8253的内部结构与工作方式
第八章 8253定时计数器(例程)
➢ 在计数过程中,如GATE变为低电平,这时只是暂停计数 ,等待GATE信号变为高电平后,计数器继续“减1”计数
例题,向8253的A1A=0 11B的地址写入0011 0000B,则表示 计数器0设置成方式0,并且采用16位时常数,假设时常数为 1500,则计数器0的初始化程序段如下:
通过计数通道的端口地址可以访问通道中的CR、OL,当对通 道进行写操作时,实际上表示将计数初值(即时常数)写入CR; 当对通道进行读操作时,表示将从OL中读取计数值。
8253的控制字
定时/计数器8253一共有6种工作方式,由控制字 寄存器的内容来设定。方式控制字如下所示:
D7 D6 D5 D4 D3 D2 D1 D0 SC1 SC0 RL1 RL0 M2 M1 M0 BCD
电源(+5V) 地
连接去向 CPU
译码电路 CPU CPU CPU 外部
外部 外部
/ /
8253的原理结构及工作原理
每个计数通道主要包含四个部件: 计数寄存器CR(Conut Register, 16位)、 计数工作单元CE(Counting Element, 16位)、 输出锁存器OL(Output Latch, 16位)、 控制字寄存器(Control Word Register, 8位)。
计数过程中写入新的时常数,它只能在下一次分频脉冲后起作用
方式2的特点:
➢在置方式2的控制字后,OUT端变为高电平;
➢在置入时常数后,下一个CLK脉冲期间,将时常数从CR读 入CE,并开始“减1”计数;
➢当CE计数到01时,在OUT端输出一个负脉冲,并重新读入 时常数进行计数;
8253定时-计数器
1.3 8253的控制字和工作方式
1.3 8253的控制字和工作方式
方式3
1) 当计数初值N为偶数时,输出端的高低电平持续时间相等,各为N/2个 CLK脉冲周期,当计数初值N为奇数时,输出端的高电平持续时间比 低电平持续时间多一个脉冲周期,即高电平持续(N+1)/2个脉冲周 期,低电平持续(N-1)/2个脉冲周期。例如N=5,则输出高电平持 续3个脉冲周期,低电平持续2
1.3 8253的控制字和工作方式
2.8253
可编程定时/计数器8253有两个基本功能,即定时和计 数。除此之外,还可以作为频率发生器、分频器、实时时钟、 单脉冲发生器等。这些功能是通过对8253编程,写入方式 控制字来完成的,8253为每个计数通道提供6种工作方式。
(1)方式0——
0控制
字CW后,计数器输出端OUT立即变成低电平。当写入计数
3) 在计数过程中,可由门控信号GATE控制暂停。当GATE为0时,计 数器暂停计数;当GATE变为1
4) 方式0的OUT信号在计数到0时由低变高,可作为中断请求信号。
1.3 8253的控制字和工作方式
(2)方式1—— 在设定工作方式1和写入计数初值后,OUT输出高电平,
此时并不开始计数。当门控信号GATE变为高电平时,启动计 数,OUT输出变低电平。在整个计数过程中,OUT都维持为 低电平,直到计数到0时,输出变为高电平。因此,输出为一 单脉冲,其低电平的维持时间由装入的计数初值来决定。图所 示为8253工作方式1的时序图。
6)方式5—— 在这种方式下,当写入控制字后,输出端出现高电平 作为初始电平。在写入计数初值后,计数器并不立即开始 计数,而是要由门控脉冲的上升沿来启动计数,这称为硬 件触发。当计数到0时,输出变低电平,又经过一个CLK 脉冲,输出恢复为高电平,这样在输出端得到一个负脉冲 选通信号。计数器停止计数后要等到下次门控脉冲的触发, 才能再进行计数。8253工作方式5的时序如图所示。
《微机原理与接口技术》第九章8253
二、8253的内部结构
数据总线 缓冲器 读/写控 制电路 计数通道
通道控制 寄存器
三、 8253的管脚分配
控制线
数据线 通道选择
通道管脚
四、 8253的编程
8253只有一个控制字,8253的一个方式 控制字只决定一个计数通道的工作模式。 8253 的控制字格式如图所示。共分为 4 部 分,通道选择、计数器读 / 写方式、工作 方式和计数码的选择。
第9章 可编程接口芯片
可编程接口概术 可编程定时/计数器接口芯片8253
可编程接口概术
一个简单的具有输入功能和输出功能的 可编程接口电路如下图,它包括一个输入接口, 其组成主要是八位的三态门;一个输出接口, 其组成主要是八位的锁存器;另外还有八位的 多路转换开关及控制这个开关的寄存器FF。
