人教版七年级上册数学-第一章综合检测试卷

合集下载

人教版七年级数学上册第一章综合素质评价试卷附答案 (1)

人教版七年级数学上册第一章综合素质评价试卷附答案 (1)

人教版七年级数学上册第一章综合素质评价一、选择题(每题3分,共30分)1.【2022·江西】下列各数中,负数是( )A .-1B .0C .2D .32.【母题:教材P 10练习T 2】-7的相反数是( )A .-7B .-17C .7D .173.下列各数中最大的是( )A .-3B .-2C .0D .14.【2023·贵阳十七中模拟】如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( ) A .0 B .1 C .2 D .35.下列计算中,正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3C .(-3)2÷(-2)2=32D .0-7-2×5=-176.【母题:教材P 52复习题T 13】【2022·湖州】2022年3月23日下午,“天宫课堂”第2课在中国空间站开讲,神舟十三号乘组三位航天员翟志刚、王亚平、叶光富进行授课,某平台进行全程直播,某一时刻观看人数达到3 790 000人,用科学记数法表示3 790 000,正确的是( )A .0.379×107B .3.79×106C .3.79×105D .37.9×1057.【2023·山东实验中学模拟】有理数a ,b ,c 在数轴上对应点的位置如图所示.如果a +b =0,那么下列结论正确的是( ) A .|a |>|c | B .a +c <0 C .abc <0 D .ab=1 8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-1110.【新考法】小时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a +b 的值为( ) A .-6或-3 B .-8或1 C .-1或-4 D .1或-1 二、填空题(每题3分,共24分)11.【母题:教材P 4练习T 1】在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有________________________,分数有________________________.12.【跨学科】等高线指的是地形图上高度相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.吐鲁番盆地的等高线标注为-155 m ,表示此处的高度________海平面155 m (填“高于”或“低于”). 13.近似数2.30精确到__________位.14.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.15.在数轴上与表示-1的点相距2个单位长度的点表示的数是____________. 16.【母题:教材P20例3】有5袋苹果,每袋以50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是________________. 17.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 025的值为________.18.当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,通常,一个“二维码”由1 000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1 000个方格只有200个方格作为数据码,根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有三名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数; DDDD(懂的都懂):2200等于2002; JXND(觉醒年代):2200的个位数是6.其中对2200的理解错误的网友是__________(填写网名字母代号). 三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.【母题:教材P 14习题T 6】将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来)-22,-(-1),0,-|-2|,-2.5,|-3|20.【母题:教材P 51复习题T 5】计算:(1)⎝ ⎛⎭⎪⎫-37+15+27+⎝ ⎛⎭⎪⎫-65; (2)-(-1)+32÷(1-4)×2;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2; (4)(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +ba +b +c+m 2-cd的值.22.【新考法】若“⊗”表示一种新运算,规定a ⊗b =a ×b +a +b ,请计算下列各式的值. (1)-6⊗2;(2)[(-4)⊗(-2)]⊗12.23.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.24.学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.鲁能巴蜀中学七年级的小张同学从学校了解到,上周五这一天,七年级各班共使用口罩1 500只,喜欢统计的小张本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以1 500只为标准,其中每天超过1 500只的记为“+”,每天不足1 500只的记为“-”,统计表格如下(单位:只):周一 周二 周三 周四 周五 +48-20+11-14-5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)本周共使用口罩多少只?(3)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,且本周所用的普通医用口罩和N95型口罩数量之比为4∶1,求本周七年级所有同学购买口罩的总金额.25.【规律探索题】观察下列等式并回答问题.第1个等式a1=11×3=12×⎝⎛⎭⎪⎫1-13,第2个等式a2=13×5=12×⎝⎛⎭⎪⎫13-15,第3个等式a3=15×7=12×⎝⎛⎭⎪⎫15-17,第4个等式a4=17×9=12×⎝⎛⎭⎪⎫17-19……(1)按发现的规律分别写出第5个等式和第6个等式;(2)求a1+a2+a3+a4+…+a100的值.答案一、1.A 【提示】正数有2,3,负数有-1,0既不是正数也不是负数,故选A. 2.C3.D 【提示】将选项中各数由小到大排列为-3<-2<0<1,故选D.4.D 【提示】由题意可得原点O 的位置,如图所示,那么点B 表示的数为3,故选D .5.D 【提示】-2-1=-3,A 错误;3÷⎝ ⎛⎭⎪⎫-13×3=3×(-3)×3=-27,B 错误;(-3)2÷(-2)2=9÷4=94,C 错误;0-7-2×5=0-7-10=-17,D 正确.故选D.6.B 【提示】根据科学记数法的概念可得3 790 000=3.79×106,故选B. 7.C 【提示】由数轴可知,a <b <c ,因为a +b =0,所以a <0,b >0,a =-b ,所以c >0.|a |=|b |=b <c =|c |,故A 错误;a +c =-b +c =c -b >0,故B 错误;a <0<b <c ,则abc <0,故C 正确;a b =-bb=-1,故D 错误,故选C.在数轴上,利用数形结合思想,一般可读出三个方面的信息:1.对应点所表示的数是正数还是负数;2.对应点到原点的距离,即绝对值的大小;3.对应点表示的数的大小关系,即数轴上的数从左往右越来越大.8.C 【提示】0是有理数,但0既不是正数也不是负数,故A 错误;|a |不一定是正数,有可能为0,故B 错误;若a +b >0,a ≤b ,则a ≤0,b >0或a >0,b >0,故C 正确;2-(-1)=3>2,故D 错误.故选C.9.B 【提示】|a +3|=5,则a +3=±5,解得a =-8或a =2,则a +b =-8+(-3)=-11或a +b =2+(-3)=-1,故选B. 10.A 【提示】如图,设内圈上的数为c ,外圈上的数为d .因为(-1)+2+(-3)+4+(-5)+6+(-7)+8=4,横、竖以及内外两圈上的4个数字之和都相等,所以内外两圈的和都是2,横、竖的和也都是2.由-7+6+b +8=2,得b =-5;由6+4+b +c =2,得c =-3;由a +c +4+d =2,得a +d =1.由题意可知,a 和d 代表的数字为-1和2. 当a =-1时,d =2,则a +b =-1+(-5)=-6; 当a =2时,d =-1,则a +b =2+(-5)=-3.故选A.二、11.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34312.低于 【提示】由题意知-155 m 表示此处的高度低于海平面155 m . 13.百分 【提示】2.30精确到小数点后两位,即百分位.14.0;-4 【提示】设|a |≤3.14,其中正有理数有a 1,a 2,a 3,…,则负有理数有-a 1,-a 2,-a 3,…,还有0,则a 1+a 2+a 3+…+0+(-a 1)+(-a 2)+(-a 3)+ 0不小于-4而不大于3的整数有-4,-3,-2,-1,0,1,2,3,则所有整数加起来为-4.15.-3或1 【提示】设这个数为a ,当a <-1时,-1-a =2,解得a =-3;当a >-1时,a -(-1)=2,解得a =1.16.244千克 【提示】+4+(-5)+(+3)+(-2)+(-6)=-6(千克),所以这5袋苹果的总质量为50×5-6=244(千克).17.-1 【提示】由题意可知3-x =0,y +3=0,解得x =3,y =-3.所以⎝ ⎛⎭⎪⎫x y 2 025=⎝ ⎛⎭⎪⎫3-3 2 025=(-1)2 025=-1.18.DDDD 【提示】2200就是200个2相乘,所以YYDS 理解正确;2200是200个2相乘,2002是2个200相乘,所以2200不等于2002,所以DDDD 理解错误;已知210=1 024,则220的个位数是6, 240的个位数是6……2200的个位数是6,所以JXND 理解正确.故填写DDDD. 三、19.【解】如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|.20.【解】(1)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-37+27+⎣⎢⎡⎦⎥⎤15+⎝ ⎛⎭⎪⎫-65=-17-1=-87.(2)原式=1+9÷(-3)×2 =1+(-3)×2 =1-6=-5. (3)原式=136÷⎝ ⎛⎭⎪⎫162÷36 =136×36×136 =136. (4)原式=1+(-2.45-2.55)×8=-39. 21.【解】由题意,得a +b =0,cd =1,m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd =00+c+4-1=0+4-1=3.22.【解】(1)-6⊗2=-6×2+(-6)+2=-16.(2)[(-4)⊗(-2)]⊗12=[-4×(-2)+(-4)+(-2)]⊗1 2=2⊗1 2=2×12+2+12=31 2 .【提示】观察新运算法则,找出新运算规律,把新运算转换成几种已学习过的基本运算,同时要注意运算顺序.23.【解】因为OA=OB,a<0<b,所以a+b=0,a=-b.由数轴知b>1,所以a<-1,所以a+1<0,所以原式=0+1-a-1=-a.24.【解】(1)因为48>11>-5>-14>-20,所以周一七年级同学使用口罩最多,数量是1 500+48=1 548(只).(2)1 500×5+(48-20+11-14-5)=7 520(只).(3)购买普通医用口罩的金额为1×7 520×44+1=6 016(元),购买N95型口罩的金额为3×7 520×14+1=4 512(元),所以本周七年级所有同学购买口罩的总金额为4 512+6 016=10 528(元).25.【解】(1)第5个等式:a5=19×11=12×⎝⎛⎭⎪⎫19-111;第6个等式:a6=111×13=12×⎝⎛⎭⎪⎫111-113.(2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×(1199-1201)=12×(1-13+13-15+15-17+17-19+…+1199-1201) =12×200201 =100201.。

七年级数学上册第1章【名师选题】第一章综合能力检测卷(人教版)

七年级数学上册第1章【名师选题】第一章综合能力检测卷(人教版)

第一章综合能力检测卷―、选择题(每题3分,共30分)1.下列有关“0”的叙述中,错误的是( ) A.0既不是正数,也不是负数B.O ℃是零上温度和零下温度的分界线C.海拔是0 m 表示没有海拔D.0是最小的自然数2.大米包装袋上(10±0.1)kg 的标识表示此袋大米重( )A.(9.9~10.1)kgB.10.1kgC.9.9kgD.10kg 3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,204000用科学记数法表示正确的是( ) 4.下列说法错误的是( )A.-2的相反数是2B.3的倒数是13C.(-3)-(-5)=2D.-11,0,4这三个数中最小的是0. 5.下列等式成立的是( )A.88-= B.()11--=-C.()1133÷-= D.236-⨯=6.若21a =,b 是2的相反数,则a b +的值为( )A.-3B.-1C.-1或-3D.1或-3 7.有理数,a b 在数轴上对应的点的位置如图所示,则必有( )A.0a b +>B.0a b -<C.0ab >D.0ab< 8.下列算式中,运算结果最大的是( ) A.()232--B.()()432-⨯-C.()()4334-÷- D.()23132⎛⎫-⨯- ⎪⎝⎭9.数学家发明了一个魔术盒,当任意有理数对(a,6)进入其中时,会得到一个新的有理数a 2+b-1.例如把(3,-2)放入其中,就会得到32+(-2)-1=6现将有理数对(-1,3)放入其中,得到有理数m,再将有理数对(m,l)放入其中,得到的有理数是( )A.3B.6C.9D.12 10.下列说法正确的是( )A.若a b ≠,则22a b ≠B.a b ≠,则a b >C.若a b =,则a=bD.若a b ≠,则a b > 二、填空题(每题3分,共18分) 11.计算:()231-+-=_______12.近似数8.06⨯106精确到______位,把347560000精确到百万位是______. 13.阅览室某一书架上原有图书20本,规定每天归还图书记为正,借出图书记为负,经过两天,借阅的情况如下(单位:本):-3,+1,-1,+2,则该书架上现有图书______本14.若两个数的乘积等于-1,则称其中一个数是另一个数的负倒数,则213-的负倒数为______.15.宁宁同学设计了一个计算程序,如下表:根据表格中各个数据的对应关系,可得a 的值是______.16.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数-2,4,-6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是_______.(只写一种) 三、解答题(共52分)17.(6分)把下列各数分别填入相应的集合里:-4, 43--,0,119,-3.14,1024,-(+5). (1)正数集合:{ …} (2)负数集合:{ …} (3)整数集合:{ …} (4)分数集合:{ …} 18.(12分)计算下列各题:(1)21354834824⎛⎫--+⨯ ⎪⎝⎭;(2)()()()234134224⎡⎤-+-⨯-+--÷⎣⎦;(3) 222223418333⎛⎫⎛⎫⎛⎫-⨯--⨯--÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4) ()153********⎛⎫-⨯--+⨯ ⎪⎝⎭19.(8分)某书店举行图书促销,毎位促销人员以销售500本为基准,超过的记为正,不足的记为负,其中一组10名促销员的销售结果如下(单位:本):4,2,3,-7,-3,-8,3,4,8,-1.这组促销人员的总销售量超过,还是不足总销售基准?相差多少?若每本图书的利润为2.7元,则这一组此次促销所得总利润为多少元?20.(8分)若,a b 互为相反数,,c d 互为倒数,m 的绝对值是l,n 是有理数且既不是正数也不是负数,求()()()2016122016a b m cd n a b c d -++-++++的值.21.(8分)已知有若干个数,第1个数记为1a ,第2个数记为2a ,第3个数记为3a ……第n 个数记为n a ,若113a =-,从第二个数起,每个数都等于1与前面那个数的差的倒数.(1)分别求出2a ,3a ,4a 的值; (2)计算1a +2a +3a +…+36a 的值.22.(10分)阅读理解题:如图,从左边第一个格子开始向右数,在每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)根据上述条件,可知x =_______,●=_______,〇=_______. (2)试判断第2016个格子中的数是多少,并说明理由.(3)判断:前n 个格子中所填整数之和是否可能为2016?若能,求出n 的值,若不能,请说明理由.(4)若在前三个格子中任取两个数并用大数减去小数得到差值,然后将所有的差值累加起来称为累差值.例如前三项的累差值为11-+-+-●〇●〇,则前三项的累差值为_______;若取前10项,则前10项的累差值为多少?(请给出必要的计算过程)参考答案与解析第一章综合能力检测卷1.C2.A 【解析】(10±0.1)kg 的含义是此袋大米最少重9.9kg,最多重10.1kg.故选A.3.C4.D 【解析】-11,0,4这三个数中最小的是-11,所以D 错误.故选D.5.A 【解析】选项A,因为88-=,所以A 符合题意;选项B,因为()111--=≠-所以B 不符合题意;选项C,因为()111333÷-=-≠所以C 不符合题意;选项D,因为2366-⨯=-≠,所以D 不符合题意.故选A.6.C 【解析】因为21a =,b 是2的相反数,所以1,2a b =±=-.①当1a =,2b =-时,121a b +=-=-;②当1a =-,2b =-时,123a b +=--=-.综上,a b +的值为-1或-3.故选C.7.D 【解析】由题中数轴,可知0,0a b ><,且a b <,所以0a b +<,0a b ->,0ab <,0ab<,所以A,B,C 均错误,D 正确.故选D. 8.A 【解析】()()2232525--=-=,()()()43231648-⨯-=-⨯=-,()()()438134816464-÷-=÷-=-,()()231127327244⎛⎫-⨯-=-⨯=- ⎪⎝⎭,因为27814825464-<-<-<所以A 项的运算结果最大.故选A. 9.C 【解析】将有理数对(-1,3)放入其中,得()21313m =-+-=,再将有理数对(m ,l),即(3,1)放入其中,得到的有理数是32+1=9.故选C.10.B 【解析】当a b =-时, 22a b =,故A 错误;若a b ≠,则a b =或 a b =-故C 错误;当2,1a b =-=时, a b >,此时a b <故D 错误.故选B.11.4【解析】()231314-+-=+=. 12.万 3.48⨯10813.19【解析】由题意,得-3+(+1)+(-1)+(+2)=-1(本),20+(-1)=19(本),故该书架上现有图书19本.14.35-【解析】25133-=,因为53135-⨯=-所以213-的负倒数是35-.15.1011【解析】输出的数据分子分别为2,4,6,8,……,分母为从3开始的连续奇数,由此得出1011a =. 16.()()8642⨯-÷÷-⎡⎤⎣⎦.(答案不唯一)17.【解析】(1)正数集合:{119,1024,…};(2)负数集合:{-4, 43--,-3.14,-(+5),…};(3)整数集合:{-4,0,1024,-(+5),…}; (4)分数集合:{43--,119,-3.14,…}. 18.【解析】(1)213548348242135=48484848348243212181012⎛⎫--+⨯ ⎪⎝⎭⨯-⨯-⨯+⨯=--+= (2)()()()()()()2341342241316284154253⎡⎤-+-⨯-+--÷⎣⎦=-+-⨯+--÷=--+=-(3) 22222341833342934189344418332203⎛⎫⎛⎫⎛⎫-⨯--⨯--÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫=-⨯-⨯--⨯⎪⎝⎭=---=- (4)()()()()()()1538156121015381561210153120612101531201201206121020503634⎛⎫-⨯--+⨯ ⎪⎝⎭⎛⎫=-⨯⨯--+ ⎪⎝⎭⎛⎫=-⨯--+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫=-⨯-+-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+-=19.【解析】因为4+2+3-7-3-8+3+4+8-1=5(本), 所以这组促销人员的总销售量超过总销售基准,超过5本. 500⨯lO+5=505(本),505⨯2.7=1363.5(元). 所以这一组此次促销所得总利润为1363.5元.20.【解析】因为,a b 互为相反数, ,c d 互为倒数,m 的绝对值是1,n 是有理数且既不是正数也不是负数,所以0,1,1,0,a b cd m n +===±=所以()()()201612201620161102016a b m cd n a b c d -++-++++=+-+=.21.【解析】(1)234114111,4,41131431343a a a =======--⎛⎫-- ⎪⎝⎭.(2)由(1)可知题中给出的是1313,,4,,,4,3434--…排成的一组数,3个数为一组,从1a 到36a 共有12组这样的数,故1a +2a +3a +…+36134125334a ⎛⎫=-++⨯= ⎪⎝⎭.22.【解析】(1)1 7 -3 根据题意,得x =l,●=7,〇=-3.(2)第2016个格子中的数是-3.理由如下: 由题意可知格子中的数依次是1,7,-3,1,7,-3,…, 因为2016÷3=672,所以第2016个格子中的数为-3. ⑶能.因为1+7+(-3)=5,而2016=5⨯403+1,所以n =403⨯3+1=1210. (4)20因为前10个数中1出现了4次,7与-3各出现了3次, 所以前10项的累差值为()7333210--⨯⨯=.。

