ 过点 ( 1, 3) 的圆的切线方程为
2 2 2 x 1
y 2 y 1 z 2 z 1
l 1 : Ax By C 1 0与l 2: Ax By C 2 0平行,则 d
C 1 C 2
A 2
B 2
A
(1, 3)
B
( 3,1)
C
( 3,1)
D (1, 3)
★例 2 :直线
l 1
: kx (1 k)y 3
0和l 2 : (k 1)x (2k 3)y 2 0
互相垂直,
则
k 的值是
(
)
A .-3
B .0
C . 0
或 -3 D . 0
或1
★例 1:若过坐标原点的直线 l 的斜率为
3 ,则在直线 l 上的点是(
)
(2)过点(3,0)的圆的切线方程为____________ .
(3)过点( 2,1)的圆的切线方程为 ____________ .
(4)斜率为- 1 的圆的切线方程为_________________ .
★★例3:已知圆C经过A(3,2)、B(1,6)两点,且圆心在直线y=2x 上。
(1)求圆C的方程;
(2)若直线L经过点P(-1,3)且与圆C相切,求直线L的方程。