9. 1 可编程定时/计数器接口芯片8253 一、功能
定时和脉冲信号的处理与接口是完全有别于 并行信号的,其特点是信号形式简单但需要连 续检测,下面介绍的INTEL8253可编程定时/ 计数器就是可以实现所要求这方面功能。8253 内部有3个独立的16位定时/计数器通道。计 数器可按照二进制或十进制计数,计数和定时 范围可在1—65535之间改变,每个通道有6种 工作方式,计数频率可高达2MHz以上。
4、方式3——方波发生器 方式2虽然可以作分频电路,但其输出 是窄脉冲,如果是方波,就只有选方式3
5、方式4——软件触发方式 方式4在工作过程中有以下特点:
a、 门控信号GATE为高电平,计数器开始减 1计数,OUT维持高电平; b、 当计数器减到0,输出端OUT变低,再经 过一个 CLK 输入时钟周期, OUT 输出又变 高。
解:1、电路。 需要两个通道,一个作为计数,选用通道0。另一 个产生1KHz信号,选用通道1。工作原理如下,传感 器电路把物理事件转换为脉冲信号输入到通道0计数, 当记录10000个事件后,通道0计数器溢出,GATE端输 出高电平,这时通道1开始工作,产生1KHz信号推动喇 叭发音。
8253的6种工作方式分析
(2)门控信号GATE为高电平时,计数器工作; 当GATE为低电平时,计数器停止工作,其计数值 保持不变,等GATE为高时继续计数。
3
(3)在计数器工作期间,如果重新写入新的计数 值,计数器按新写入的计数值重新工作。 CLK
WR
GATE OUT N=6
N=2
高 6 5 2 1 0
方式0计数期间,又写入新的计数初值
9
(2)在计数器工作期间,若写入新的计数值,而GATE 一直维持高电平,计数器仍按原计数值计数,直到计数 器回零并在输出一个时钟周期的低电平后,才按新计数 值计数。
CLK
WR
GATE
OUT 3 2
N=3
N=2
高
1 0 2 1 0
10
2
1
四、方式3——方波发生器
CLK
WR
N=4
4 3 2 1 0(4) 3 2 1 0
14
CLK WR GATE OUT 4 3 4 3 2 1 0
N=4
方式5(2) 计数过程中,如果门控信号再次出现上升沿
15
方式5在计数过程中,写入新的计数值,但没有 GATE的上升沿触发脉冲,则当前计数不受影响。 当前计数结束后,再遇到GATE的上升沿,将按新 的初值开始计数。
16
七、六种方式的比较 1、方式0(计数到0时中断)和方式4(软件触发 选通) 相同点:二者都由软件触发(写入计数初值)启 动计数,无自动重装入计数初值的能力。每写入 一次计数初值,启动一次计数过程 。
4
二、方式1——可重复触发的单脉冲触发器
CLK
WR
GATE
OUT
3 2 1 0
CW
N=3
工作特点: (1)控制字写入后,OUT端输出高电平。写入初值后并不 开始计数而是等待GATE上升沿的到来。GATE出现上升沿 后在CLK下降沿开始计数,OUT输出低电平,计数到0时, OUT变高。方式1可产生单拍负脉冲信号,脉冲宽度由计数 初值决定。
微机原理-8253
8253工作方式特点: 8253工作方式特点: 工作方式特点
方式0 在写入控制字后,输出端即变低,计数结束后, 方式0,在写入控制字后,输出端即变低,计数结束后,输 出端由低变高,常用该输出信号作为中断源。 出端由低变高,常用该输出信号作为中断源。 方式1 用来产生单脉冲。 方式1,用来产生单脉冲。 方式2 用来产生序列负脉冲,每个负脉冲的宽度与CLK脉冲 方式2,用来产生序列负脉冲,每个负脉冲的宽度与CLK脉冲 CLK 的周期相同。 的周期相同。 方式3 用来产生连续的方波。方式2和方式3 方式3,用来产生连续的方波。方式2和方式3都实现对时钟 脉冲进行n分频。 脉冲进行n分频。 方式4和方式5 波形相同,都在计数器回0 方式4和方式5的波形相同,都在计数器回0后,从OUT端输出 OUT端输出 一个负脉冲,其宽度等于一个时钟周期。 一个负脉冲,其宽度等于一个时钟周期。 方式0 方式0、1和4,计数初值装进计数器后,仅一次有效。方式2,3 计数初值装进计数器后,仅一次有效。方式2 在减1计数到0值后,8253会自动将计数值重装进计数器 会自动将计数值重装进计数器。 和5,在减1计数到0值后,8253会自动将计数值重装进计数器。