人教版数学七年级上册第一章有理数综合测试(含答案)

人教版数学七年级上册第一章有理数综合测试(含答案)

人教版数学七年级上学期 第一章有理数测试一、选择题(每小题3分,共30分)1.若a+b <0,ab <0,则( ) A. a >0,b >0 B. a <0,b <0C. a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D. a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 2.a,b,c 在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>03.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( ) A. 0.1636×B. 1.636×C. 16.36×D. 163.6×104.-23+(-2×3)的结果是( ) A. 0B. -12C. -14D. -25.的相反数是( ) AB. 2C.12D. 12-6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃7.下列说法正确的是( ) A. 零是正数不是负数 B. 零既不是正数也不是负数 C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数 8.既是分数又是正数的是( ) A. 2+B. 143- C.D. 2.39.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188二、填空题10. 若x=4,则|x﹣5|=_________.11.设a是最小正整数,b是最大的负整数,c是绝对值最小的有理数,则a + b + c等于____________.12.一组按规律排列数:2,0,4,0,6,0,…,其中第7个数是,第n个数是(n为正整数).13.数轴上到原点的距离等于4的数是.14.绝对值不大于2的所有整数为__________.15.-3倒数是,-3的绝对值是.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条18. 某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)星期一二三四五(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?20.在求1+2+22+23+24+25+26值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.答案与解析一、选择题(每小题3分,共30分)1.若a+b<0,ab<0,则( )A a>0,b>0B. a<0,b<0C. a,b两数一正一负,且正数的绝对值大于负数的绝对值D. a,b两数一正一负,且负数的绝对值大于正数的绝对值【答案】D【解析】【详解】解:∵ab<0,∴a、b必定是异号,∵a+b<0,∴a,b两数一正一负,且负数的绝对值大于正数的绝对值.故选D.2.a,b,c在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>0【答案】C【解析】【分析】由图可知a<c<0<b,据此可判断【详解】解:由图可知a<c<0<b,则abc>0,A错误;ab-ac=a(b-c)<0,B错误;(a-b)c>0,C正确;(a-c)b<0,D 错误;故选择C.【点睛】本题考查了数轴的概念,熟记数轴上右边的数大于左边的数是关键.3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A. 0.1636×B. 1.636×C. 16.36×D. 163.6×10【答案】B【解析】试题分析:科学计数法是指a×,且,n为原数的整数位数减一.考点:科学计数法4.-23+(-2×3)的结果是( )A. 0B. -12C. -14D. -2 【答案】C【解析】【分析】按照有理数的运算法则计算即可.【详解】解:原式=-8-6=-14,故选择C.【点睛】本题考查了有理数的混合运算.5.的相反数是( )A. B. 2 C. 12D.12【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃【答案】B【解析】【详解】12-2=10℃.故选B.7.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.8.既是分数又是正数的是()A. 2+B.143- C. D. 2.3【答案】D【解析】本题考查的是有理数的分类大于0的数是正数.小数是分数的一种形式,所以既是分数、又是正数的数是,故选D.9.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188【答案】C【解析】分析:由图中看出,从2开始,每相邻3个数的和等于第4个数,那么所求的数是26+48+88=162.详解:26+48+88=162.故选C.点睛:解决本题的关键的根据所给的数得到四个数之间的规律(从2开始,每相邻3个数的和等于第4个数).二、填空题10. 若x=4,则|x﹣5|=_________.【答案】1.【解析】试题分析:∵x=4,∴x ﹣5=﹣1<0,故|x ﹣5|=|﹣1|=1. 考点:绝对值.11.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a + b + c 等于____________. 【答案】0 【解析】 【分析】根据a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,得出a ,b ,c 的值,代入即可得出结论. 【详解】依题意得:a =1,b =﹣1,c =0,∴a +b +c =1+(﹣1)+0=0. 故答案为0.【点睛】本题考查了正整数、负整数的概念和绝对值的性质.熟练掌握有关概念是解答本题的关键. 12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).【答案】8,11(1)(1)2n n ++-+【解析】试题分析:观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是11(1)(1)2n n ++-+. 考点:规律型:数字的变化类13.数轴上到原点的距离等于4的数是 . 【答案】±4. 【解析】试题分析:数轴上到原点的距离等于4的数有两个,是±4. 考点:1.相反数;2.绝对值.14.绝对值不大于2的所有整数为__________. 【答案】0,±1,±2 【解析】试题分析:绝对值等于2的整数是2,-2;在数轴上位于2和-2之间的整数有1,0,-1三个,它们都符合要求,所以绝对值不大于2的所有的整数是-2,-1,0,1,2. 考点:绝对值.15.-3的倒数是 ,-3的绝对值是 .【答案】-13,3.【解析】试题分析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.试题解析:-3的倒数是-13,-3的绝对值是3.考点:1.倒数;2.绝对值.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?【答案】225 625 1 225 2 025(1)发现后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2) 7 225, 9 025.【解析】试题分析:(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)根据(1)发现的规律可求出结果.试题解析:152=225;252=625;352=1225;452=2025(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)852=7225,952=9025.17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条?【答案】第七次捏合后可拉出128根面条.【解析】【分析】第一次捏合后得到2根面条,第二次捏合后得到4根,第三次捏合后得到8根,据此寻找规律即可.【详解】第一次……2根面条;第二次……22根面条;第三次……23根面条;…第x次……2x根面条.于是由2x=128=27,得x=7.答:第七次捏合后可拉出128根面条.【点睛】本题考查了规律的探索.18.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【答案】(1)9.9元;(2)亏了497.5元.【解析】试题分析:(1)用上周买入股票每股的金额加上本周股票五天的涨跌额,即可得本周星期五收盘时每股股票的金额;(2)用本周五卖出股票金额减去上周买入股票金额,减去买入成交额的手续费,减去卖出成交额的手续费,再减去卖出成交额的交易费可得收益情况.试题解析:解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5%﹣1000×9.9×1.5%﹣1000×9.9×1%=9900﹣150﹣148.5﹣99﹣10000=﹣497.5(元).答:该股民的收益情况是亏了497.5元.考点:正负数的意义;有理数的混合运算.19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?【答案】(1)450元;(2)4830元;(3)424080元.【解析】【分析】(1)通过每个学生每天的用水量计算出每个季节的用水量,从而计算出全年用水量;(2)购买饮水机解决学生饮水问题后,每班学生全年的花费为“水费+电费+饮水机费用”;(3)原水费-现在水费=能节约的水费.【详解】(1)因为每个学生春、秋、冬季每天购买1瓶矿泉水,夏季每天购买2瓶,所以一个学生在春、秋、冬季共要购买180瓶矿泉水,夏季要购买120瓶矿泉水,所以一年中一个学生共要购买300瓶矿泉水,所以一个学生全年共花费1.5×300=450(元).(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要4×2 1203⎛⎫⨯⎪⎝⎭=320(桶).夏季每天5桶,共要60×5=300(桶),冬季每天1桶,共60桶,所以全年共要纯净水(320+300+60)=680(桶), 故购买矿泉水费用为680×6=4 080(元),使用电费为240×10×5001000×0.5=600(元),故每班学生全年共花费为4 080+600+150=4 830(元).(3)因为一个学生节省450-=353.4(元),所以全体学生共节省353.4×24×50=424 080(元).【点睛】本题一道实际问题,考查了通过阅读来分析题目条件,进而答题.20.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【答案】(1)1093.5(2)2014a1 a1--【解析】【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【详解】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=2014a1a1--.【点睛】本题考查数字类的规律探索,有理数的混合运算,分式的运算,正确理解题意正确计算是本题的解题关键.。

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、选择题(共11小题;共55分)1. 5的倒数是( )A. 5B. 15C. −5 D. −152. 如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A. 区域①B. 区域②C. 区域③D. 区域④3. 一个数的平方一定是( )A. 正数B. 负数C. 非正数D. 非负数4. 在数轴上,原点及原点右边的点表示( )A. 正数B. 整数C. 非负数D. 有理数5. 去年11月份我市某一天的最高气温是10∘C,最低气温是−1∘C,那么这一天的最高气温比最低气温高( )A. −9∘CB. −11∘CC. 9∘CD. 11∘C6. 绝对值小于3的整数有( )A. 2个B. 3个C. 5个D. 6个7. −3的相反数是( )A. −3B. 13C. −13D. 38. 下列说法:①−14是相反数;②−a一定是负数;③互为相反数的两个数的符号必相反;④0.5与2互为相反数;⑤任何一个有理数都有相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 某仓库有粮500吨,某天上午运出30吨,下午又运进20吨,则仓库现有粮( )A. 490吨B. 510吨C. 450吨D. 550吨10. 若数轴上点A,B表示的数分别为8和−15,则点A,B之间的距离可以表示为( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−1511. 如果两个有理数的积为零,即ab=0,那么下列说法中必定正确的是( )A. a一定是零B. b一定是零C. a和b一定都是零D. a和b中至少有一个是零二、填空题(共5小题;共25分)12. 如果∣−x∣=412,那么x=.13. −423的绝对值是,相反数是,倒数是.14. 比较大小:−2−312.(填“<”或“>”)15. 计算:−2×3=,(−2)÷(−4)=,(−4)2=.16. 若有理数a的倒数等于它本身,则a2020=.三、解答题(共5小题;共70分)17. 若a、b互为相反数,c、d互为倒数,m是最大的负整数,求a+b−cd−m的值.18. 计算:(1)45×12÷13;(2)1516÷32−14;(3)2.5×(25−13)+2.1;(4)215÷(1.1−34)+15×35.19. 如图所示,在数轴上有三个点A,B,C,请回答下列问题.(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,点B与点C表示的数谁大?(4)要使三个点表示相同的数,如何移动其中两点?有几种移法?20. 观察下列各式的规律:①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写了出第4个算式,用含有字母的式子表示第n个算式为,并证明21. 某检修小组乘汽车自A地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:+10,−3,+4,−2,−8,+16,−2,+12,+8,−5.问:(1)最后他们是否回到A地?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?参考答案1. B【解析】根据倒数的概念.答案B . 2. D3. D4. C5. D6. C 【解析】绝对值小于 3 的整数有 ±1,±2,0,一共 5 个.7. D 【解析】−3 的相反数是 3.8. A9. A10. B11. D12. ±41213. 423,423,−31414. >【解析】因为 ∣−2∣<∣∣−312∣∣,所以 −2>−312.故答案为:>.15. −6,12,16【解析】−2×3=−6;(−2)÷(−4)=12;(−4)2=16.16. 1【解析】由题意,得 a =1 或 a =−1.当 a =1 时,a 2020=1;当 a =−1 时,a 2020=1.综上所述,a 2020=1.17. 根据题意得: a +b =0 , cd =1 , m =−1 ,则原式 =0−1+1=0 .18. (1) 115.(2) 38.(3) 2415.(4)263525.19. (1)从数轴上可以看出,将点B向左移动3个单位长度后,至−5处,此时点B表示的数为−5,因为点A表示的数为−4,点C表示的数为3,所以点B表示的数最小,是−5.(2)从数轴上可以看出,将点A向右移动4个单位长度后,至0处,此时点A表示的数为0,因为点B表示的数为−2,点C表示的数为3,所以点B表示的数最小,是−2.(3)从数轴上可以看出,将点C向左移动6个单位长度后,至−3处,此时点C表示的数为−3,因为点B表示的数为−2,所以点B表示的数大.(4)把点A向右移动2个单位长度,点C向左移动5个单位长度;或把点B、点C分别向左移动2个单位长度、7个单位长度;或把点A、点B分别向右移动7个单位长度、5个单位长度,都可以使三个点表示的数相同,因此共有三种移法.20. 4×6−52=24−25=−1;n(n+2)−(n+1)2=−1.证明如下:左边=n(n+2)−(n+1)2=n2+2n−n2−2n−1=−1,右边=−1.∴左边=右边21. (1)(+10)+(−3)+(+4)+(−2)+(−8)+(+16)+(−2)+(+12)+(+8)+(−5) =10−3+4−2−8+16−2+12+8−5=10+4+16+12+8−3−2−8−2−5=50−20=30.所以没有回到A地,在A地南方30千米处.(2)∣+10∣+∣−3∣+∣+4∣+∣−2∣+∣−8∣+∣+16∣+∣−2∣+∣+12∣+∣+8∣+∣−5∣=10+3+4+2+8+16+2+12+8+5=70(千米).70×0.08=5.6升.所以今天共耗油5.6升.。