可编程定时器/计数器8253
8253可编程定时器 计数器的主要性能: 可编程定时器/计数器的主要性能 可编程定时器 计数器的主要性能: 个独立的16位计数器 有3个独立的 位计数器 个独立的 工作方式可编程控制 计数脉冲频率0~2MHz 计数脉冲频率 可以按二进制或BCD码计数 可以按二进制或BCD码计数 使用单一+5V电源 电源 使用单一
方式2:频率发生器(n分频器)
CLK
WR
GATE OUT
n=4
4
3 2
1 0 4 3
第八章 可编程计数器定时器8253及其应用
LSB=4 CR=4
CLK GATE
OUT CRCE 4 CRCE 2 4 CRCE 2 4 CRCE 2 4 CRCE 2 4
8253方式3 计数初值为奇数时的波形 CW=16H WR LSB=5
CR=5
CLK GATE OUT
CRCE
5 4
CRCE 2 5 2
CRCE 5 4
CRCE 4 3
8253方式0
两种特殊情况:
中途改变计数初值
CW=10H WR CR=3 CLK GATE OUT CR=3 LSB=3
LSB=3
CRCE 3 2
CRCE 1 3 2
1
0
8253方式1
2、方式1——可编程单稳态输出方式
时序图
CW=12H WR
LSB=3 CR=3
CLK GATE
OUT
CRCE
CRCE 3 2
1
0
8253方式1
工作过程
① 写入控制字,OUT立即变为高,并保持不变。 ② 写计数初值N,只有当GATE形成一个上升沿时,才在
下一个时钟脉冲的下降沿,将n装入实际计数器,同 时OUT由高变为低,开始减1计数(再来一个脉冲)。
③ 计数期间,OUT一直为低;当计数结束(计数值为0)
8253综述
Intel 8253是一种可编程的计数器/定时器芯片。 8253内部具有3个独立的16位计数器通道,通过对
它进行编程,每个计数器通道均有6种工作方式,并 且都可以按2进制或10进制2种格式进行计数,最高 计数频率能达到2MHz。 8253还可用作可编程方波频 率产生器、分频器、程控单脉冲发生器等。
教材第八章内容
第八章 可编程计数器/定时器8253及应用
8253的内部结构与工作方式
8253的内部结构与工作方式8253是一种通用计数器/定时器芯片,由Intel公司于1975年研发。
它在计算机系统中主要用于计时、定时和频率发生的应用。
8253的内部结构和工作方式如下:1.内部结构:8253由一个16位计数器和三个16位计数器/分频器组成。
其中,计数器0和计数器2可以用作定时器,计数器1可以用作计数器或分频器。
-计数器0(工作于16位模式):它可以生成一个周期性的方波信号。
它的输入时钟源可以是外部引脚CLK0或者是计数器2的输出CLK2、计数器0还可以分为两个8位计数器,其下方8位由计数器1的输出加法器控制。
-计数器1(工作于16位模式):它可以将计数器0的输出值与一个可编程的初始计数值进行相加或相减。
它的输出可以用作计数器或分频器。
-计数器2(工作于8位模式):它通常用于分频器功能。
它可以接收来自外部引脚CLK2的时钟输入,并将其分频为不同的输出频率。
2.工作方式:- 定时器模式:8253可以工作在三种不同的定时器模式:比率发生器模式(Mode 0)、硬件单触发模式(Mode 1)和软件可编程单脉冲模式(Mode 2)。
在这些模式下,计数器的工作频率和输出信号的脉冲宽度都可以通过编程来设定。
-计数器模式:计数器1可以通过读取或写入操作来读取或设置计数器的值。
当计数器溢出时,可以触发中断。
-分频器模式:计数器2可以工作为一个分频器,将输入时钟分频为指定的输出频率。
在应用方面,8253的工作方式与内部结构密切相关。
通过编程设置不同的计数器模式和计数器值,可以实现各种计时和频率发生的功能。
例如,可以使用8253来测量时间间隔、生成周期性信号、控制器件的定时操作等。
总结起来,8253的内部结构由三个计数器模块组成,分别用于不同的定时和计数功能。
通过设置不同的模式和计数值,可以实现各种计时和频率发生的应用。
M82C53工作原理
标签:82538253工作原理8253具有3个独立的计数通道,采用减1计数方式。
在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。
当计数脉冲是已知周期的时钟信号时,计数就成为定时。