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)时间:90分钟,满分:120分一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7B.1C.7D.-12.(本题3分)一个两位小数精确到十分位是5.0,这个数最小是()A.4.99B.5.1C.4.94D.4.953.(本题3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是04.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1035.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1036.(本题3分)下列各对数中,互为相反数的是()A.﹣(+4)与+(﹣4)B.﹣(﹣4)与|﹣4|C.﹣22与(﹣2)2D.﹣23与(﹣2)37.(本题3分)如图,在数轴上有A、B、C、D四个点,分别表示不同的四个数,使得其余三点表示的数中有两个负数和一个正数,则这个点是()A.点A B.点B C.点C D.点D8.(本题3分)实数a在数轴上的对应点的位置如图所示,若实数b满足0+>,则b的值可以是()a bA .1-B .0C .1D .29.(本题3分)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a b >B .a b -<C .a b >-D .a b >10.(本题3分)在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作____m 12.(本题3分)已知|a |=6,|b |=4,且ab <0,则a +b 的值为 ___.13.(本题3分)数轴上到表示数-413点距离为312的点所表示的数为_________ 14.(本题3分)绝对值小于2021的所有的整数的和是___.15.(本题3分)计算:()()291223⎛⎫-⨯-+-÷= ⎪⎝⎭__________. 16.(本题3分)如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是___.17.(本题3分)母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:小凡想用妈妈喜欢的百合、玫瑰、康乃馨这三种花组成一个花束,若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.18.(本题3分)如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M的值为________.19.(本题3分)小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为_______km.20.(本题3分)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是_______;当输入数据是n时,输出的数据是_____三、解答题(本大题共8小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题12分)计算:(1)185(0.25)4⎛⎫+----⎪⎝⎭(2)554(10)845⎛⎫⎛⎫-⨯-+-⨯⎪ ⎪⎝⎭⎝⎭(3)2313369412⎛⎫-⨯-+⎪⎝⎭(4)1|3 4.5|9342-+-+--22.(本题4分)在数轴上点A表示的数为﹣1,点B和点A的距离为3,点B、C表示的两数和为0,求点C在数轴上表示的数.23.(本题8分)如图,(1)写出各点表示的数:A________,B________,C________,D________,E________;(2)用“<”将A.B、C、D、E表示的数连接起来.24.(本题10分)把下列各数填在相应的括号内:-16,26,-12,-0.92,35,0,314,0.100 8,-4.9正数集合:{ ⋯};负数集合:{ ⋯};整数集合:{ ⋯};正分数集合:{ ⋯};负分数集合:{ ⋯};25.(本题9分)国庆放假时,小明一家三口开车去探望爷爷、奶奶和外公、外婆,早上从家里出发,向东行了5千米到超市买东西,然后又向东行了2千米到爷爷家,下午从爷爷家出发向西行了10千米到外公家,晚上开车返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和外公家相距多少千米?(3)若该汽车每千米耗油0.08升,求小明一家从出发到返回家,汽车的耗油量.26.(本题9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-4,+9,-10,+10,-5,-12.问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.08L/km,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米1.5元,则小李这天上午共得车费多少元?27.(本题8分)阅读下列材料:计算:1111 243412⎛⎫÷-+⎪⎝⎭解法一:原式= 111111111113412 243244241224242424÷-÷+÷=⨯-⨯+⨯=解法二:原式= 111112116 2434122412244⎛⎫÷-+=÷=⨯=⎪⎝⎭解法三:原式的倒数=1111111111242424244 34122434123412⎛⎫⎛⎫-+÷=-+⨯=⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭所以,原式= 14.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:113224261437⎛⎫⎛⎫-÷--+⎪ ⎪⎝⎭⎝⎭参考答案1.A【解析】解:根据题意得:-3-4=-7,此时终点所表示的数是-7,故选:A .2.D【解析】解:一个两位小数精确到十分位是5.0,这个数最小是4.95.故选:D .3.B【解析】解:A 、0既不是正数,也不是负数,正确,不符合题意;B 、1是绝对值最小的正数,错误,符合题意;C 、一个有理数不是整数就是分数,正确,不符合题意;D 、0的绝对值是0,正确,不符合题意.故选:B .4.B【解析】解析:353000=3.53×105.故选:B5.B【解析】解析:353000=3.53×105.故选:B6.C【解析】解:A 、﹣(+4)=﹣4,+(﹣4)=﹣4,故A 选项不符合题意;B 、﹣(﹣4)=4,|﹣4|=4,故B 选项不符合题意;C 、﹣22=﹣4,(﹣2)2=4,故C 选项符合题意;D 、﹣23=﹣8,(﹣2)3=﹣8,故D 选项不符合题意,故选:C .7.C【解析】解:A .当A 为原点,则剩余三个点表示的数均是正数,故A 不合题意. B .当B 为原点,则A 表示负数,C 与D 表示正数,故B 不符合题意.C .当C 为原点,则A 与B 表示负数,D 表示正数,故C 符合题意.D .当D 为原点,A 、B 与C 表示负数,故D 不符合题意.故选:C .8.D【解析】解:⋯0a b +>,21a -<<-,⋯0b >,而且1b a >>,⋯1>->,b a符合条件是D,b=2.故选:D.9.D【解析】解:如图所示,⋯数a在原点的左边,数b在原点的右边,⋯a<-1,1>b>0,且|a|>1,|b|<1,>,a<b,⋯a b⋯A不符合题意;⋯D符合题意;⋯|a|>1,⋯-a>1,⋯-a>b,⋯B不符合题意;⋯1>b>0,⋯-1<b<0,⋯a<-b,⋯C不符合题意;故选D.10.C--=,是正数;【解析】()44-=,是正数;224-=-,是负数;11()239-=,是正数;()328-=-,是负数;⋯正数又3个;故选C.11.3-【解析】解:根据题意可得,高于正常水位记作“+”,则低于正常水位记作“-”,-m,则低于正常水位3m时,应记作3-故答案为:312.2-或2【解析】解:⋯64a b ==,⋯6,4a b =±=±又⋯0ab <⋯64a b =⎧⎨=-⎩或64a b =-⎧⎨=⎩ ⋯2a b +=或2a b +=-故答案为2-或213.−476或−56 【解析】解:距离点数−413为312个单位长度的点有两个,它们分别是−413+312=−56,−413−312=−476, 故答案为−476或−56. 14.0 【解析】绝对值小于2021是所有正数为0,1,22020±±⋯±,, ∴()()202010120200-+⋯+-+++⋯+= 故答案为:015.0 【解析】解:()()291223⎛⎫-⨯-+-÷ ⎪⎝⎭=66-=0.故答案为:0.16.-1、0、1、2【解析】解:由数轴可知:被污染的部分的数为-1.3<x <2.9的整数,⋯被污染的整数为:-1、0、1、2,故答案为:-1、0、1、2.17.1,4,6(答案不唯一)【解析】⋯12×1+5×4+3×6=50,⋯可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)18.143【解析】解:⋯1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,⋯右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),⋯M =m (n +1),⋯M =11×(12+1)=143.故答案为:143.19.36【解析】解:如果第二天和第三天选择低强度,则距离为6+6=12(km ),如果第三天选择高强度,则第二天休息,则距离为15km ,⋯12<15,⋯第二天休息,第三天选择高强度,如果第四天和第五天选择低强度,则距离为5+4=9(km ),如果第五天选择高强度,则第四天休息,则距离为8km ,⋯9>8,⋯第四天和第五天选择低强度,为保持最远距离,则第一天为高强度,⋯最远距离为12+0+15+5+4=36(km )故答案为36.20.256 ()2n -【解析】解:设输入数据为a ,输出数据为b ,则由题意可得:()2a b =-,所以:当输入数据是8时,输出的数据是()82256-=;当输入数据是n时,输出的数据是 ()2n-. 故答案为256;()2n -. 21.(1)3;(2)154;(3)19;(4)0;(5)18-;(6)-198 【解析】解:(1)原式()3750.254=---()320.254=-- 3=;(2)原式2554=445⎛⎫+-⨯ ⎪⎝⎭ ()2514=+- 154=; (3)原式8271336363612⎛⎫=-⨯-+⎪⎝⎭ 1913363612-⎛⎫=-⨯+ ⎪⎝⎭ 1933363636-⎛⎫=-⨯+ ⎪⎝⎭ 1633636-=-⨯ ()316=--19;(4)原式=1.5-9+7.5=0;22.4或-2【解析】解:⋯点A在数轴上表示的数为﹣1,且点B和点A的距离为3,⋯点B在数轴上表示的数为-4或2,又点B、C表示的两数和为0⋯点C在数轴上表示的数为4或-223.(1)5,﹣2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5【解析】解:(1)点A.B、C、D、E表示的数分别为5,-2.5,1,2.5,﹣4;故答案为5,-2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5.24.正数集合:{ 26,35,134,0.1008};负数集合:{-16,-12,-0.92,-4.9};整数集合:{-16,26,-12,0};正分数集合:{35,134,0.1008};负分数集合:{-0.92,-4.9}.【解析】解:根据有理数分为:正数、0、负数;有理数也可以分为:整数和分数.⋯正数有:26,35,134,0.1008;负数有:-16,-12,-0.92,-4.9;整数有:-16,26,-12,0;正分数有:3 5,134,0.1008;负分数有:-0.92,-4.9.⋯正数集合:{26,35,134,0.1008⋯};负数集合:{-16,-12,-0.92,-4.9⋯};整数集合:{-16,26,-12,0⋯};正分数集合:{35,134,0.1008⋯};负分数集合:{-0.92,-4.9 ⋯};25.(1)见解析;(2)8(千米);(3)1.6(升)【解析】解:(1)A、B、C的位置如图所示:(2)因为5−(−3)=8(千米)故答案为:8;(3)小明一家走的路程:5+2+10+3=20(千米),共耗油:0.08×20=1.6(升)答:小明一家从出发到返回家所经历路程小车的耗油量为1.6升.26.(1)西12km;(2)4L;(3)108元【解析】(1)491010512+-+---, 410512910=----++,3119=-+,12=-,答:小李在西12km 处.(2)491010512-+++-+++-+-, 491010512=+++++,50=,500.084)L ⨯=(,答:共耗油4L .(3)第一次车费:()1043 1.511.5+-⨯=(元), 第二次车费:()1093 1.519+-⨯=(元), 第三次车费:()10103 1.520.5+-⨯=(元), 第四次车费:()10103 1.520.5+-⨯=(元), 第五次车费:()1053 1.513+-⨯=(元), 第六次车费:()10123 1.523.5+-⨯=(元), 11.51920.520.51323.5108+++++=, 答:小李这天上午共得车费108元. 27.(1)一;(2)118【解析】解:(1)⋯除法无分配律⋯解法一是错误的故答案为:一;(2)方法一:原式1143442661414⎛⎫⎛⎫=-÷--+ ⎪ ⎪⎝⎭⎝⎭ 11142214⎛⎫⎛⎫=-÷-+ ⎪ ⎪⎝⎭⎝⎭ 13427⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 118= 方法二:原式的倒数= 132216143742⎛⎫⎛⎫=--+÷- ⎪ ⎪⎝⎭⎝⎭ ()132********⎛⎫=--+⨯- ⎪⎝⎭()()()()13224242424261437=⨯--⨯--⨯-+⨯- 792812=-++-18=⋯原式=118。

人教版数学七年级上册第一章有理数综合检测题(附答案)

人教版数学七年级上册第一章有理数综合检测题(附答案)

人教版数学七年级上学期 第一章有理数测试时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃2.-12017的相反数的倒数是( ) A 1B. -1C. 2017D. -20173.下列各式中,正确的是( ) A -|-4|>0B. |0.08|>|-0.08|C. |-23|<0 D. -13>-124.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1) B. 0.05(精确到百分位) C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)5.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( ) A. 甲乙B. 丙丁C. 甲丙D. 乙丁6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C -32-(-3)2=-9-9=-18D. 3×23-2×9=3×6-18=0 7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边8.地球平均半径约为6371000米,该数字用科学记数法可表示为( ) A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×1039.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 3710.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.12近似数2.30万精确到_____位.13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.15.若|a-4|+|b+1|=0,则b a=____.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.18.观察下面一列数:-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16……按照上述规律排下去,那么第10行从左边数第9个数是____.三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:售出件数7 6 3 5 4 5售价(元) +3 +2 +1 0 -1 -2请问该服装店售完这30件衣服后,赚了多少钱?25.观察下列三行数:2 6 18 54 162…①-1 3 15 51 159…②-1 -3 -9 -27 -81…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?答案与解析时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃【答案】B 【解析】试题分析:∵冰箱冷藏室的温度零上5℃,记作+5℃, ∴保鲜室的温度零下7℃,记作-7℃. 故选B .【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.-12017的相反数的倒数是( ) A. 1 B. -1C. 2017D. -2017【答案】C 【解析】12017-的相反数是12017, 12017的倒数是2017. 所以有理数12017-的相反数的倒数是2017.故选B.3.下列各式中,正确的是( ) A. -|-4|>0 B. |0.08|>|-0.08|C. |-23|<0 D. -13>-12【答案】D 【解析】分析:根据有理数的大小的方法是:负数<0<正数;两个负数,绝对值大的反而小,即可得出答案. 详解:A 、-|-4|=-4<0,故本选项错误;B 、∵|008|=0.08,|-0.08|=0.08,∴|0.08|=|-0.08|,故本选项错误;C 、|-23|=23>0,故本选项错误;D、∵13<12,∴-13>-12,故本选项正确.故选D.点睛:此题考查了有理数的大小比较,比较有理数的大小的方法是:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A 0.1(精确到0.1) B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.5.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁【答案】C【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.详解】甲:由数轴有,0<a<3,b<−3,∴b−a<0,甲的说法正确, 乙:∵0<a<3,b<−3, ∴a+b<0 乙的说法错误, 丙:∵0<a<3,b<−3, ∴|a|<|b|, 丙的说法正确, 丁:∵0<a<3,b<−3, ∴ba<0, 丁的说法错误; 故选C.【点睛】此题考查绝对值,数轴,解题关键在于结合数轴进行解答. 6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0【答案】C 【解析】分析:A 、原式先计算乘法运算,再计算减法运算得到结果,即可作出判断; B 、原式先计算除法,再计算乘法算得到结果,即可作出判断; C 、原式先算乘方,再算减法得到结果,即可作出判断;D 、原式先计算乘方,再计算乘法运算,最后计算加减运算得到结果,即可作出判断.详解:A. 7-2×(-15)=227+=755,故该选项错误; B 、-3÷7×17=11337749-⨯⨯=-,故该选项错误;C 、-32-(-3)2=-9-9=-18,故该选项正确;D 、3×23-2×9=3×8-18=24-18=6,故该选项错误. 故选C .点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边【答案】C【解析】【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.8.地球的平均半径约为6371000米,该数字用科学记数法可表示为()A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×103【答案】B【解析】根据科学记数法的表示形式可得,6371000=6.371×106.故选B.9.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 37【答案】B【解析】试题解析:根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去1个,剩9个,9=23+1;…故5小时后细胞存活的个数是25+1=33个.故选B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!【答案】C【解析】【详解】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴100!1009998198!98971⨯⨯⨯⨯=⨯⨯⨯=100×99=9900,故选C.二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.【答案】(1). -2,(2). 3【解析】分析:由绝对值的性质及相反数的性质解答即可.详解:-|-2|=2;-(-3)=3点睛:主要考查了绝对值的概念及性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;12.近似数2.30万精确到_____位.【答案】百【解析】根据近似数的精确度,近似数2.30万精确到百位,故答案为百13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.【答案】(1). 0,(2). -4【解析】【分析】根据绝对值不大于3.14的有理数互为相反数,根据互为相反数的和为零,可得答案;根据不小于-4而不大于3的所有整数,可得加数,根据有理数的加法,可得答案.【详解】绝对值不大于3.14的所有有理数之和等于0;不小于-4而不大于3的所有整数之和(-4)+(-3)+(-2)+(-1)+0+1+2+3=-4,故答案为0,-4.【点睛】本题考查了有理数大小比较,有理数的加法,利用不小于-5而不大于4的所有整数得出加数是解题关键,注意互为相反数的和为零.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.【答案】-1或5【解析】【详解】试题分析:2-3=-1,2+3=5,所以到点A的距离等于3个单位长度的点所表示的数是-1或5.考点:1.数轴;2.有理数的加法;3.两点间的距离.15.若|a-4|+|b+1|=0,则b a=____.【答案】1【解析】分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.详解:由题意得,a-4=0,b+1=0,解得a=4,b=-1,所以,b a=(-1)4=1.故答案为1.点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.【答案】7【解析】【分析】观察图形我们可以得出x和y的关系式为:y=3x2-5,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【详解】解:依据题中的计算程序列出算式:12×3-5.由于12×3-5=-2,-2<0,∴应该按照计算程序继续计算,(-2)2×3-5=7,∴y=7.故本题答案为:7.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.【答案】10-(-6)×3-4=24(答案不唯一)【解析】分析:利用“24点”游戏规则列出算式,使其结果为24即可.详解:根据题意得:10-(-6)×3-4=24;(10-4)-3×(-6)=24;4-(-6)÷3×10=24;3×[4+10+(-6)]=24等.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.观察下面一列数:按照上述规律排下去,那么第10行从左边数第9个数是____.【答案】90【解析】分析:先从排列中总结规律,再利用规律代入求解.详解:根据题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是-81,∴第10行从左边数第9个数是81+9=90.故答案为90.点睛:主要考查了学生的综合数学素质,要求能从所给数据中找到规律并总结规律,会利用所找到的规律进行解题三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.【答案】见解析【解析】分析:根据整数,正数,非负数,负分数的定义可得出答案.详解:正数集合{3.14159,+31,0.618,|-1.56|};非负数集合{3.14159,+31,0.618,|-1.56|,0};整数集合{-3,+31,0};负分数集合{-3.1,-0.5,-227,-0.2020}.点睛:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.【答案】见解析【解析】【分析】数轴上的点与实数是一一对应的关系,画数轴要注意正方向,单位长度和原点,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.【详解】∵|-3|=3,-22=-4,-(-1)=1,∴以上各数在数轴上的位置如图所示:故412>|-3|>-(-1)>0>-2.12>-22>-5.【点睛】主要考查了数轴,数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.【答案】(1)-32;(2)-3;(3)556 -.【解析】分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算绝对值运算,再从左到右依次计算即可得到结果;(3)先乘方,再算括号里面的,最后得结果.详解:(1)原式=-21-14+18-15=-32;(2)原式=783274-⨯⨯=-3;(3)原式=-1-114923⨯⨯=-556.点睛:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.【答案】(1)-1; (2)0.5 ;(3)-9【解析】分析:(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.详解:(1)点B表示的数为-5+6=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,则点E表示的数是-5-(-1+5)=-9.点睛:本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:请问该服装店售完这30件衣服后,赚了多少钱?【答案】472【解析】试题分析:首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.试题解析:解:售价=7×3+6×2+3×1+5×0+4×(-1)+5×(-2)=21+12+3+0-4-10=22;所以总售价=22+47×30=1432元;赚的钱=1432-30×32=1432-960=472元;点睛:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.25观察下列三行数:(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.【答案】(1)每个数都等于它前面相邻的数的3倍(2)见解析;(3)726.【解析】分析:(1)观察不难发现,后一个数是前一个数字的3倍解答即可;(2)观察不难发现,第②行为第①行对应的数小3,第③行为第②行相应的数字除以-2;(3)根据各行的第n个数的表达式找出第6个数然后计算它们的和即可.详解:(1)每个数都等于它前面相邻的数的3倍(2)第②行数比第①行对应的数小3,第③行数是由第①行对应的数除以-2得到的.(3)第一行第6个数为:5;23=486第二行第6个数为:486-3=483;第三行第6个数为:486÷(-2)=-243;故每行第6个数的和为:486+483+(-243)=726.点睛:本题是对数字变化规律的考查,比较简单,观察出第①行后一个数字是前一个数字的3倍是解题的关键,也是本题的突破口.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?【答案】(1)收工时在A地的正东方向,距A地39km;(2)需加15升.【解析】【分析】(1)首先审清题意,明确“正”和“负”所表示的意义,计算结果是正数,说明收工时该检修小组位于A地向东多少千米,计算结果为负数,说明收工时该检修小组位于A地向西多少千米;(2)关键是计算出实际行走的路程所耗的油量,而耗油量应该是记录的所有数字的绝对值之和乘以3,相信你一定可以得到正确答案.【详解】(1)根据题意可得:向东走为“+”,向西走为“−”;则收工时距离等于(+15)+(−2)+(+5)+(−1)+(+10)+(−3)+(−2)+(+12)+(+4)+(−5)+(+6)=+39.故收工时在A地的正东方向,距A地39km.(2)从A地出发到收工时,汽车共走了|+15|+|−2|+|+5|+|−1|+|+10|+|−3|+|−2|+|+12|+|+4|+|−5|+|+6|=65km;从A地出发到收工时耗油量为65×3=195(升).故到收工时中途需要加油,加油量为195−180=15升.【点睛】此题考查正数和负数,有理数的加法,解题关键在于掌握其定义和运算法则.。