一、8253内部结构8253芯片有24条引脚,封装在双列直插式陶瓷管壳内。
1.数据总线缓冲器数据总线缓冲器与系统总线连接,8位双向,与CPU交换信息的通道。
这是8253与CPU之间的数据接口,它由8位双向三态缓冲存储器构成,是CP U与8253之间交换信息的必经之路。
2.读/写控制读/写控制分别连接系统的IOR#和IOW#,由CPU控制着访问8253的内部通道。
接收CPU送入的读/写控制信号,并完成对芯片内部各功能部件的控制功能,因此,它实际上是8253芯片内部的控制器。
A1A0:端口选择信号,由CPU输入。
8253内部有3个独立的通道和一个控制字寄存器,它们构成8253芯片的4个端口,CPU可对3个通道进行读/写操作3对控制字寄存器进行写操作。
这4个端口地址由最低2位地址码A1A0来选择。
如表9.3.1所示。
3.通道选择(1) CS#——片选信号,由CPU输入,低电平有效,通常由端口地址的高位地址译码形成。
(2) RD#、WR#——读/写控制命令,由CPU输入,低电平有效。
RD#效时,CPU读取由A1A0所选定的通道内计数器的内容。
WR#有效时,CPU将计数值写入各个通道的计数器中,或者是将方式控制字写入控制字寄存器中。
CPU对8253的读/写操作如表9.3.2所示。
4.计数通道0~2每个计数通道内含1个16位的初值寄存器、减1计数器和1个16位的(输出)锁存器。
8253内部包含3个功能完全相同的通道,每个通道内部设有一个16位计数器,可进行二进制或十进制(BCD码)计数。
采用二进制计数时,最大计数值是FFFFH,采用BCD码计数时。
最大计数值是9999。
与此计数器相对应,每个通道内设有一个16位计数值锁存器。
微机原理与接口技术_第7章8253
§7-1 8253的工作原理 ——8253的内部结构和引脚信号
然后,开始递减计数。即每输入一个时钟脉冲,计数
器的值减1,当计数器的值减为0时,便从OUT引脚输出 一个信号。输出信号的波形主要由工作方式决定,同 时还受到从外部加到GATE引脚上的门控信号控制,它 决定是否允许计数。 当用8253作外部事件计数器时,在CLK脚上所加的计 数脉冲是由外部事件产生的,这些脉冲的间隔可以是 不相等的。 如果要用它作定时器,则CLK引脚上应输入精确的时 钟脉冲。这时,8253所能实现的定时时间,决定于计 数脉冲的频率和计数器的初值,即 定时时间=时钟脉冲周期tc×预臵的计数初值n
16
§7-1 8253的工作原理 ——8253的内部结构和引脚信号 ③引脚 8253的3个计数器都各有3个引脚,它们是:
CLK0~CLK2:计数器0~2的输入时钟脉冲从这里输
入。频率不能大于2MHz。
OUT0~OUT2:计数器0~2的输出端。
GATE0~GATE2:计数器0~2的门控脉冲输入端。
4
第七章 可编程计数器/定时器8253及其应用 ——概述 2. 不可编程的硬件定时 555芯片是一种常用的不可编程器件,加上外接电阻和电 容就能构成定时电路。这种定时电路结构简单,价格 便宜,通过改变电阻或电容值,可以在一定的定时范 围内改变定时时间。但这种电路在硬件已连接好的情 况下,定时时间和范围就不能由程序来控制和改变, 而且定时精度也不高。 3. 可编程的硬件定时 ①可编程定时器/计数器电路利用硬件电路和中断 方法控制定时,定时时间和范围完全由软件来确 定和改变,并由微处理器的时钟信号提供时间基 准,这种时钟信号由晶体振荡器产生,故计时精
12
§7-1 8253的工作原理 ——8253的内部结构和引脚信号 8253输入信号组合的功能表
第五章 定时器计数器8253
1方式----低电平输出(GATE信号上升沿重新计数) 可重复触发的单稳态触发器 1方式为可编程的单稳态工作方式。(平时gate无效) 情况一: (1)写入计数初值后,计数器并不立即开始工作; (2)门控信号GATE有效,才开始工作,使输出OUT变成低电平; (3)直到计数器值减到零后,输出才变高电平。见图6.5中①。 情况二: 21组16 在计数器工作期间,当GATE又出现一个上升沿时,计数器 重新装入原计数初值并重新开始计数,见图见图6.5中②。 21组17 如果工作期间对计数器写入新的计数初值,则要等到当前的 计数值计满回零且门控信号再次出现上升沿后,才按新写入的 计数初值开始工作,见图6.5所示③。21组1 2.