人教版七年级上册数学第一章有理数《单元综合检测题》带答案

人教版七年级上册数学第一章有理数《单元综合检测题》带答案

第一章有理数测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个4.-|-2017|的相反数是()A. 2017B.C. -2017D. -5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×1068.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×239.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 7710.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.12.已知,数轴上表示点A、B、C、D的四个数分别是-1,2,3,-4,离原点距离最远的点是_______.13.用四舍五入法得到的近似数5.10×104精确到________位.14.已知有理数-7,8,-12,通过有理数的加减混合运算,若使运算结果最大,则可列式为__________.15.已知n为正整数,计算:=__________.16.已知31=3,32=9,33=27, 34=81,35=243,36=729,….推测32017的个位数字是__.三、解答题(本大题共6小题,共52分)17.计算:(1)2×(-5)+22-3÷;(2)48×().18.用数轴上的点表示下列各有理数:-1.5,-22,-(-),+5,-|-3|,并把它们按从大到小的顺序用”>”号连接起来.19.北京航天研究院所属工厂制造飞船上的一种螺母,要求螺母内径可以有±0.02 mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,检查结果(单位:mm)如下:+0.01,-0.018,+0.026,-0.025,+0.015. (1)指出哪些产品符合要求.(2)指出符合要求的产品中哪个质量较好一些.20.根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.21.我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填”增多了”或”减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?附加题(共20分,不计入总分)23.已知a是有理数,下列各式:(-a)2=a2;-a2=(-a)2;(-a)3=a3;|-a3|=a3.其中一定成立的有()A. 1个B. 2个C. 3个D. 4个24.符号”f”表示一种运算,它对一些数的运算如下:f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+…(1)利用以上运算规律,写出f(2017)=__________;(2)计算:f(1)•f(2)•f(3)•…•f(100)的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨【答案】C【解析】【分析】根据正负号表示相反意义的量解答.【详解】解:依据题意,”+”表示”运入”,则运出为”-”,运出5吨为-5,故选择C.【点睛】本题考查了正负号的实际意义.2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -【答案】B【解析】【分析】互为相反数的两数和为0.【详解】解:由题意可知两数互为相反数,则与-5的和为0的数是5,故选择B.【点睛】本题考查了相反数的性质.3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个【答案】C【解析】【分析】由实数的大小关系逐一写出即可.【详解】解:有实数的大小关系可知,大于-0.5而小于4的整数为0,1,2,3,共4个,故选择C.【点睛】本题考查了实数的大小及整数的概念.4.-|-2017|的相反数是()A. 2017B.C. -2017D. -【答案】A【解析】【分析】-|-2017|去绝对值后得-2017,再求该数的相反数即可.【详解】解:-|-2017|去绝对值后得-2017,-2017的相反数为2017,故选择A.【点睛】本题考查了相反数.5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】试题分析:因为+(-2.1)=-2.1,-=-9,所以在数:+3、+(-2.1)、-、-π、0、-、中,正数只有+3一个,故选:A.考点:正负数.6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.故选:B.7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×106【答案】C【解析】试题分析:科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.3710000=3.71×.故选:C.考点:科学记数法——表示较大的数.8.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×23【答案】B【解析】【分析】只有符号不同的两个数互为相反数,对各选项进行整理对比即可.【详解】解:A选项,-32=-9,-23=-8,故不是相反数;B选项,(-3)2=9,-32=9,故是相反数;C选项,-23=-8,(-2)3=-8,故不是相反数;D选项,(-3×2)3=-216,-3×23=-216,故不是相反数;故选择B.【点睛】本题考查了相反数的定义.9.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A. 42 B. 49 C. 76 D. 77【答案】C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方10. 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边【答案】C【解析】试题分析:当原点在A时,则最大;当原点在点C的右边,则,当原点在点A和点B之间,则最大,则只有当原点在点B和点C之间才符合条件.考点:(1)、数轴;(2)、绝对值二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.【答案】2【解析】=+(5-3)=2;故答案是2。

人教版数学七年级上册第一章有理数《单元综合检测》(附答案)

人教版数学七年级上册第一章有理数《单元综合检测》(附答案)

人教版七年级上册第一章测试卷考试总分:120 分考试时间:120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.下列各对量中,不具有相反意义的是( )A. 胜2局与负3局B. 盈利6万元与亏损8万元C. 向西走3米与向南走3米D. 转盘逆时针转3圈与顺时针转5圈2.红山水库又名“红山湖”,位于老哈河中游,设计库容量亿立方米,现在水库实际库容量亿立方米,是暑期度假旅游的好去处.亿用科学记数法表示为( )A. B. C. D.3.在下列选项中,既是分数,又是负数的是( )A. 9B.C. -0.125D. -724.北京故宫的占地面积约为平方米,即为()平方米.A. 72000B. 720000C. 7200000D. 720000005. 下列语句中,正确的是( )A. 平方等于它本身的数只有1.B. 倒数等于它本身的数只有1.C. 相反数等于它本身的数只有0.D. 绝对值等于它的本身的数只有0.6.如图的数轴上有、、三点,其中为原点,点所表示的数为,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近点所表示的数( )A. B. C. D.7.等于( )A. B. C. D.8.下列说法正确的是( )A. 最小的有理数是B. 任何有理数都可以用数轴上的点表示C. 绝对值等于它的相反数的数都是负数D. 整数是正整数和负整数的统称9.等于( )A. 2B. -2C. +2D. +110.下列说法正确的个数是( )①既不是正数也不是负数.②是绝对值最小的数.③一个有理数不是整数就是分数.④的绝对值是.A. 1B. 2C. 3D. 4二、填空题(共10 小题,每小题 3 分,共30 分)11.若,,则的值为________.12.某日最高温度是,最低温度是,则这一天的日温差是________.13.计算:________,________,________.14.比与的差大的有理数是________.15.绝对值小于的所有整数的和为________.16.计算:________,________.17.________的倒数等于本身;的倒数为________.18.如果在数轴上表示的点是,那么数轴上到的距离是的点表示的数是________.19.已知四个数:-2,-3,4,-1,任取其中两个数相乘,所得的积的最小值是.20.的倒数是________;的绝对值是________;的平方根是________.三、解答题(共7 小题,共60 分)21.计算下列各题:(1)(2)(3)(4)22.有时灵活运用分配律可以简化有理数运算,使计算又快又准,例如逆用分配律,可使运算大大简便,试逆用分配律计算下列各题:;(2).23.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.24.一台电子计算机每秒可做次运算,它工作可做多少次运算(结果用科学记数法表示)?25.用四舍五入法按括号内的要求对下列各数取近似值.(1);(精确到万位)(2).(精确到千分位)26.有张写着不同数字的卡片:,,,,,,如果从中任意抽取张.使这张卡片上的数字的积最小,应该如何抽?积又是多少?使这张卡片上的数字的积最大,应该如何抽?积又是多少?27.数学老师布置了一道思考题:“计算”,小红和小明两位同学经过仔细思考,用不同的方法解答了这个问题.小红的解法:原式的倒数为.所以.小明的解法:原式.请你分别用小红和小明的方法计算:.参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.下列各对量中,不具有相反意义的是( )A. 胜2局与负3局B. 盈利6万元与亏损8万元C. 向西走3米与向南走3米D. 转盘逆时针转3圈与顺时针转5圈【答案】C【解析】【分析】根据相反意义的定义,即可得出结果.【详解】∵向西走与向南走不具有相反意义,向西走与向南走具有相反意义,∴向西走3米与向南走3米不具有相反意义.故选C.【点睛】本题考查了正负数相反意义的定义,牢牢掌握相反意义的定义是解答本题的关键.2.红山水库又名“红山湖”,位于老哈河中游,设计库容量亿立方米,现在水库实际库容量亿立方米,是暑期度假旅游的好去处.亿用科学记数法表示为( )A. B. C. D.【答案】C【解析】【分析】用科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:16.2亿=1620000000=1.62×109.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.3.在下列选项中,既是分数,又是负数的是( )A. 9B.C. -0.125D. -72【答案】C【解析】试题分析:A.9 是整数,故不符题意;B.是分数,正数,故不符题意;C.-0.125是分数,负数,符合题意;D.-72是整数;故选C.考点:有理数的分类.4.北京故宫的占地面积约为平方米,即为()平方米.A. 72000B. 720000C. 7200000D. 72000000【答案】B【解析】【分析】根据科学记数法的表示方法,指数是几,小数点向右移动几位,可得答案.【详解】解:=720000.故选B.【点睛】本题考查了根据科学记数法写出原数.5. 下列语句中,正确的是( )A. 平方等于它本身的数只有1.B. 倒数等于它本身的数只有1.C. 相反数等于它本身的数只有0.D. 绝对值等于它的本身的数只有0.【答案】C【解析】A.平方等于它本身的数有1和0,故错误;B.倒数等于它本身的数有1和-1,故错误;C.相反数等于它本身的数只有0.正确;D.绝对值等于它的本身的数有0和正数,故错误;故选C6.如图的数轴上有、、三点,其中为原点,点所表示的数为,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近点所表示的数( )A. B. C. D.【答案】C【分析】根据数轴上的数据求出OA的长度,从而估算出OB的长度,即可估算出点B表示的数,从而得解. 【详解】解:由数轴的可知:OA=106;∴B点表示的实数为:20OA=2×107;故选C.【点睛】本题考查了数轴与有理数的乘法运算,估算出点B表示的数是解题的关键.7.等于( )A. B. C. D.【答案】A【解析】【分析】表示求-2的相反数.【详解】解:-(+2)=-2.故选A.【点睛】本题考查了求有理数的相反数.8.下列说法正确的是( )A. 最小的有理数是B. 任何有理数都可以用数轴上的点表示C. 绝对值等于它的相反数的数都是负数D. 整数是正整数和负整数的统称【答案】B【解析】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的;B选项数轴上的点与有理数是一一对应的关系,故是正确的;C选项绝对值等于它的相反数的数有0和负数,故是错误的;D选项整数包括了正整数、0和负整数,故是错误的;故选B。

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。

人教版七年级上册数学第一章有理数《单元综合测试》(含答案)

人教版七年级上册数学第一章有理数《单元综合测试》(含答案)

第一章有理数测试卷一、选择题1.在下列各式中.计算正确的是()A. -9÷6×16=-9B. -35-58÷12=−3C. -2÷(-4)-5=-41 2D. -15÷(-3×2)=102.若两个数的和是负数,那么一定是()A. 这两个数都是负数B. 两个加数中,一个是负数,另一个是0C. 一个加数是正数,另一个加数是负数,且负数的绝对值较大D 以上三种均有可能3.在12,2,4,-2这四个数中,互为相反数的是()A. 12与2 B. 2与-2 C. -2与12D. -2与4 4.已知有理数a,b在数轴上所表示的点如图所示,则下列判断不正确的是()A a,b异号B. a有可能是整数C. b是负数D. 若a=-2,则b可能为-15.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A. 18.1×105B. 1.81×106C. 1.81×107D. 181×1046. 下列说法正确的是()A. 绝对值大的数一定大于绝对值小的数B. 任何有理数的绝对值都不可能是负数C. 任何有理数的相反数都是正数D. 有理数的绝对值都是正数7. 按如图所示的程序运算:当输入的数据为1时,则输出的数据是()A. 2B. 4C. 6D. 88.下列各组数中结果相同的是()A. 32与23B. |-3|3与(-3)3C. (-3)2与-32D. (-3)3与-33二、填空题9.填表:10.若|x+1|+|y-2|=0,则x-y=________.11.____________、________________统称有理数.____________既不是正数也不是负数.12.若数a,b互为相反数,数c,d互为倒数,则代数式()()321100a bcd+-=_________.13.陆地上最高处是珠穆朗玛峰顶,高出海平面约8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为_____________ m.14.在-1,0.5,25,0,2.7,8这六个有理数中,非负整数有________________.15.生物学指出:生态系统中,每输入一个营养级的能量,大约只有10%的能够流动到下一个营养级.在H1→H2→H3→H4→H5→H6(Hn表示第n个营养级,n=1,2…,6)要使H6获得10千焦的能量,那么需要H1提供的能量约为___________千焦.16.计算(−1.5)3×(−23)2−123×0.62=___________.三、解答题17.小明家有一桶20kg重的色拉油,他的妈妈每次都是用去桶内有的一半,如此进行下去,那么第五次桶内剩下多少千克色拉油?你能帮助小明解决这个问题吗?18.写出下列用科学记数法表示的数的原数:(1)2.0152017×104;(2)1.23456×105;(3)6.18×102;(4)2.3242526×106.19.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.(1)如果现在是北京时间8:00,那么现在的纽约时间是多少;(2)此时(北京时间8:00)小明想给远在巴黎姑妈打电话,你认为合适吗?为什么?(3)如果现在芝加哥时间上午6:00,那么现在北京时间是多少?20.四个互不相等的整数和为零,积为9,求这四个数中最大的整数21.计算:(1)8×|-6-1|+2612×653;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8).答案与解析一、选择题1.在下列各式中.计算正确的是()A. -9÷6×16=-9B. -35-58÷12=−3C. -2÷(-4)-5=-41 2D. -15÷(-3×2)=10【答案】C【解析】【分析】根据有理数的混合运算顺序和运算法则分别进行计算,即可得出答案.【详解】解:A. -9÷6×16=-14, 故本选项错误;B. -35-58÷12=−3720,故本选项错误;C. -2÷(-4)-5=-412, 故本选项正确;D. -15÷(-3×2)=2.5, 故本选项错误.故选:C.【点睛】本题考查有理数的混合运算,掌握有理数的混合运算顺序是解题关键,注意结果的符号.2.若两个数的和是负数,那么一定是()A. 这两个数都负数B. 两个加数中,一个是负数,另一个是0C. 一个加数是正数,另一个加数是负数,且负数的绝对值较大D. 以上三种均有可能【答案】D【解析】【分析】两个数的和为负数,两加数可能为两个负数;可能为一个负数,一个为0;可能一个加数是正数,另一个加数是负数,且负数的绝对值较大,即可得到正确的选项.【详解】A、两个数的和是负数,这两个数不一定为负数,例如-3+2=-1,两加数为-3和2,本选项错误;B、两个数的和是负数,这两个数不一定一个是负数,另一个是0,例如-3+2=-1,两加数为-3和2,本选项错误;C、两个数的和是负数,这两个数不一定一个加数是正数,另一个加数是负数,且负数的绝对值较大,例如-2+0=-2,本选项错误,所以D正确.故选D【点睛】本题考查有理数的加法运算,熟练掌握同号及异号两数相加的法则是解题关键.3.在12,2,4,-2这四个数中,互为相反数的是()A. 12与2B. 2与-2C. -2与1 2D. -2与4【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:2的相反数-2.故选B.【点睛】本题考查相反数,在一个数的前面加上负号就是这个数的相反数.4.已知有理数a,b在数轴上所表示的点如图所示,则下列判断不正确的是()A. a,b异号B. a有可能是整数C. b是负数D. 若a=-2,则b可能为-1【答案】A【解析】【分析】根据各点在数轴上的位置逐一分析即可得出结论.【详解】解:由图可知,a,b是负数,a在b左边.A、a,b同号,此选项符合题意;B、a有可能是整数,此选项不合题意;C、b是负数,此选项不合题意;D、若a=-2,则b可能为-1,此选项不合题意.故选A.【点睛】本题考查数轴,根据数轴得出a、b的数值的大小是解题关键.5.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A. 18.1×105B. 1.81×106C. 1.81×107D. 181×104【答案】B【解析】试题解析:181万=181 0000=1.81×106,故选B.6. 下列说法正确的是()A. 绝对值大的数一定大于绝对值小的数B. 任何有理数的绝对值都不可能是负数C. 任何有理数的相反数都是正数D. 有理数的绝对值都是正数【答案】B【解析】试题分析:根据绝对值的性质和有理数的大小比较对各选项分析判断利用排除法求解.解:A、绝对值大的数一定大于绝对值小的数错误,负数相比较,绝对值大的反而小,故本选项错误;B、任何有理数的绝对值都不可能是负数,故本选项正确;C、任何有理数的相反数都是正数或零,故本选项错误;D、有理数的绝对值都是正数或零,故本选项错误.故选B.点评:本题考查了绝对值的性质,相反数的定义,是基础题,熟记概念是解题的关键,要注意特殊数0.7. 按如图所示的程序运算:当输入的数据为1时,则输出的数据是()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】把x=1代入程序中计算,判断结果与0的大小,即可确定出输出结果.【详解】把x=1代入程序中得:12×2-4=2-4=-2<0,把x=-2代入程序中得:(-2)2×2-4=8-4=4>0,则输出的数据为4,故选:B.8.下列各组数中结果相同的是()A. 32与23B. |-3|3与(-3)3C. (-3)2与-32D. (-3)3与-33【答案】D【解析】【分析】利用有理数乘方法则判定即可.【详解】A. 32=9, 23=8,故不相等;B. |-3|3=27,(-3)3=−27,故不相等;C. (-3)2=9, -32=−9,故不相等;D. (-3)3=−27, -33=−27,故相等,故选D.【点睛】此题考查绝对值、有理数的乘方,解题关键在于掌握有理数乘方的运算.二、填空题9.填表:【答案】见解析【解析】【分析】直接利用有理数的加减运算法则求解即可求得答案,注意先确定符号,再运算.【详解】【点睛】本题考查有理数的加法法则,解题关键是:(1)同号相加,取相同符号,并把绝对值相加;(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数.10.若|x+1|+|y-2|=0,则x-y=________.【答案】-3【解析】解:由|x+1|+|y﹣2|=0,得x+1=0,y﹣2=0,解得x=﹣1,y=2.x﹣y=﹣1﹣2=﹣1+(﹣2)=﹣3,故答案为﹣3.点睛:本题考查了有理数的减法,利用非负数的和为零得出每个非负数同时为零是解题关键.11.____________、________________统称有理数.____________既不是正数也不是负数.【答案】(1). 整数;(2). 分数;(3). 0【解析】【分析】根据有理数的分类进行解答即可.【详解】整数和分数统称有理数,0既不是正数也不是负数.【点睛】此题主要考查了有理数,关键是掌握有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数正分数分数负分数.12.若数a,b互为相反数,数c,d互为倒数,则代数式()()321100a bcd+-=_________.【答案】-1.【解析】【分析】根据相反数和倒数性质可解答此题.【详解】因数a,b互为相反数,数c,d互为倒数,所以a+b=0,cd=1,()()321100a bcd+-=0-1=-1.【点睛】本题考查了相反数和倒数,掌握互为相反数两数和为0和互为倒数两数乘积为1是解决此题的关键.13.陆地上最高处是珠穆朗玛峰顶,高出海平面约8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为_____________ m.【答案】﹣415m.【解析】根据用正负数表示两种具有相反意义的量的方法,可得:高出海平面8844m,记为+8844m;则低于海平面约415m,记为﹣415m,据此解答即可.解:∵高出海平面8844m,记为+8844m;∴低于海平面约415m,记为﹣415m.“点睛”此题主要考查了用正负数表示两种具有相反意义的量,要熟练掌握,解答此题的关键是要明确:具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.14.在-1,0.5,25,0,2.7,8这六个有理数中,非负整数有________________.【答案】0,8【解析】【分析】找出有理数中非负整数即可.【详解】解:在-1,0.5,25,0,2.7,8这六个有理数中,非负整数有0,8.故答案为0,8【点睛】本题考查有理数,非负整数即为正整数和0.15.生物学指出:生态系统中,每输入一个营养级的能量,大约只有10%的能够流动到下一个营养级.在H1→H2→H3→H4→H5→H6(Hn表示第n个营养级,n=1,2…,6)要使H6获得10千焦的能量,那么需要H1提供的能量约为___________千焦.【答案】106【解析】【分析】设要使H6获得10千焦的能量,那么需要H1提供的能量约为x千焦,根据题意列出方程,求出方程的解即可得到x的值.【详解】解:设H1提供的能量约为x千焦,根据题意得x(10%)5=10,解得x=106.则要使H6获得10千焦的能量,那么需要H1提供的能量约为106千焦.故答案为106.【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解题关键.16.计算(−1.5)3×(−23)2−123×0.62=___________.【答案】-2.1 【解析】【分析】先算乘方,再算乘除,最后算加减即可.【详解】解:原式=-278×49-53×925=-32-35=-2.1.故答案为-2.1【点睛】本题考查有理数混合运算,解题的关键是注意运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.三、解答题17.小明家有一桶20kg重的色拉油,他的妈妈每次都是用去桶内有的一半,如此进行下去,那么第五次桶内剩下多少千克色拉油?你能帮助小明解决这个问题吗?【答案】58千克【解析】【分析】根据有理数的乘方,可得剩下的占总的几分之几,根据有理数的乘法,可得答案.【详解】解:20×(12)5=58(kg).答:那么第五次桶内剩下58千克色拉油.故答案为58千克【点睛】本题考查有理数的乘方,利用有理数的乘方,有理数的乘法.18.写出下列用科学记数法表示数的原数:(1)2.0152017×104;(2)1.23456×105;(3)6.18×102;(4)2.3242526×106.【答案】 (1) 20152.017;(2) 123456;(3) 618;(4)2324252.6【解析】【分析】用科学记数法表示为a×10n的形式的数,其中1≤|a|<10,n为正整数.确定原数时,看n的值,再把a的小数点向右移动n位,不足有0补齐,n的值与小数点移动的位数相同.【详解】解:(1)2.0152017×104=20152.017;(2)1.23456×105=123456;(3)6.18×102=618;(4)2.3242526×106=2324252.6【点睛】本题考查科学计数法,解题关键是熟练掌握用科学记数法表示为a×10n的形式的数.19.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.(1)如果现在是北京时间8:00,那么现在的纽约时间是多少;(2)此时(北京时间8:00)小明想给远在巴黎姑妈打电话,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午6:00,那么现在北京时间是多少?【答案】(1)现在的纽约时间是前一天晚上7点(或前一天19点);(2)不合适,因为巴黎现在当地时间是凌晨1点;(3)现在北京时间是当天20点.【解析】试题分析:用北京时间+时差=所求的当地时间,如果结果是负数,表明在前一天,正数为当天.试题解析:解:(1)8+(﹣13)=8﹣13=﹣5.∵一天有24小时,∴24+(﹣5)=19.答:现在的纽约时间是前一天晚上7点(或前一天19点);(2)8+(﹣7)=8﹣7=1答:不合适,因为巴黎现在当地时间是凌晨1点;(3)设北京时间为x则x+(﹣14)=6解得x=6﹣(﹣14)x=20.答:现在北京时间是当天20点.点睛:本题考查了正数和负数,利用有理数的运算是解题关键.20.四个互不相等的整数和为零,积为9,求这四个数中最大的整数【答案】3【解析】【分析】根据有理数的加法运算判断出这四个数是两对相反数,再根据有理数的乘法运算列式即可判断出最大的数.【详解】解:因为四个互不相等的整数和为零,所以这四个数是两对相反数,因为它们的积为9,所以(-1)×1×(-3)×3=9, 所以这四个数中最大的数是3【点睛】本题考查有理数的乘法,有理数的加法,判断出这四个整数是解题关键.21.计算:(1)8×|-6-1|+2612×653; (2) (−14−12+23)×|−24|−54×(−2.5)×(−8). 【答案】 (1)59;(2)-27.【解析】【分析】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算;(2) 先去掉绝对值号,并把小数化为分数,然后利用乘法分配律与有理数的乘法运算法则进行计算.【详解】解:(1)8×|-6-1|+2612×653 =8×|-7|+532×653=56+3=59; (2) (−14−12+23)×|−24|−54×(−2.5)×(−8) = (−14−12+23)×24-54×(-52)×(-8), =-14×24−12×24+23×24-54×52×8 =-6-12+16-25,=-43+16,=-27.【点睛】本题考查有理数的混合运算,解题关键是运算顺序和运算法则的运用.。