CLK WR
n=6
5 4 3 2 1 0
①
OUT
② ห้องสมุดไป่ตู้ATE
OUT
5
4
4
4
4
3
2
1
0
图6.8:8253的4方式时序波形
6. 5方式------单次负脉冲输出(硬件触发)
加1,计数脉冲是频率恒定的时钟脉冲
一次计数过程是指计数器从初值开始计数到0。
一段定时是指计数器从初值开始计数到0所经
历的时间段。
定时举例:
①计算机及电子系统中需要定时信号,如系统 的日历时钟,一天24小时的计时。动态存储器 的刷新,应用系统的定时中断、定时查询与检 测等称为日时钟。
②在监测系统中,对被测点的定时取样。 ③在读键盘时,为去抖,一般延迟10ms再读。
个字节),采用二进制计数。其初始化程序段为
MOV DX,43H
;命令口 ;2号计数器的初始化命令字 ;写入命令寄存器 ;2号计数器数据口
可编程定时器、计数器8253
通道 (计数器)
工作方式
方式选择控制字
计数初值
0
0(计数结束 中断方式)
ModCr0= 00 01, 000 0B
(=10H)
n0=100
1
3(方波发生 器)
ModCr1= 001 11, 011 0B
(=76H)
n1 =
TOUT1 TCLK1
=
fCLK1 fOUT1
=
2.5 *106 1000
= 2500
4、8253的工作方式
8253提供6种工作方式,遵循以下基本原则: (1)控制字写入计数器8253的控制字寄存器,所有的
控制逻辑电路复位,输出端进入初始状态; (2)初始计数值写入后,经过一个CLK脉冲后,才在
输入脉冲的CLK的下降沿,计数器作减1计数。
定时与计数 本质上是一回事:
不管是定时,还是计数,计数器都是对C3——方波发生器
例: 设8253的端口地址是80H~83H。欲使计数器1输出频率为1KHz 的方波, 从CLK1端输入2.5MHz的时钟脉冲. 试编写初始化程序.
8253使用前,需初始化: 先写入工作方式控制字,再写入计数初值: 方式控制字规定某个通道的工作方式。将控制字写入控制寄存器端口.
2
0(计数结束 中断方式)
ModCr2= 010 11, 000 1B
(=B1H)
n2
=
TOUT2 TCLK 2
=
1 TCLK 2
= fCLK2
= 1000
由图9-23(a), n1 * TCLK1 = TOUT1
其它内容自学
附图:8253的工作方式控制字
控制字——规定某个计数器/通道的工作方式。
8253芯片
00 计数器锁存命令 10 只读/写最高有效字节(高八位) 01 只读/写最低有效字节(低八位) 11 先读写最低有效字节然后读写 最高有效字节
五. 8253的工作方式 方式0——计数结束中 方式0——计数结束中 断 * CW写入,OUT=0; * 写入时常,通道开始计数; * 计数到零,OUT=1;
LSB=3
*单拍脉冲宽度为N; *由GATE重新启动; *计数中,可重新启动;
二. 8253-PIT的工作方式 CLK
GATE OUT 3 2 1 3 2 1 0
*计数中,可改变计数 值,再次启动有效。
方式2——频率发生器 方式2——频率发生器 * 写入控制字OUT=1; * 写入常数立即对CLK计数; * 计数到1,OUT=0; * 一个CLK周期后,OUT=1, 重新计数。
方式3——方波发生器 方式3——方波发生器 * 与方式2的区别在于:输出
为周期是N个CLK脉冲的方波。 * 若计数值为偶数,每个CLK 使计数值减2,计到0,OUT改 变状态,重装计数值开始新的 计数。
CW=16 WR CLK GATE=1 OUT 4 2 4 2 4 2 4 2 LSB=4
*若计数值为奇数,第一个脉冲先减1,以后,每个CLK使计数值减2,计
4. 在计数过程中改变计数值 立即有效是写入计数值后的下一个CLK脉冲后,新的计数值开始起作用。
方式 功能 改变计数值 0 计完最后一个数中断 立即有效 1 硬件再触发单拍脉冲 外部触发后有效 2 速率发生器 计数到 1 后有效 外部触发后有效 3 方波速率发生器 计数到 0 后有效 4 软件触发选通 立即有效 5 硬件触发选通 外部触发后有效
CW=1A WR CLK GATE OUT 3 2 3 2 1 0 FF LSB=3
8253计数器
8253内部包含3个完全相同的计数器/定时器通道的 操作完全是独立的每个通道都包含一个8位的控制字 寄存器、一个16位的计数初值寄存器、一个计数执 行部件(实际的计数器)和一个输出锁存器。