第一章 有理数 综合素质评价(单元测试)(含答案)人教版(2024)数学七年级上册

第一章 有理数 综合素质评价(单元测试)(含答案)人教版(2024)数学七年级上册

第一章综合素质评价七年级数学上(R版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作( )A.+30元B.-50元 C.-30元D.+50元2.-12的相反数是( )A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为( )A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是( )A.液态氧B.液态氢 C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )A B C D7.下列说法中,错误的是( )A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是( )A.A B.B C.C D.D9.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A .1个B .2个C .3个D .4个10.[2024徐州二模]有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |二、填空题(每题4分,共24分)11.[真实情境题 航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是 ,绝对值是 .12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有 个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715 -|13|;(2)-|-213| -(-213).14.当x = 时,|x -6|+3的值最小.15.[新考法 分类讨论法]如果点M ,N 在数轴上表示的数分别是a ,b ,且|a |=2,|b |=3,那么M ,N 两点之间的距离为 .16.[新考法 分类讨论法 2024 烟台栖霞市月考]点A 为数轴上表示-2的点,当点A 沿数轴以每秒3个单位长度的速度移动4秒到达点B 时,点B 所表示的有理数为 .三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{ …};负数集合:{ …};正整数集合:{ …};负整数集合:{ …};负分数集合:{ …};有理数集合:{ …}.18.(6分)化简下列各数:(1)-(-68); (2)-(+0.75); (3)-[-(-23)].19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.,-(-1),0.-4,|-2.5|,-|3|,-11220.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C( , ),B→C( , ),C→D ( , );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示 的点重合.②若数轴上M,N两点之间的距离为2 024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1. C 2. D 3. A 4. D 5. A 6. A 7. A 8. D 9. D 10. B二、11.-60;60 12.10 13.(1)< (2)<14.6 15.1或5 16.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68. (2)-(+0.75)=-0.75. (3)-[-(-23)]=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A ,B 表示的数互为相反数,可确定数轴原点O 如下图:所以点C 表示的数为5.(2)由点B ,D 表示的数的绝对值相等,可知点B ,D 表示的数互为相反数,从而可确定数轴原点O 如下图:所以点A 表示的数为12.(3)由题意可知点F 在点E 的左边或右边.当点F 在点E 的左边时,如图:所以点F 表示的数为-5;当点F 在点E 的右边时,如图:所以点F 表示的数为1.故当EF =3时,点F 表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=6×100%=60%.10(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2 024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为1×2 024=1 012.2又因为点M在点N的左侧,所以点M表示的数为-1 010,点N表示的数为1 014.。

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。

七年级上册《数学》第1章测试卷与参考答案-人教版

七年级上册《数学》第1章测试卷与参考答案-人教版

七年级上册《数学》第1章测试卷与参考答案(人教版)一、选择题本大题共10道小题,每题3分,共30分。

1. 冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作()A. 7 ℃B. -7 ℃C. 2 ℃D. -12 ℃答案:B 答案解析:零上记为正数,则零下记为负数,零上5℃记为+5℃,则零下7℃记为-7℃.2. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是()A. -2B. -3C. 3D. 5答案:A 答案解析:最接近标准的工件是绝对值最小的数,-2的绝对值是2,-3和3的绝对值是3,5的绝对值是5,所以最接近的是-2.3. 下列各数中,-3的倒数是()A. -13B.13C. -3D. 3答案:A 答案解析:因为-3×(-13)=1,所以-3的倒数为-13.4. 下列各式中,计算结果为正的是( )A .(-50)+(+4)B .2.7+(-4.5)C .(-13)+25D .0+(-13)答案:C答案解析:A 选项(-50)+(+4)=-46;B 选项2.7+(-4.5)=-1.8;C 选项(-13)+25=,D选项0+(-13)=。

故本题正确选项为C.5. 2020年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A. 2.89×107B. 2.89×106C. 28.9×105D. 2.89×104答案:B答案解析:科学记数法的一般形式为a×10n ,1≤a <10,其中n 为原数的整数位数减1,则289万=2890000=2.89×106.6. 数a ,b 在数轴上的对应点的位置如图所示.把-a ,-b ,0按照从小到大的顺序排列,正确的是()A.-a<0<-bB.0<-a<-bC.-b<0<-aD.0<-b<-a答案:C 答案解析:由数轴可知:a<0<b, 所以-a>0>-b,即-b<0<-a.7. 如图,在数轴上点A,B对应的有理数分别为a,b,有下列结论:①ba>0;②ab>0;③-ba>0;④-ab>0.其中正确的有()图K-14-1A.1个B.2个C.3个D.4个答案:B 答案解析:观察数轴,可知a与b的符号相反,所以-a与b或a与-b的符号相同,根据除法中确定商的符号的方法,可知①②错误,③④正确.故选B.8. 35 cm比较接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度答案:C 答案解析:35 cm=243 cm=2.43 m,接近于姚明的身高.9. 储蓄所办理了几笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这时储蓄所的存款增加了( )A .12.25万元B .-12.25万元C .12万元D .-12万元答案:A答案解析:记取出为负,存入为正,则(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(+5)+(+12)+(+25)]+[(-9.5)+(-8)+(-10.25)+(-2)]=(+42)+(-29.75)=12.25.10. 若a 、b 、c 三个数互不相等,则在中,正数一定有( )A .0个B .1个C .2个D .3个答案:B答案解析:不妨设,则,显然有两个负数,一个正数.二、填空题本大题共8道小题,每题4分,共32分。

人教版2024年《数学》七年级上册第1章检测试卷与参考答案[5卷]

人教版2024年《数学》七年级上册第1章检测试卷与参考答案[5卷]

人教版2024年《数学》七年级上册第1章检测试卷与参考答案[5卷]一、选择题本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的。

1.的相反数是( )A .B .2C .D .【答案】B【解析】因为-2+2=0,所以﹣2的相反数是2,故选B .2.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃ B .6℃ C .﹣6℃ D .﹣10℃【答案】A【解析】2-(-8)=2+8=10(℃).故选:A .3.在有理数-4,0,-1,3中,最小的数是( )A .-4B .0C .-1D .3【答案】A【解析】因为 所以-4<-1,2-2-1212-41->-所以-4<-1<0<3.故选A.4.习近平总书记提出了未来五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为( )A.1.17×107B.11.7×106C.0.117×107D.1.17×108【答案】A【解析】11700000=1.17×107.故选A.5.如图所示,数轴上表示绝对值大于3的数的点是( )A.点E B.点F C.点M D.点N【答案】A【解析】|﹣3.5|=3.5,3,|﹣1|=1<3,|1.5|=1.5<3,|3|=3=3,所以数轴上表示绝对值大于3的数的点是点E,故选:A.6.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是( )A.6B.﹣6C.3D.﹣3【答案】D【解析】设B点表示的数是b,根据题意得:a+6=b,a=﹣b,解得:a=-3,b=3.故选D.7.如图是张小亮的答卷,他的得分应是( )A.40分B.60分C.80分D.100分【答案】A【解析】①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.8.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是( ) A.﹣4B.﹣2C.2D.4【答案】D【解析】AB=|﹣1﹣3|=4,故选D.9.下列各对数中,数值相等的是( )A.﹣27与(﹣2)7B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣(﹣3)2与﹣(﹣2)3【答案】A【解析】因为(-2)7=-27,所以A 正确;因为-32=-9,(-3)2=9,所以B 错误;因为-3×23=-3×8=-24,32×2=9×2=18,所以C 错误;因为―(―3)2=-9,―(―2)3=8,所以D 错误;故选A .10.由四舍五入得到的近似数2.6万,精确到( )A .千位B .万位C .个位D .十分位【答案】A 【解析】先还原2.6万这个数为26000,所以近似数2.6万精确到千位.故选A.11.计算所得结果为( ) .A .2B .C .D .【答案】B 【解析】= ,故选B .12.在数轴上,a 所表示的点总在b 所表示的点的右边,且|a|=6,|b|=3,则a -b 的值为( )A .-3 B .-9 C .-3或-9 D .3或9【答案】D【解析】因为|a|=6,|b|=3,所以a=±6,b=±3,因为在数轴上,a 所表示的点总在b 所表示的点的右边,所以a=6,当a=6,b=3时,a ﹣b=6﹣3=3,当a=6,b=﹣3时,a ﹣b=6()()2002200122-+-2001220012-20022()()2001200222-+-200120012001(2)(12)(2)2--=--=﹣(﹣3)=6+3=9,所以,a ﹣b 的值为3或9.故选D .13.在算式(-2)□(-3)的□中填上运算符号,使结果最小,运算符号是( )A .加号B .减号C .乘号D .除号【答案】A【解析】(﹣2)+(﹣3)=﹣5;(﹣2)﹣(﹣3)=﹣2+3=1;(﹣2)×(﹣3)=6;(﹣2)÷(﹣3)=,则在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是加号, 故选A.14.代数式取最小值时,a 值为() .A .a=0B .a=2C .a=-2D .无法确定【答案】B【解析】因为,所以代数式取最小值时,a-2=0,故a=2.故选B .二、填空题本题共4个小题;每个小题3分,共12分,把正确答案填在横线上。

人教版七年级上册数学第一章有理数综合测试卷(带答案)

人教版七年级上册数学第一章有理数综合测试卷(带答案)

第一章有理数测试卷一、选择题(每题3分,共30分)1.6.0009精确到千分位是( )A. 6.0B. 6.00C. 6.000D. 6.0012.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是( )A. 发给员工这种上衣10件B. 售出这种上衣10件C. 这种上衣剩余10件D. 穿着这种上衣10件3.在-0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是( )A. 4B. 2C. 1D. 74.对下列各式计算结果的符号判断正确的是( )A (-2)×(-213)×(-3)<0 B. (-5)-5+1>0C. (-1)+(-13)+12>0 D. (-1)×(-2)<05.两数相减,如果差等于减数的相反数,那么下列结论中正确的是( )A. 减数一定是零B. 被减数一定是零C. 原来两数互为相反数D. 原来两数的和等于16.下面是小卢做的数学作业,其中正确的是( )①0-(+47)=47;②0-(-714)=714;③(+15)-0=-15;④(-15)+0=-15A. ①②B. ①③C. ①④D. ②④7.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第六天的工作时间是( )A. 1.5小时B. 3小时C. 4.8小时D. 8小时8.计算12÷(-3)-2×(-3)的结果是( )A. -18B. -10C. 2D. 189.如图,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A. R站点与S站点之间B. P站点与O站点之间C. O站点与Q站点之间D. Q站点与R站点之间10.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表: 十六进制 0 123456789ABCDEF十进制 0123456789101112131415例如,用十六进制表示5+A =F ,3+F =12,E +D =1B ,那么A +C =( ) A. 16B. 1CC. 1AD. 22二、填空题(每题3分,共18分)11.倒数为3的数是________.12.已知a -3与b +4互为相反数,则a +b =________.13.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是______ kg.14.若|x +2|+|y -3|=0,则x -y 的值为________.15.2016年春节期间,在网络上搜索”开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.16.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表). 地区类别 首小时内首小时外一类 2.5元/15分钟 3.75元/15分钟 二类 1.5元/15分钟 2.25元/15分钟 三类 0.5元/15分钟0.75元/15分钟如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是_____(填”一类、二类、三类”中的一个).三、解答题(共52分)17.把下列各数分别填在相应的括号里:-7,3.01,2018,-0.142,0.1,0,99,-75.整数集合:{ …};分数集合:{ …};负有理数集合:{ …}.18.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?19.规定”*”是一种新的运算法则:a*b=a2-b2,其中a,b为有理数.(1)求2*6的值;(2)求3*[(-2)*3]的值.20.计算:(1)-14-(1-0.5)÷3×[2-(-3)2];(2)07×1949+234×(-14)+0.7×59+14×(-14).21.小宇在做分数的乘除法练习时,把一个数乘-213错写成除以-213,得到的结果是1835,这道题的正确结果应该是多少?22.小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)23.某检修小组乘车从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):(1)在第________次记录时距A 地最远; (2)求收工时距A 地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?24.股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?答案与解析一、选择题(每题3分,共30分)1.6.0009精确到千分位是( ) A. 6.0 B. 6.00C. 6.000D. 6.001【答案】D 【解析】 【分析】根据求近似数的要求,用四舍五入法求近似值. 【详解】6.0009精确到千分位是约等于6.001. 故选D【点睛】本题考核知识点:求近似值.解题关键点:掌握求近似值的方法.2.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是( ) A. 发给员工这种上衣10件 B. 售出这种上衣10件 C. 这种上衣剩余10件 D. 穿着这种上衣10件【答案】B 【解析】 【分析】根据相反意义的量的定义,购进若干件与售出若干件是具有相反意义的量.【详解】A. 发给员工这种上衣10件,与购进某品牌上衣30件不具有相反意义的量; B. 售出这种上衣10件,与购进某品牌上衣30件具有相反意义的量; C. 这种上衣剩余10件,与购进某品牌上衣30件不具有相反意义的量; D. 穿着这种上衣10件,与购进某品牌上衣30件不具有相反意义的量. 故选B【点睛】本题考核知识点:相反意义的量.解题关键点:理解相反意义的量的含义.3.在-0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是( ) A. 4 B. 2C. 1D. 7【答案】B 【解析】分析:对负数来说,绝对值大的反而小,因此用3代替其中的一个数字,使她的绝对值最小即为正确选项.解答:解:逐个代替后这四个数分别为-0.3217,-0.4317,-0.4237,-0.4213.-0.4317的绝对值最大,只有B符合.故选B.4.对下列各式计算结果的符号判断正确的是( )A. (-2)×(-213)×(-3)<0 B. (-5)-5+1>0C. (-1)+(-13)+12>0 D. (-1)×(-2)<0【答案】A【解析】【分析】根据有理数运算法则,逐个分析即可.【详解】A. (-2)×(-213)×(-3)<0 ,本选项正确;B. (-5)-5+1<0,本选项错误;C. (-1)+(-13)+12<0,本选项错误;D. (-1)×(-2)>0,本选项正确..故选A【点睛】本题考核知识点:有理数运算.解题关键点:弄清运算结果的符号.5.两数相减,如果差等于减数的相反数,那么下列结论中正确的是( )A. 减数一定是零B. 被减数一定是零C. 原来两数互为相反数D. 原来两数的和等于1【答案】B【解析】【分析】根据:减去一个数,等于加上这个数的相反数.差等于减数的相反数,说明被减数是0. 【详解】两数相减,如果差等于减数的相反数,那么被减数一定是零.故选B【点睛】本题考核知识点:有理数减法.解题关键点:理解有理数减法法则.6.下面是小卢做的数学作业,其中正确的是( )①0-(+47)=47;②0-(-714)=714;③(+15)-0=-15;④(-15)+0=-15.A. ①②B. ①③C. ①④D. ②④【答案】D 【解析】 【分析】根据有理数加减法则,逐个计算判断即可. 【详解】①0-(+47)=47-;②0-(-714)=714;③(+15)-0=15;④(-15)+0=-15. 所以,只有④②正确. 故选D【点睛】本题考核知识点:有理数加减法.解题关键点:熟记有理数加减法则.7.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第六天的工作时间是( ) A. 1.5小时 B. 3小时C. 4.8小时D. 8小时【答案】D 【解析】 【分析】依题意得第六天的工作时间是:515260⨯小时. 【详解】依题意得第六天的工作时间是:5152860⨯=小时. 故选D【点睛】本题考核知识点:有理数乘法应用. 解题关键点:运用乘方进行简便运算. 8.计算12÷(-3)-2×(-3)的结果是( ) A. -18 B. -10C. 2D. 18【答案】C 【解析】 【分析】根据有理数运算法则,先算乘除,再算加减. 【详解】12÷(-3)-2×(-3)=-4-(-6)=2. 故选C【点睛】本题考核知识点:有理数混合运算.解题关键点:掌握运算法则.9.如图,数轴上的点P ,O ,Q ,R ,S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q站点0.7km,则这辆公交车的位置在()A. R站点与S站点之间B. P站点与O站点之间C. O站点与Q站点之间D. Q站点与R站点之间【答案】D【解析】结合图,若有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在P点的右侧,又-1.3+3=1.7,则这辆公交车的位置在Q站点与R站点之间.故选:D.10.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:十六进制0 1 2 3 4 5 6 7 8 9 A B C D E F十进制0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )A. 16B. 1CC. 1AD. 22【答案】A【解析】试题分析:观察表格可得,A+C=10+12=16+6=16,故答案选A.考点:阅读理解题.二、填空题(每题3分,共18分)11.倒数为3数是________.【答案】1 3【解析】【分析】求3的倒数即可.【详解】倒数为3的数是13.故答案为1 3【点睛】本题考核知识点:倒数.解题关键点:理解倒数的意义.12.已知a-3与b+4互为相反数,则a+b=________.【答案】-1【解析】【分析】根据相反数的性质可得,a-3+b+4=0.可求得结果.【详解】因为a-3与b+4互为相反数,所以,a-3+b+4=0,所以,a+b=-1.故答案为-1【点睛】本题考核知识点:相反数. 解题关键点:熟记相反数的性质.13.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是______ kg.【答案】49.3【解析】根据有理数的加法可得50+(﹣0.7)=49.3kg.14.若|x+2|+|y-3|=0,则x-y的值为________.【答案】-5【解析】由|x+y|+|y﹣3|=0,可得x+y=0,y﹣3=0,解得 y=3,x=﹣3.所以x﹣y=﹣3﹣3=﹣6.15.2016年春节期间,在网络上搜索”开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.【答案】4.51×107【解析】试题分析:45100000这个数用科学记数法表示为4.51×107.故答案为4.51×107.考点:科学记数法—表示较大的数.16.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是_____(填”一类、二类、三类”中的一个).【答案】二类【解析】【分析】分别按各类收费标准进行计算,根据结果可得出答案.【详解】如果停车在一类区域,则停车3小时,缴费2.5×4+3.75×8=40元;如果停车在二类区域,则停车3小时,缴费1.5×4+2.25×8=24元;如果停车在三类区域,则停车3小时,缴费0.5×4+0.75×8=8元;故小王该次停车所在地区的类别是二类.故答案为二类【点睛】本题考核知识点:有理数运算的应用. 解题关键点:掌握有理数运算法则.三、解答题(共52分)17.把下列各数分别填在相应的括号里:-7,3.01,2018,-0.142,0.1,0,99,-75.整数集合:{ …};分数集合:{ …};负有理数集合:{ …}.【答案】见解析.【解析】【分析】根据整数、分数、负有理数的定义把各数进行分类.【详解】解:整数集合:{-7,2018,0,99,…};分数集合:;负有理数集合:.【点睛】本题考核知识点:有理数的分类. 解题关键点:理解有理数的相关定义.18.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?【答案】(1)见解析;(2)9千米.【解析】试题分析:(1)按要求画出数轴,描出点即可;(2)利用两点间的距离公式即可得出结果;试题解析:(1)如图所示:(2)4-(-5)=4+5=9.考点:1.数轴;2.利用数轴求两点间的距离.19.规定”*”是一种新的运算法则:a*b=a2-b2,其中a,b为有理数.(1)求2*6的值;(2)求3*[(-2)*3]的值.【答案】(1)-32;(2)-16.【解析】【分析】根据题中的新定义化简所求式子,计算即可得到结果.【详解】解:(1)根据题意,得2*6=22-62=4-36=-32.(2)根据题意,得(-2)*3=4-9=-5,则3*[(-2)*3]=3*(-5)=9-25=-16.【点睛】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.弄清题中的新定义是解本题的关键.20.计算:(1)-14-(1-0.5)÷3×[2-(-3)2];(2)0.7×1949+234×(-14)+0.7×59+14×(-14).【答案】(1)16;(2)-28【解析】【分析】1.先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的同级运算从左到右依次进行计算,然后利用各种运算法则计算;2.可以利用运算律.【详解】解:(1)原式=-1-0.5××(2-9)=-1-×(-7)=-1+=.(2)原式=0.7×(19+)+(-14)×(2+)=0.7×20-14×3=14-14×3=14×(1-3)=14×(-2)=-28.【点睛】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.21.小宇在做分数的乘除法练习时,把一个数乘-213错写成除以-213,得到的结果是1835,这道题的正确结果应该是多少?【答案】14 5【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:根据题意,得×(-)×(-)=.【点睛】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.22.小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)【答案】(1)15;(2)53;(3)625;(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.【解析】【分析】(1)根据有理数的乘法法则即可确定;(2)根据有理数的除法法则即可确定;(3)根据组成数字的数的性质(乘方)即可确定;(4)根据有理数的混合运算法则即可确定.【详解】解:(1)(-3)×(-5)=15.(2)-5÷(+3)=-.(3)(-5)4=625.(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.【点睛】此题主要考查了有理数的混合运算,解题的关键是充分利用有理数的各种运算法则才能加减问题.23.某检修小组乘车从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次-3 +8 -9 +10 +4 -6 -2(1)第________次记录时距A地最远;(2)求收工时距A地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?【答案】(1)五;(2)收工时距A地2千米.(3)检修小组工作一天需汽油费30.24元.【解析】试题分析:(1)收工时距A地的距离等于所有记录数字的和的绝对值;(2)分别计算每次距A地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数,再根据总价=单价×数量计算即可求解.试题解析:(1)由题意得,第一次距A地3千米;第二次距A地-3+8=5千米;第三次距A地|-3+8-9|=4千米;第四次距A地|-3+8-9+10|=6千米;第五次距A地|-3+8-9+10+4|=10千米;第六次距A地|-3+8-9+10+4-6|=4千米;第七次距A地|-3+8-9+10+4-6-2|=2千米,所以在第五次纪录时距A地最远;(2)-3+8-9+10+4-6-2=2(千米).故收工时距A地2千米.(3)(3+8+9+10+4+6+2)×0.3×7.2=42×0.3×7.2=90.72(元)答:检修小组工作一天需汽油费90.72元.考点:1.有理数的混合运算;2.正数和负数.24.股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?【答案】(1)34.5元;(2)26元;(3)如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.【解析】【分析】(1)根据算式27+4+4.5-1可得;(2)最高价在星期二,最低价在星期五;(3)收益=卖出所得-买入成本;【详解】解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).(3)买入成本:1000×27×(1+15‰)=27040.5(元),卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).收益:25935-27040.5=-1105.5(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,列出算式。

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元2.某种大米包装袋上的质量标识为“25±0.5kg ”,现从超市随机检测到四袋大米中不合格的是( ) A. 24.5kg B. 24.8kg C. 25.5kg D. 26.1kg 3.若a 的相反数为1,则a 2019是( )A. 2019B. ﹣2019C. 1D. ﹣14.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对 7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36 B. ﹣20C. 6D. ﹣24 9.若与互为倒数,则()20072008a b ⋅-的值是( ) A. B. a -C. D. b - 10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0b a >,正确的是( ) A. ①② B. ②③ C. ②④ D. ③④11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34 )﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12 ) 20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当集合中.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少? (2)求142与132的相反数的商. 22.已知a =﹣312,b =﹣6.25,c =﹣2.5,求|b|﹣(a ﹣c )的值. 23.今抽查10袋盐,每袋盐标准质量是100克,超出部分记为正,统计成表:盐的袋数2 3 3 1 1每袋超出标准的克数+1﹣0.5 0 +2.5 ﹣2问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油02升,问从A地出发到收工时,共耗油多少升?25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.答案与解析一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元【答案】D【解析】【分析】利用相反意义量的定义判断即可.【详解】解:如果收入150元记作+150元,那么支出100元记作﹣100元.故选D.【点睛】考查具有相反意义的量,解决本题的关键突破口是理解用正数和负数表示具有相反意义的量.2.某种大米包装袋上的质量标识为“25±0.5kg”,现从超市随机检测到四袋大米中不合格的是( )A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg【答案】D【解析】【分析】先求出面粉的合格重量的范围,再据此对四个选项逐一判断.【详解】解:质量标识为“25±0.5kg”表示25上下0.5,即24.5到25.5之间为合格;分析答案可得26.1kg不在此范围内,不合格.故选:D.【点睛】考查正数和负数的实际应用,根据面粉包装袋上的质量标识为“25±0.5kg”,求出面粉的合格重量的范围是解题的关键.3.若a的相反数为1,则a2019是( )A. 2019B. ﹣2019C. 1D. ﹣1【答案】D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a 2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a 的值.4.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元【答案】D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】解:321亿元=32100000000元,32100000000元这个数用科学记数法可以表示为3.21×1010元.故选D .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 【答案】C【解析】【分析】根据已知可知1个细胞从第1次到第3次所分裂的细胞个数分别为21个,22个,23个,从而得出第n 次细胞分裂后的细胞个数.【详解】解:根据已知可知:一个细胞第一次分裂成21个,第二次分裂成22个,第三次分裂成23个,由上述规律可知,第n次时细胞分裂的个数为2n个,设第x次分裂成64个,由题意得2x=64,解得x=6,即第6次分裂细菌分裂成64个,答:由每半小时分裂一次,此细菌由1个分裂成64个,共花费了3个小时.故答案选C.【点睛】本题考查了有理数的乘方,解题的关键是熟练的掌握有理数的乘方的相关知识点.6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对【答案】B【解析】【分析】各式计算得到结果,比较即可.详解】解:①−22=−4,22=4,不相等;②(−3)2=32=9,相等;③|−2|=2,−|−2|=−2,不相等;④(−3)3=−33=−27,相等;⑤−(+3)= −3,相等.故答案选B.【点睛】本题考查了相反数、绝对值与有理数的乘方,解题的关键是熟练度掌握相反数、绝对值与有理数的乘方的性质.7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】根据负数的定义可以判断题目中的哪些数据是负数,从而可以解答本题.【详解】解:在()()228,702,3------,,中, 负数有:27,3---,共2个,故选:C.【点睛】考查有理数的分类,掌握负数的定义是解题的关键.8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36B. ﹣20C. 6D. ﹣24 【答案】A【解析】【分析】根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.【详解】原式()()122841228436.=--+-=+-=故选A.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.9.若与互为倒数,则()20072008a b ⋅-的值是( ) A.B. a -C.D. b - 【答案】B【解析】【分析】由a 与b 互为倒数,得ab=1,然后逆用积的乘方公式即可求解.【详解】解:∵a 与b 互为倒数,∴ab=1,则原式=()20072007a a b ⋅⋅-=()2007ab a -⋅=()20071-•=a -.故选B .【点睛】本题考查倒数的定义以及积的乘方公式,正确对所求的式子进行变形是关键.10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0ba >,正确的是( )A. ①②B. ②③C. ②④D. ③④ 【答案】B【解析】由点A 、B 在数轴上的位置可知,505b a <-<<<,∴(1)0b a -<;(2)b a ->;(3)a b ->-;(4)0ba <.∴原来四个结论中成立的是②③.故选B.11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】①错误,如,符号改变; ③错误,如0×0,积为0;②④正确.12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数【答案】C【解析】【分析】根据题意利用具特殊值的方法,即可判断出答案.【详解】当x =2时,|5+x |=|5+2|=7,而|5|+|x |=5+2=7,7=7,当x =0时,|5+x |=|5+0|=5,而|5|+|x |=5+0=5,故B 错误.当x =−2时,|5+x |=|5+(−2)|=3,而|5|+|x |=5+2=7,37,≠故A. D 错误;当x 是正数或0时,式子|5+x|=|5|+|x|成立.故选C.【点睛】考查绝对值的定义以及应用,注意分类讨论思想在解题中的应用.二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.【答案】-4【解析】【分析】根据乘积为1的两个数互为倒数,可得互为倒数的两个数的积是1,可得答案.【详解】解:若a 、b 互为倒数,则2ab-6=2-6=-4.故答案为−4.【点睛】本题考查了倒数的定义,解题的关键是熟练的掌握倒数的定义.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.【答案】1【解析】a 等于0,b 等于1.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 【答案】0.【解析】【分析】根据小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.得到A,B,C 的值,代入运算即可.【详解】A 表示最小的正整数,A=1B 表示最大的负整数 B=﹣1C 表示绝对值最小的有理数,C=0()()1100.A B C ⎡⎤-⨯=--⨯=⎣⎦故答案为0.【点睛】本题需掌握的知识点是:最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.【解析】【分析】根据题意,利用绝对值的代数意义化简求出a 与b 的值,即可确定出a-b 的值.【详解】∵|a |=1,|b |=2,且ab <0,∴a =1,b =−2;a =−1,b =2,则a −b =3或−3.故答案为3或−3.【点睛】考查[有理数的乘法, 绝对值, 有理数的减法,得到a 与b 的值是解题的关键.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.【答案】(4)(5).【解析】【分析】根据有理数加法,减法,乘法法则以及数轴的性质进行判断即可.【详解】(1)两个有理数的和为负数时,这两个数不一定都是负数;例如()32,+-故错误.(2)如果两个数的差是正数,那么这两个数不一定都是正数;例如()12,--故错误.(3)几个有理数相乘,当负因数个数为奇数时,乘积不一定为负;当有一个因数为0时,结果为0.(4)数轴上到原点的距离为3的点表示的数是3或﹣3;正确.(5)0乘以任何数都是0.正确.故答案为(4)(5).【点睛】考查有理数的加法,减法,乘法法则以及数轴的性质,比较基础,难度不大.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.【解析】【分析】根据题中运算程序,将3x =-代入列出关系式中计算,即可得到输出的结果.【详解】根据题意列得:()()232418414.-⨯-+=-+=-则输出的数值为14.-故答案为:14.-【点睛】此题考查了代数式的求值,弄清题中的运算程序是解本题的关键. 三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34)﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12) 【答案】(1)0.9;(2)﹣0.25;(3)﹣6;(4)﹣24;(5)814;(6)63. 【解析】分析】(1)利用加法结合律,进行加减运算即可求解;(2)把减法转化为加法,根据法则进行运算即可.(3)首先计算乘法,最后进行加减运算即可求解;(4)首先计算乘方,再利用分配律计算即可; (5)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;(6)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;【详解】(1)原式=(5.6+4.4)+(﹣0.9﹣8.1﹣0.1)=10﹣9.1=0.9;(2)原式=5﹣0.75﹣7+2.5 =7.5﹣7.75=﹣0.25;(3)原式434306. 555=-=-=-(4)原式191849,9=-⨯-+-=﹣1﹣18+4﹣9, =﹣24;(5)原式()18864,8=-÷-+118,88=++184=;(6)原式=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当的集合中.【答案】详见解析.【解析】【分析】根据小于零的数是负数,可得负数集合;根据形如-1,-2,0,1,3,5…是整数,可得整数集合.【详解】解:∵﹣12=﹣1,﹣|﹣12|=﹣12,﹣(﹣5)=5,∴负数集合有:﹣12,﹣1.25,﹣|﹣12|,…整数集合有:﹣12,0,20,﹣|﹣12|,﹣(﹣5)|,…所以【点睛】考查有理数的分类,熟练掌握正数以及负数的定义是解题的关键.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少?(2)求142与132的相反数的商.【答案】(1)183-;(2)9-7【解析】【分析】(1)根据题意列出算式即可求出正确答案;(2)先求132的相反数,再将依据题意作商即可得出答案.【详解】解:(1)由题意可得:(4119--163)+(499-),则(4119--163)+(499-)=411(9-+-163)+(499-)=183-;(2)∵132的相反数是132-,∴142与132的相反数的商即为14921732=--.故本题答案为:(1)183-;(2)9-7.【点睛】掌握有理数加减乘除运算和相反数的含义,以及会根据题意列出相应的算式是解答本题的关键.22.已知a=﹣312,b=﹣6.25,c=﹣2.5,求|b|﹣(a﹣c)的值.【答案】7.25【解析】分析】把a、b、c的值代入代数式,再根据绝对值的性质和有理数的减法运算法则进行计算即可得解.【详解】解:∵a=﹣312,b=﹣6.25,c=﹣2.5,∴|b|﹣(a﹣c)=﹣b﹣a+c=6.25+312﹣2.5=7.25.【点睛】本题考查了绝对值的性质与有理数的减法,解题的关键是熟练的掌握绝对值的性质与有理数的减法运算法则.23.今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成表:问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?【答案】(1)总计不足3千克;(2)997千克.【解析】【分析】(1)根据正数表示超出100克的重量,负数表示比100克差的重量,计算出10袋盐一共超出标准重量的重量;(2)根据(1)可得10袋盐一共超出标准重量的重量,然后用100×10加上这个数即可.【详解】解:(1)2×(﹣1)+3×(﹣0.5)+3×0+1×2.5+1×(﹣2)=﹣3,答:这10袋盐以100克为标准质量,总计不足3千克;(2)10×100﹣3=997千克.答:这10袋盐一共997千克.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【答案】(1)收工时在A地的西边,距A地17千米;(2)若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【解析】【分析】(1)根据题中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据题中的数据将它们的绝对值相加,然后乘以0.2即可解答本题.【详解】解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣12=﹣17.答:收工时在A地的西边,距A地17千米.(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣12|=63,63×0.2=12.6(升),答:若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.【答案】﹣2016.【解析】【分析】先根据已知条件求出a+b=0,cd=1,x=1,再把这些数值代入所求式子,计算即可.【详解】解:∵不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,∴a+b=0,cd=1,x=1,∴2016a+2018cd﹣2017x+2016b﹣2017=2016(a+b)+2018cd﹣2017(x+1)=2016×0+2018×1﹣2017×(1+1)=0+2018﹣4034=﹣2016.【点睛】考查代数式求值, 根据相反数, 绝对值, 倒数的定义得到a+b=0,cd=1,x=1,是解题的关键.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.【答案】(1)周二进出货物后变化的量为﹣a,周五进出货物后变化的量为5;(2)a=0;(3)a=10,b=10.【解析】【分析】(1)根据有理数的加法法则即可求出周二、周五当天进出货物后变化的量;(2)运进货物件数-运出货物件数=-5,列出方程求解即可.(3)本周运进货物总件数比运出货物件数的一半多15件,列出方程即可求出b的值,设上周运进货物总件数为m,上周运出货物的总件数为n,找出题目中的等量关系,列方程即可求解.【详解】解:(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,∴周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,∴周五进出货物后变化的量为:5;(2)依题意得:5×5+a+b﹣(12+2a+8+0+b﹣5+5+10)=﹣5解得a=0;(3)依题意得:5+a+5+5+b+5+5=12(12+2a+8+0+b ﹣5+5+10)+15, 化简得:b=10, 设上周运进货物总件数为m ,上周运出货物的总件数为n ,1555556a b m m ++++++=-, 即5256a b m ++=, 2122855103a b n n +++-++=+, 即52303a b n ++=, ∵这两周内,该仓库货物共增加了3件, ∴()55363m n m n ⎛⎫-+-= ⎪⎝⎭, ∴11m ﹣16n=18, ∴()()631125162301855a b a b ⨯++-⨯++=, 解得:a=10.【点睛】考查正负数的意义以及一元一次方程的应用,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.熟练掌握正数和负数的意义和有理数的加减运算.。