8253的3个计数器都各有3个引脚: (1)CLK0—CLK2计数器0—2的输入时钟脉冲端 (2)OUT0—OUT2计数器0—2的输出端 (3)GATE0—GATE2计数器0—2的门控脉冲输入端
▪ CLK0:307.2kHz ▪ cs: 200H ▪ 地址:控制字寄存器:203H
定时器0:200H 定时器1:201H 定时器2:202H
器高字节 11先读/写计数器低字节, 后读/写高字节
▪ M2M1M0—工作方式选择位
000—方式0 001方式1 X10方式2 X11方式3 110方式3 101方式3
▪ BCD—计数方式选择位
1 BCD码计数
0 2进制计数
8253的初始化步骤
▪ 写入控制字 ▪ 写入计数初值
初值可以是8位,也可以是16位数据。如是16位 数据,先送低8位数据,后送高8位数据。
门控信号控制功能
工作方式 GATE为低电平或下降沿 GATE为上升沿
GATE为高电 平
方式0
禁止计数
允许计数
方式1
从初值开始计数,下 一个时钟后输出变为 低电平
方式2 禁止计数,使输出变高 从初值开始计数
允许计数
方式3 禁止计数,使输出变高 从初值开始计数
允许计数
Байду номын сангаас
方式4
禁止计数
允许计数
方式5
从初值开始计数
控制字寄存器
D7 D6 D5 D4 D3 D2 D1 D0 SC1 SC0 RL1 RL0 M2 M1 M0 BCD
项目2:知识点1芯片 8253
1. 方式0——计数结束中断方式 (Interrupt on Terminal Count)
方式0的工作时序如图 1.2.4(a)(b)(c)所示。
CW = 10 WR CLK GATE OUT
LSB = 4
4
3
2
1
0
FF
a. 方式0 正常计数
图1.2.4(a) 方式0 正常计数
CW = 10 WR CLK GATE OUT
LSB = 4
LSB =5
WR
CLK
GATE OUT
4 3 2 1 5 4 3
图1.2.6(c) 方式2时计数过程中改变计数值
4. 方式3 —— 方波发生器 (Square Wave Generator) 方式3 的工作过程同方式 2 ,只是输出的脉 宽不同,波形如图1.2.7(a)、(b)、(c)、(d)所示。
三、8253的工作方式
8253 是一种面向微机系统的专用接口芯片,它的 每一个计数器都可以按照控制字的规定有 6 种不同的工 作方式, 每种工作方式中都有以下三种情况:
* 正常计数的波形图;
* 正在计数过程中改变门控信号GATE后对整个计
数工作的影响;
* 正在计数的过程中改变计数值对整个计数工作的
内部总线 初值寄存器
控制单元
减1计数器
OUT CLK GATE
输出锁存器
图1.2.2 计数器内部逻辑图
二、8253的引脚信号
8253是 一片具有3 个独立通 道的16位 计数器/定 时器芯片, 使用单一 +5V电源, 24引脚双 列直插式 封装,如 图9.2.3所 示
D0 D1 D2 D3 D4 D5 D6 D7 8 7 6 5 4 3 2 1 9 11 10 CLK0 GATE0 OUT0 CLK1 GATE1 OUT1
和通过对比,熟悉8253和8254和8255芯片的基本功能结构,工作方式及其工作原理
微型计算机原理与接口技术实验报告指导教师:姓名:学号:班级:一:实验时间:2014年11月25二:实验地点:2601号机房三:实验名称:认识8253/8254和8255芯片四:实验目的:通过对比,熟悉8253/8254和8255芯片的基本功能结构、工作方式及其工作原理。
五:实验内容及步骤:(一)8253/8254和8255芯片的基本功能结构(1)8253芯片的基本功能结构:8253芯片有24条引脚,封装在双列直插式陶瓷管壳内。
下图为:可编程定时器8253内部结构框图D0 ~ D7:8位数据线,用来传送控制字和计数初值CS*片选信号,低电平有效。
该信号有效说明系统选中该芯片,此时,CPU可以对本片8253进行读/写操作。
RD*读信号,低电平有效。
该信号有效时,表示CPU正在对8253的一个计数器进行读当前计数值的操作。
WR*写信号,低电平有效。
该信号有效时,表示CPU正在向8253的控制寄存器写入控制字或者向一个计数器写入计数初值。
A1 ~ A0:是用来对3 个计数器通道和控制寄存器进行寻址的引脚,由A1和A0的四种编码来选择四个端口之一。