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃2.若|a|+a=0,则a是( )A. 零B. 负数C. 负数或零D. 非负数3.计算﹣13﹣9的值( )A ﹣22 B. ﹣4 C. 22 D. ﹣194.﹣7+5相反数是( )A. 2B. ﹣2C. ﹣8D. 85.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -327.我县人口约为530060人,用科学记数法可表示为( )A 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A ﹣7 B. 7 C. ﹣7或7 D. ﹣3或79.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017.A. 1题B. 2题C. 3题D. 4题二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.12.﹣2.5绝对值是_____.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.15.若|a|=8,|b|=5,且ab<0,那么a﹣b=_____.16.计算(﹣1)÷6×(﹣16)=_____.17.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.18.若|a|=2,|b|=3,若ab>0,则|a+b|=_____.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29 );(3)(16﹣23+34)×(﹣24);(4)﹣14﹣32÷[(﹣2)3+4].20.在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.22.规定一种新的运算:a★b=a×b﹣a﹣b2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表与标准质量的差值(单位:千克)﹣3 ﹣2 0 1 1.5 2.51箱数 1 4 3 4 5 3若每袋标准质量为450g,则这批样品的总质量是多少?24.某检修站,甲乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?答案与解析一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃【答案】D【解析】【分析】根据正数和负数的定义和已知得出即可.【详解】解:温度上升10℃记作+10℃,温度下降6℃记作﹣6℃,故选D .【点睛】本题考查了正数和负数,能理解正数和负数的定义是解此题的关键.2.若|a|+a=0,则a 是( )A. 零B. 负数C. 负数或零D. 非负数 【答案】C【解析】【分析】根据绝对值的性质,从而得到答案.【详解】当a =0时,|a |+a =0,当a 为负数时,|a |+a =-a +a =0,当a 为非负数时,|a |+a =a +a =2a ≠0,综上所述,故答案选C.【点睛】本题主要考查了绝对值的性质,解本题的要点在于了解一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.计算﹣13﹣9的值( )A. ﹣22B. ﹣4C. 22D. ﹣19 【答案】A【解析】【分析】根据减去一个数等于加上这个数的相反数,进行运算即可.【详解】解:()13913922--=-+-=-,故选A .【点睛】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.4.﹣7+5的相反数是( )A. 2B. ﹣2C. ﹣8D. 8【答案】A【解析】【分析】先计算﹣7+5的值,再求它的相反数.【详解】﹣7+5=-2,-2的相反数是2.所以B选项是正确的.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;【答案】C【解析】分析:先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.解答:解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选C.6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -32 【答案】D【解析】【分析】先把除法转化为乘法,然后根据乘法法则计算即可.【详解】(-8)×(-2)÷(- 1 2 )=(-8)×(-2) ×(- ) =-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.7.我县人口约为530060人,用科学记数法可表示为( )A. 53006×10人B. 5.3006×105人C. 53×104人D. 0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A. ﹣7B. 7C. ﹣7或7D. ﹣3或7【答案】D【解析】【分析】首先根据相反数的定义求出x的值,绝对值的定义可以求出y的值,然后就可以求出x+y的值.【详解】∵-x=-2,|y|=5,∴x=2,y=±5,∴当x=2,y=5时,x+y=7;当x=2,y=-5时,x+y=-3.故选D.【点睛】此题主要考查了绝对值的定义及性质,解题时首先利用绝对值的定义求出y的值,然后代入代数式计算即可求解.9.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃【答案】C【解析】【分析】根据题意设上升为正,下降为负,直接列出算式即可.【详解】解:根据题意知半夜的温度为:367972+-=-=(℃),故选C .【点睛】本题考查了有理数的加减混合运算法则,解题时认真审题,弄清题意,列出算式后再按照有理数的加减混合运算法则计算.10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017. A. 1题B. 2题C. 3题D. 4题【答案】C【解析】【分析】根据有理数的加减运算法则及除法和乘方的运算法则逐一计算可得. 【详解】解:①()01011--=+=,他计算正确; ②11122⎛⎫÷-=- ⎪⎝⎭,他计算正确; ③11111,23236⎛⎫-+=--=- ⎪⎝⎭他计算正确; ④()201711-=-,他计算错误; 他做对了3道题.故选C .【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和 运算法则及其运算律.二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示_________.【答案】-2【解析】【分析】根据正数和负数的意义解题即可.【详解】正午(中午12:00)记作0小时,午后2点钟记作+2小时,10-12=-2,则上午10点钟可表示为-2.【点睛】本题考查了正数和负数的意义,理解“正”和“负”的相对性是解题的关键.12.﹣2.5的绝对值是_____.【答案】2.5【解析】【分析】根据绝对值的含义和求法解答.【详解】解: 2.5-的绝对值是2.5,故答案为2.5.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:① 当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数﹣a ;③当a 是零时,a 的绝对值是零.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.【答案】-4【解析】【分析】根据有理数的加法解答即可.【详解】解:因为26-+=-,所以()624=---=-,故答案为4-.【点睛】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.【答案】1010【解析】【分析】首先把数字分组:(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019,算出前面有多少个-1相加,再加上2019即可.【详解】解:1-2+3-4+5-6+…+2015-2016+2017-2018+2019=(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019=-1009+2019=1010.【点睛】此题考查有理数的加减混合运算,注意数字合理分组,按照分组后的规律计算得出结果即可. 15.若|a|=8,|b|=5,且ab <0,那么a ﹣b=_____.【答案】±13【解析】【分析】根据绝对值和有理数的乘法得出a,b 的值,进而利用有理数的加减运算法则计算得出答案.【详解】解:因为若|a|=8,|b|=5,且ab <0,所以85a b =-=,或85a b ==-,,所以8513a b -=--=-或()8513--=,故答案为±13. 【点睛】此题主要考查了有理数的乘法和加减,正确掌握运算法则是解题关键.16.计算(﹣1)÷6×(﹣16)=_____. 【答案】136 . 【解析】【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.规定一种新运算:a ⊗b=(a+b)b ,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.【答案】0【解析】【分析】根据新运算,直接运算得结果.【详解】解:()()222220.-⊗=-+⨯=故答案为0【点睛】本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新 运算的规定.18.若|a|=2,|b|=3,若ab >0,则|a+b|=_____.【答案】5【解析】【分析】由条件可以求出a 、b 的值,再由ab >0可以知道a 、b 同号,据此确定a,b 的值,从而可以求出结论.【详解】解:∵|a|=2,|b|=3,∴a=±2,b=±3, ∵ab >0,∴a=2,b=3或23a b =-=-,,当a=2,b=3时,|a+b|=|2+3|=5;当23a b ,=-=-时,()2355a b +=-+-=-=;综上,|a+b|=5,故答案为5.【点睛】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b 的值,然后分两种情况解题.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29); (3)(16﹣23+34)×(﹣24); (4)﹣14﹣32÷[(﹣2)3+4].【答案】(1)22;(2)49;(3)﹣6;(4)7. 【解析】【分析】(1)先化简,再计算加减法;(2)从左往右依此计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】(1)原式201517,=-+3715,=-=22;(2)原式()22,9⎛⎫=-⨯- ⎪⎝⎭4.9= (3)原式()()()123242424,634=⨯--⨯-+⨯- 41618,=-+-6=-;(4)原式()132[84],=--÷-+()1324,=--÷-18,=-+=7.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.在数轴上分别标出表示有理数2.5,﹣2的点A,B ,并求|AB|.【答案】在数轴上2.5,﹣2处标出点A,B 如图所示见解析,AB=4.5.【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】在数轴上2.5,﹣2处标出点A,B 如图所示,()2.52 4.5AB =--=.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.21.已知|x+4|=5,(1﹣y)2=9,且x ﹣y <0,求2x+y 的值.【答案】6或20-或14-【解析】【分析】根据绝对值和偶次幂得出x,y 的值,进而解答即可.【详解】因为|x+4|=5,(1﹣y)2=9,且0x y -<,所以x=1,y=4,或92x y =-=-,,或94x y ,,=-=当x=1,y=4时,2x+y=6;当92x y =-=-,时,2x+y=20-; 当94x y =-=,时,2x+y= 14-.即2x+y 的值为6或20-或14-.【点睛】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y 的值.22.规定一种新的运算:a ★b=a×b ﹣a ﹣b 2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]【答案】(1)﹣49;(2)﹣190.【解析】【分析】(1)将a=2,b=8代入公式计算可得;(2)先计算()52-★,得其结果为18-,再计算()()718--★.【详解】(1)2★8228281,=⨯--+162641,=--+49=-;(2)∵()()()25252521,-=⨯----+★ 10541,=---+18=-,∴()()()()7[52]718,--=--★★★()()()()27187181,=-⨯-----+12673241,=+-+190=-.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g ,则这批样品的总质量是多少?【答案】这批样品总质量是9008g .【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意计算解答作答.【详解】依题意,得 312414 1.55 2.538g -⨯-⨯+⨯+⨯+⨯=,450×20=9000g,9000+8=9008g,答:这批样品的总质量是9008g .【点睛】主要考查正负数在实际生活中应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某检修站,甲乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?【答案】(1)甲在A地的东边,且距离A地39千米;(2)出发到收工时共耗油32.5升.【解析】【分析】(1)只需求得所有数据的和,若和为正数,则甲在A地的东边,若和为负数,则甲在A地的西边,结果的绝对值即为离A地的距离;(2)只需求得所有数的绝对值的和,即为所走的总路程,再根据每千米汽车耗油0.5升,求得总耗油.【详解】(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=+39(千米).则甲在A地的东边,且距离A地39千米;(2)15+2+5+1+10+3+2+12+4+5+6=65(千米),65×0.5=32.5(升).则出发到收工时共耗油32.5升.【点睛】此题考查了正数和负数的实际意义,即在实际问题中,表示具有相反意义的量.25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?【答案】(1)小明妈妈星期五生产玩具为19个;(2)小明妈妈本周实际生产玩具为145;(3)小明妈妈这一周的工资总额是756元.【解析】【分析】(1)根据记录可知,小明妈妈星期五生产玩具20﹣1=19个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;【详解】(1)小明妈妈星期五生产玩具20﹣1=19个,--+-+++⨯=,(2)小明妈妈本周实际生产玩具71148160207145故答案为145;(3)()()1455786311412,⨯+++⨯-++⨯ 7256332,=+-=756(元)答:小明妈妈这一周的工资总额是756元.【点睛】主要考查正负数在实际生活中的应用.要注意弄清楚题意,仔细求解.。

人教版七年级数学上册 第一章 综合素质测评卷及答案

人教版七年级数学上册 第一章 综合素质测评卷及答案

人教版七年级数学上册 第一章 综合素质测评卷及答案(时间:120分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.如果用+0.02克表示一个乒乓球质量超出标准质量0.02克,那么一个乒乓球质量低于标准质量0.02克记作( B )A .+0.02克B .-0.02克C .0克D .+0.04克2.下列各数中,既是分数,又是负数的是( C )A .9 B.15 C .-0.125 D .-723.在数轴上表示-2 019和2 020的两点分别是点A 和点B ,则点A 和点B 之间的距离是( D )A .-4 039B .-1C .1D .4 0394.(宜昌中考)工信部发布《中国数字经济发展与就业白皮书(2018)》显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( C )A .1.21×103B .12.1×103C .1.21×104D .0.121×1055.下列说法不正确的是( C )A .0.017精确到千分位B .2 019精确到个位C .2.4万精确到万位D .3.14×105精确到千位6.下列各组数的大小比较中,正确的是( A )A .(-4)2>-32B .-0.4<-12C .-45<-67D .-98>-897.下列四个数中,与4互为相反数的是( A )A .-22B .(-2)2C .-(-4)D .(-1)4 8.下列选项正确的是( C )A .6×⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫-13=6×12-6×⎝ ⎛⎭⎪⎫-13 B.13+⎝ ⎛⎭⎪⎫-125-235=13-⎝ ⎛⎭⎪⎫-125+235 C .15×⎝ ⎛⎭⎪⎫-23+(-14)×23-23=-23×(15+14+1) D .8÷23×⎝ ⎛⎭⎪⎫-32=8÷(-1) 9.有理数a ,b 在数轴上的位置如图所示,下列各式成立的是( D )A .b >0B .|a|>-bC .a +b >0D .ab <010.如图,自行车的链条每节长为2.5 cm ,每两节链条相连接部分重叠的圆的直径为0.8 cm ,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为( C )A .150 cmB .104.5 cmC .102.8 cmD .102 cm二、填空题(本大题共8小题,每小题3分,共24分)11.+[-(-10)]=__10__,-⎪⎪⎪⎪⎪⎪+16= -16 . 12.小穆同学1月初的微信交易记录如图所示,若他的微信钱包里原有98元,则1月4日小穆的微信钱包还剩 94.71 元.13.在-3,-2,-1,4,5中取出三个数,把这3个数相乘,所得的最大乘积是__30__.14.有560页稿件需要打字,第1天打完其中的14,第2天打完其中的27,则还有__260__页没有打.15.若|a +5|+(b -3)2=0,则a b = -125 .16.在117,-(-1),3.14,-|-8-22|,-3,-32,-⎝ ⎛⎭⎪⎫-133,0中有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m -n -k +t = 6 .17.计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1=13,则将二进制数(1111)2转换成十进制数是 15 .18.如图,折叠纸面上一数轴,使得表示数5与数-1的两点重合,若此时,数轴上的A ,B 两点也重合,且A ,B 两点之间的距离为32,则点A 表示的数为 18或-14 .三、解答题(本大题共7小题,共66分)19.(8分)将下列各数在数轴上表示出来,并用“<”将它们连接起来:-(-1.5),0,-⎪⎪⎪⎪⎪⎪-23,-22,⎪⎪⎪⎪⎪⎪-212. 解:如图., 由数轴可知,-22<-⎪⎪⎪⎪⎪⎪-23< 0<-(-1.5)<⎪⎪⎪⎪⎪⎪-212.20.(8分)(1)计算:-23+6÷3×23. 图图同学的计算过程如下:解:原式=-6+6÷2=0÷2=0.请你判断图图的计算过程是否正确,若不正确,请你写出正确的计算过程;解:不正确.正确的计算过程为原式=-8+6×13×23=-8+43=-203. (2)方便面包装袋上标有“100 g ±2 g ”,这说明该种方便面的标准质量为多少?最低质量不能少于多少?最高质量不会超过多少?解:这种方便面的标准质量为100 g ,最低质量不能少于98 g ,最高质量不会超过102 g .21.(8分)计算:(1)-25+⎝ ⎛⎭⎪⎫-58-16+712×24; 解:原式=-25+(-15-4+14) =-25+(-5) =-525.(2)(-1)2 019+(-5)×[(-2)3+2]-(-4)2÷⎝ ⎛⎭⎪⎫-12. 解:原式=(-1)+(-5)×(-6)-16×(-2)=(-1)+30+32=61.22.(10分)分别用a ,b ,c ,d 表示有理数,a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是数轴上到原点距离为3的点表示的数,求4a +3b +2c +d 的倒数.解:因为最小的正整数是1,最大的负整数是-1,绝对值最小的有理数是0,数轴上到原点距离为3的点表示的数是±3,所以a =1,b =-1,c =0,d =±3.当d =3时,4a +3b +2c +d =4×1+3×(-1)+2×0+3=4,所以4a +3b +2c +d 的倒数是14; 当d =-3时,4a +3b +2c +d =4×1+3×(-1)+2×0+(-3)=-2,所以4a +3b +2c +d 的倒数是-12.23.(10分)如图是一个有理数混合运算程序的流程图,请根据这个程序回答问题:当输入的x 为-16时,最后输出的结果y 是多少?(写出计算过程)解:[-16+4-(-32)]×⎝ ⎛⎭⎪⎫13-12÷(-0.5) =(-3)×⎝ ⎛⎭⎪⎫-16×(-2)=-1<5, [-1+4-(-32)]×⎝ ⎛⎭⎪⎫13-12÷(-0.5)=4<5, [4+4-(-32)]×⎝ ⎛⎭⎪⎫13-12÷(-0.5)=173>5, 所以,输出的结果y 值是173.24.(10分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库):+24,-31,-10,+36,-39,-25.(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存480吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨4元,那么这3天要付多少装卸费?解:(1)根据题意得+24-31-10+36-39-25=-45,则粮库里的粮食减少了.(2)根据题意得480+45=525,则3天前仓库里存粮525吨.(3)根据题意得4×(24+31+10+36+39+25)=660,则这3天要付660元装卸费.25.(12分)如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出与A,B两点距离相等的点M所对应的数.(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?解:(1)M点对应的数是40;(2)它们的相遇时间是120÷(6+4)=12秒,即相同时间Q蚂蚁运动路程为12×4=48,即从数-20向右运动48个单位到数28,所以C点对应的数是28;(3)-260.P蚂蚁追到Q蚂蚁的时间为120÷(6-4)=60秒,即此时Q蚂蚁运动路程为4×60=240,即从数-20向左运动240个单位到数-260,所以D点对应的数是-260.。

人教版七年级数学上册 第1章 有理数 综合测试卷(含答案)

人教版七年级数学上册   第1章   有理数   综合测试卷(含答案)

人教版数学七年级上册第一章有理数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是-1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等2.若m-2的相反数是5,那么-m的值是( )A.+7 B.-7C.+3 D.-33.在有理数|-1|,(-1)2018,-(-1),(-1)2019,-|-1|中,负数的个数是()A.0个B.1个C.2个D.3个4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()C .(+39)+(-7)D .(+39)-(+7)6.已知a >0,b <0,|a|<|b|<1,那么下列判断正确的是( ) A .1-b >-b >1+a >a B .1+a >a >1-b >-b C .1+a >1-b >a >-b D .1-b >1+a >-b >a7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23 000公里,将23 000用科学记数法表示应为( ) A .2.3×104 B .23×103 C .2.3×103 D .0.23×1058. 运用加法的运算律计算(+613)+(-18)+(+423)+(-6.8)+18+(-3.2)最适当的是( )A .[(+613)+(+423)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+613)+(-6.8)+(+4)=+[(-18)+18+(-3.2)]C .[(+613)+(-18)=+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+613)+(+423)]+[(-18)+18]+[(-3.2)+(-6.8)]9.若ab≠0,则a |a|+|b|b 的值不可能是( )A .2B .0C .-2D .110.计算机是将信息转换成二进制数进行处理的.二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1=13,那么将二进制(1 111)2转换成十进制形式是数( ) A .8 B .15 C .20 D .30第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作__________. 12.数轴上一个点先向左移动2个单位长度,再向右移动6个单位长度,终点所表示的数是-2,那么原来的点表示的数是_________.13. 若m ,n 互为相反数,x ,y 互为倒数.求2019m +2019n -2020xy 的值是_______________.14.若a 和b 是符号相反的两个数,在数轴上a 所对应的点和b 所对应的点相距6个单位长度,如果a =2,则b 的值为________.15.在数轴上与表示-1的点相距4个单位长度的点表示的数是___________.17.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为_________.18.-32,(-2)3,(-13)2,(-12)3的大小顺序是________________________________.三.解答题(共9小题,66分)19. (6分)已知|x|=5,|y|=3,且x>y.求x +y 的值.20. (6分) 有一根长为64米的钢筋,第一次截去一半,第二次截去剩下的一半,如此下去,截去第六次后剩下的钢筋长多少米?21. (6分)武汉市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克) -6 -2 0 1 3 4 袋数143453(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克? (2)若该种食品的合格标准为450±5 g ,求该食品的抽样检测的合格率.22. (6分)在社会实践活动中,环保小组甲、乙、丙三位同学一起连续5天调查高峰时段10分钟内通过解放路的车流情况(向东为正,向西为负).作了如下记录:(1)若每辆汽车排放的尾气一样多,哪一天的污染指数最高?哪一天的污染指数最低?(2)假如车流量不超过60辆时,空气质量为良,车流量超过60辆时,空气质量为差,请你对这五天的空气质量作一个评价.23. (6分)阅读第①小题的计算方法,再计算第②小题. ①-556+(-923)+1734+(-312)解:原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34]=0+(-114)=-114. 上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便. ②仿照上面的方法计算:(-2 01923)+(-2 02056)+4 038+(-12).24. (8分)计算: (1)-191718×6;(2)-370×(-14)+0.25×24.5+512×25%.(3)(-1)3-14×[2-(-3)2];(4)-|-9|÷(-3)+(12-23)×12-(-3)2;25. (8分)小华在电脑上设计了一个有理数运算程序:输入a ,加*键,再输入b ,且a≠b ,得到运算a*b =ab÷(a -b).(1)求2*(-3)和(-3)*2的值;(2)猜想a*b 与b*a 的关系(不必说明理由);(3)若|x +4|=m*n ,|y -8|=n*m ,且m≠n ,求yx -xy 的值.26. (10分)计算 (1)-223+52-45-52-13;(2)(-76+34+1112-1324)×3÷(-112);(3)(-3)2-(-12)×(13-56)+(-22)÷(-23).第1个等式:a1=11×3=12×(1-13);第2个等式:a2=13×5=12×(13-15);第3个等式:a3=15×7=12×(15-17);第4个等式:a4=17×9=12×(17-19);……请解答下列问题:(1)按以上规律列出第5个等式:a5=_______=_____________;(2)求a1+a2+a3+a4+…+a100的值.参考答案:11. -3分 12. -6 13. -2020 14. -4 15. 3或-5 16. 3或13 17. 718. (-13)2>(-12)3>(-2)3>-3219. 解:因为|x|=5,所以x =±5. 因为|y|=3,所以y =±3. 由题意,可知x >y , 所以x =5,y =±3. x +y =5±3=8或220. 解:由题意可得64×(12)6=64×164=1(米),答:截去第六次后剩下的钢筋长1米21. 解:(1)450×20+(-6)+(-2)×4+1×4+3×5+4×3 =9000-6-8+4+15+12 =9017(克) (2)1920=95% 22. 解:(1)25+40=65(辆), 20+20=40(辆),30+20=50(辆), 35+50=85(辆),35+20=55(辆). 因为40<50<55<65<85,所以第四天的污染指数最高,第二天的污染指数最低 (2)因为65>60,40<60,50<60,85>60,55<60,所以第二天、第三天、第五天空气质量为良,第一天、第四天空气质量为差 23. 解:原式=(-2 019-23)+(-2 020-56)+4 038+(-12)=(-2 019-2 020+4 038)+(-23-56-12)=(-1)+(-23-56-12)24. 解:(1)原式=(-20+118)×6=-20×6+118×6=-120+13=-11923(2)原式=370×14+14×2412+512×14=14×(370+2412+512) =14×400 =100(3)原式=-1-14×[2-9]=-1-14×[-7]=-1+74=34(4)原式=-9÷(-3)+(- 16)×12-9=3-2-9 =-825. 解:(1)2*(-3)=2×(-3)÷[2-(-3)]=-65,(-3)*2=(-3)×2÷[(-3)-2]=65(2)a*b 与b*a 互为相反数(3)因为m*n 与n*m 互为相反数,所以|x +4|+|y -8|=0, x +4=0,y -8=0,解得x =-4,y =8, 所以yx -xy =-2+32=3026. 解:(1)-223+52-45-52-13=(-223-13)+(52-52)-45=-3+0-45=-345;(2)(-7+3+11-13)×3÷(-1)=-76×(-36)+34×(-36)+1112×(-36)-1324×(-36)=42-27-33+392=32; (3)(-3)2-(-12)×(13-56)+(-22)÷(-23)=9+12×13-12×56+(-4)×(-32)=9+4-10+6 =9. 27. 解:(1)19×11,12×(19-111) (2)a 1+a 2+a 3+a 4+…+a 100=12×(1-13)+12×(13-15)+…+12×(1199-1201)=12×(1-13+13-15+…+1199-1201) =12×(1-1201) =100201。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.下列各数中,与5互为相反数的是( B ) A .15B .-5C .|-5|D . -152. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10 ℃记作+10°,则-2 ℃表示气温为( D )A .零上8 ℃B .零下8 ℃C .零上2 ℃D .零下2 ℃3.393 000用科学记数法表示为( B ) A .39.3×104 B .3.93×105 C .3.93×106D .0.393×106 4.在有理数-(+3),-⎪⎪⎪⎪-12,[-(-5)]2,-(-1),-32中,负数有( C ) A .1个 B . 2个 C . 3个D . 4个5.下列说法正确的是( C ) A .-a 一定是负数 B .若|a |=|b |,则a =bC .一个有理数不是整数就是分数D .一个有理数不是正数就是负数.6.有理数a ,b 在数轴上的对应点如图所示,则下列结论正确的是( A )A .|b |>-aB .|a |>-bC .b >aD .|a |>|b | 7.下列说法中,正确的有( B )①任何数的倒数都小于1;②a 的倒数是1a ;③同号的两个数,原数大的倒数反而小;④互为倒数的两数符号相同.A .1个B .2个C .3个D .4个 8.下列各式不正确的是( A )A .-x 2=(-x )2B .(-a )2=a 2C .(a -b )2=(b -a )2D .(a -b )3=-(b -a )39.某程序运算过程如图,当输入x =5时,输出的为( D ) 输入x →平方→减去x →除以2→取相反数→输出 A .252B .-252C .10D . -1010.不相等的有理数a ,b ,c 在数轴上的对应点分别为A ,B ,C ,如果|a -b |+|b -c |=|a -c |,那么点B ( C )A .在点A ,C 的右边B .在点A ,C 的左边 C .在点A ,C 之间D .以上三种情况都有可能二、填空题(每小题3分,共18分) 11.近似数3.050×105是精确到__百__位.12.若m ,n 互为相反数,则代数式5m +5n -5=__-5__. 13.若|a -10|+(b +11)2=0,则(a +b )2020=__1__.14.某高山上的温度从山脚下开始每升高100米,降低0.6 ℃,若山脚下的温度是20 ℃,则山上5000米处的温度是__-10_℃__.15.数a ,b ,c 在数轴上对应的点的位置如图,则-|a |+|b +c |-|b |=__a +c __.16.观察下列等式: 42-12=3×5; 52-22=3×7; 62-32=3×9; 72-42=3×11; ……则第n (n 是正整数)个等式为__(n +3)2-n 2=3(2n +3)__. 三、解答题(一)(每小题6分,共18分) 17.把下列各数填在相应的集合内:1,-35,+3.2,0,13,-6.5,+180,-4,-6.(1)正整数集合:{1,+180…};(2)正分数集合:⎩⎨⎧⎭⎬⎫+3.2,13…;(3)负分数集合:⎩⎨⎧⎭⎬⎫-35,-6.5…;(4)负数集合:⎩⎨⎧⎭⎬⎫-35,-6.5,-4,-6….18.在数轴上表示出下列各数,并用“<”连接.(-2)3,0,⎪⎪⎪⎪-⎝⎛⎭⎫-12,-(-1)4,-|-3|. 解:(-2)3=-8,⎪⎪⎪⎪-⎝⎛⎭⎫-12=12,-(-1)4=-1,-|-3|=-3. 把原数表示在数轴上如下.由数轴可知,(-2)3<-|-3|<-(-1)4<0<⎪⎪⎪⎪-⎝⎛⎭⎫-12. 19.计算:(1)2-5+4-(-7)+(-6); 解:原式=2-5+4+7-6=2. (2)⎝⎛⎭⎫-2467÷6; 解:原式=⎝⎛⎭⎫-24-67×16=(-24)×16-67×16=-4-17=-417. (3)(-18)÷214×49÷(-16);解:原式=18×49×49×116=29.(4)1-12×⎣⎡⎦⎤3×⎝⎛⎭⎫-232-(-1)4+14÷⎝⎛⎭⎫-123. 解:原式=1-12×⎝⎛⎭⎫3×49-1+14×(-8)=1-12×13-2=-76. 四、解答题(二)(每小题7分,共21分)20.已知m ,n 互为相反数,p ,q 互为倒数,且|a |=2,求m +n 2020+2020pq +14a 2的值.解:因为m ,n 互为相反数,所以m +n =0.因为p ,q 互为倒数,所以pq =1.又因为|a |=2,所以m +n 2020+2020pq +14a 2=0+2020+14×4=2020+1=2021.21.已知|x |=6,y 2=9且xy <0,求x +y 的值. 解:因为|x |=6,y 2=9, 所以x =±6,y =±3. 因为xy <0,所以x =6,y =-3或x =-6,y =3. 当x =6,y =-3时,x +y =6+(-3)=3;当x =-6,y =3时,x +y =-6+3=-3.22.定义运算“&”:a &b =(a +3)×5-2b ,如3&5=(3+3)×5-2×5=20. (1)求8&9的值;(2)求[(-3)&4]&⎝⎛⎭⎫-12的值. 解:(1)8&9=(8+3)×5-2×9=55-18=37.(2)[(-3)&4]&⎝⎛⎭⎫-12=[(-3+3)×5-2×4]&⎝⎛⎭⎫-12=(-8)&⎝⎛⎭⎫-12=(-8+3)×5-2×⎝⎛⎭⎫-12=-25+1=-24.五、解答题(三)(每小题9分,共27分)23.数a ,b ,c 在数轴上的对应点如图所示,且表示数a 的点与表示数b 的点到原点的距离相等.(1)计算:5a +5b -3ab;(2)确定a +c ,b +c ,a -c ,b -c 的符号.解:(1)由题意,得a +b =0,所以a =-b ,所以a b =-b b =-1.故原式=5(a +b )-3·ab =5×0-3×(-1)=3. (2)由题图,得|a |>|c |,a >0,b <0,c <0,|b |>|c |,所以a +c >0,b +c <0,a -c >0,b -c <0.24.股民张先生上周星期五买进某公司股票2000股,每股价格为16.90元.下表为本周星期一至星期五该股票每日收盘时的涨跌情况:星 期 一 二 三 四 五 每股涨跌/元+0.36+0.50-0.30+0.10-0.55(1)(2)本周内每股最高收盘价是多少元?最低收盘价是多少元?(3)已知在买进和卖出股票时均需支付成交金额2‰的费用,如果张先生在本周星期五收盘时将全部股票抛售,他的收益情况如何?解:(1)由题意,得星期四收盘时,每股价格是16.90+(+0.36)+(+0.50)+(-0.30)+(+0.10)=17.56(元).(2)由表格可知,星期二收盘每股最高,星期五收盘每股最低.即每股最高是16.90+(+0.36)+(+0.50)=17.76(元),每股最低是16.90+(+0.36)+(+0.50)+(-0.30)+(+0.10)+(-0.55)=17.01(元).(3)买进时需资金:2000×16.90+2000×16.90×2‰=33 867.6(元),卖出时回收资金:2000×17.01-2000×17.01×2‰=33 951.96(元).获利:33 951.96-33 867.6=84.36(元).25.a, b 分别是数轴上两个不同点A, B 所表示的有理数,且|a | = 5, |b |=2, A, B 两点在数轴上的位置如图所示.(1)试确定数a ,b ;(2)a ,b 两数相距多少个单位长度?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数;(4)点P 从A 点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2020次后,求点P 表示的数.解:(1)因为|a |=5,|b |=3,所以a =5或-5,b =2或-2.由数轴可知,a <b <0,所以a =-5,b =-2. (2)-2-(-5)=3,即A ,B 两点相距3个单位长度. (3)①若C 点在B 点的右侧,则CB =13CA =13(CB +AB ),所以CB =12AB =32,即C 点表示的数为-2+32=-12;②若C点在A ,B 之间,则CB =13CA =13(AB -CB ),所以CB =14AB =34,即C 点表示的数为-2-34=-114.综上,C 点表示的数为-12或-114. (4)-5-1+2-3+4-5+6-7+…-2017+2018-2019+2020=1005.即点P 表示的数为1005.。

相关文档
最新文档