(2)8254芯片的基本功能结构8254芯片主要由四部分组成:数据总线缓冲器数据总线缓冲器是一个三态、双向8位寄存器主要作用是与cpu进行数据交换,8位数据线D7~D0与CPU的系统数据总线连接,构成CPU和8254之间信息传送的通道,CPU通过数据总线缓冲器向8254写入控制命令、计数初始值或读取计数值。
读写逻辑读写逻辑是芯片的控制部分,编程人员通过控制信号的选择来选择芯片的工作方式。
读/写控制逻辑用来接收CPU系统总线的读、写控制信号和端口选择信号,用于控制8254内部寄存器的读/写操作。
控制字寄存器控制寄存器是一个只能写不能读的8位寄存器,系统通过指令将控制字写入控制寄存器,设定8254的不同工作方式。
计数器8254内部有三个结构完全相同而又相互独立的16位减“1”计数器,每个计数器有六种工作方式,各自可按照编程设定的方式工作。
8253资料
8253芯片基本概述intel8253是NMOS工艺制成的可编程计数器/定时器,有几种芯片型号,外形引脚及功能都是兼容的,只是工作的最高计数速率有所差异,例如8253(2.6MHz),8253-5(5MHz)8253内部有三个计数器,分别成为计数器0、计数器1和计数器2,他们的机构完全相同。
每个计数器的输入和输出都决定于设置在控制寄存器中的控制字,互相之间工作完全独立。
每个计数器通过三个引脚和外部联系,一个为时钟输入端CLK,一个为门控信号输入端GATE,另一个为输出端OUT。
每个计数器内部有一个8位的控制寄存器,还有一个16位的计数初值寄存器CR、一个计数执行部件CE和一个输出锁存器OL。
执行部件实际上是一个16位的减法计数器,它的起始值就是初值寄存器的值,而初始值寄存器的值是通过程序设置的。
输出锁存器的值是通过程序设置的。
输出锁存器OL用来锁存计数执行部件CE的内容,从而使CPU可以对此进行读操作。
顺便提一下,CR、CE和OL都是16位寄存器,但是也可以作8位寄存器来用。
工作原理8253具有3个独立的计数通道,采用减1计数方式。
在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。
当计数脉冲是已知周期的时钟信号时,计数就成为定时。
一、8253内部结构8253芯片有24条引脚,封装在双列直插式陶瓷管壳内。
1.数据总线缓冲器数据总线缓冲器与系统总线连接,8位双向,与CPU交换信息的通道。
这是8253与CPU之间的数据接口,它由8位双向三态缓冲存储器构成,是CPU与8253之间交换信息的必经之路。
2.读/写控制读/写控制分别连接系统的IOR#和IOW#,由CPU控制着访问8253的内部通道。
接收CPU送入的读/写控制信号,并完成对芯片内部各功能部件的控制功能,因此,它实际上是8253芯片内部的控制器。
A1A0:端口选择信号,由CPU输入。
8253内部有3个独立的通道,加上控制字寄存器,构成8253芯片的4个端口,CPU可对3个通道进行读/写操作3对控制字寄存器进行写操作。
8255-8253接口技术
表5-2 并行接口标准Centronics的信号线电源和编号
引脚号 1 2~9 10 11 12 13 14 15 16 17 18 19~30 31 32 33 34 35 36
STB
信
号
方向(对打印机) 入 入 出 出 出 出 入
信 号 功 能 主机对打印机输入数据的选通脉冲 并行数据 0~7 位的信号 向主机发出的传送数据的请求脉冲 表示打印机是否可以接收数据的信号 纸尽 Paper Out or Low 选中信号 自动输纸信号 不用 逻辑地 机架地 不用 对应 1~12 引脚的接地线
态信息读至CPU。
WR:写。低电平有效,输入控制命令字,CPU执行OUT指 令时起作用,将AL中的数据送到PA、PB、或PC;将AL中存放 的控制命令字从CWR口写入。
RESET:复位。高电平有效,输入信号线。它能置PA、PB、 PC为输入方式;清除控制寄存器、输出寄存器和状态寄存器; 屏蔽中断申请;使连接外设的24条信号线呈高阻悬浮状态。在 使用工作方式控制字后可结束复位状态,进入用户设置的工作 方式。
D7 D7=1 特征位
D6
D5
D4
D3 PC7~4: 0=输出 1=输入
D2
D1
D0 PC3~0: 0=输出 1=输入
PA 口方式:00=方式 0 PA 口: 01=方式 1 0=输出 1×=方式 2 1=输入
PB 口方式: PB 口: 0=方式 0 1=方式 1 0=输出 1=输入
——————————A 组—————————
循时序要求。
(5) 有输入和输出两种不同格式的状态字,两种状态字可以 作为程序或中断申请使用,需要使用IN指令从PC口地址读出到 AL中。 (6) PA、PB在作输入和输出使用时的引脚分配和时序都不
8253的工作方式
8253的工作方式1.方式0 计数结束产生中断8253用作计数器时一般工作在方式0。
所谓计数结束产生中断,是指在计数值减到0时,输出端(OUT)产生的输出信号可作为中断申请信号,要求CPU进行相应的处理。
方式0有如下特点:① 当控制字写进控制字寄存器确定了方式0时,计数器的输出(OUT端口)保持低电平,一直保持到计数值减到0。
② 计数初值装入计数器之后,在门控GATE信号为高电平时计数器开始减1计数。
当计数器减到0时输出端OUT才由低变高,此高电平输出一直保持到该计数器装入新的计数值或再次写入方式0控制字为止。
若要使用中断,可以计数到0的输出信号向CPU发出中断请求,申请中断。
③ GATE为计数控制门,方式0的计数过程可由GATE控制暂停,即GATE=1时,允许计数;GATE=0时,停止计数。
GATE 信号的变化不影响输出OUT端口的状态。
④ 计数过程中,可重新装入计数初值。
如果在计数过程中,重新写入某一计数初值,则在写完新计数值后,计数器将从该值重新开始作减1计数。
2.方式1 可编程的单拍负脉冲可编程的单拍负脉冲又称为单稳态输出方式,简称单稳定时。
方式1的特点是:① CPU写入控制字后,计数器输出OUT端为高电平作为起始电平,在写入计数值后计数器并不开始计数(不管此时GATE 是高电平还是低电平),而要由外部门控GATE脉冲上升沿启动,并在上升沿之后的下一个CLK输入脉冲的下降沿开始计数。
② GATE上升沿启动计数的同时,使输出OUT变低,每来一个计数脉冲,计数器作减一计数,直到计数减为 0时,OUT 输出端再变为高电平。
OUT端输出的单拍负脉冲的宽度为计数初值乘以CLK端脉冲周期。
设计数初值为N,则单拍脉冲宽度为N个CLK时钟脉冲周期。
③ 如果在计数器未减到0时,GATE又来一触发脉冲,则由下一个时钟脉冲开始,计数器将从初始值重新作减1计数。
当减至0时,输出端又变为高电平。
这样,使输出脉冲宽度延长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8253的部结构和工作方式8253具有3个独立的计数通道,采用减1计数方式。
在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。
当计数脉冲是已知周期的时钟信号时,计数就成为定时。
一、8253部结构8253芯片有24条引脚,封装在双列直插式瓷管壳。
1.数据总线缓冲器数据总线缓冲器与系统总线连接,8位双向,与CPU交换信息的通道。
这是8253与CPU之间的数据接口,它由8位双向三态缓冲存储器构成,是CPU与8253之间交换信息的必经之路。
2.读/写控制读/写控制分别连接系统的IOR#和IOW#,由CPU控制着访问8253的部通道。
接收CPU送入的读/写控制信号,并完成对芯片部各功能部件的控制功能,因此,它实际上是8253芯片部的控制器。
A1A0:端口选择信号,由CPU输入。
8253部有3个独立的通道和一个控制字寄存器,它们构成8253芯片的4个端口,CPU可对3个通道进行读/写操作3对控制字寄存器进行写操作。
这4个端口地址由最低2位地址码A1A0来选择。
如表9.3.1所示。
3.通道选择(1) CS#——片选信号,由CPU输入,低电平有效,通常由端口地址的高位地址译码形成。
(2) RD#、WR#——读/写控制命令,由CPU输入,低电平有效。
RD#效时,CPU 读取由A1A0所选定的通道计数器的容。
WR#有效时,CPU将计数值写入各个通道的计数器中,或者是将方式控制字写入控制字寄存器中。
CPU对8253的读/写操作如表9.3.2所示。
4.计数通道0~2每个计数通道含1个16位的初值寄存器、减1计数器和1个16位的(输出)锁存器。
8253部包含3个功能完全相同的通道,每个通道部设有一个16位计数器,可进行二进制或十进制(BCD码)计数。
采用二进制计数时,最大计数值是FFFFH,采用BCD码计数时。
最大计数值是9999。
与此计数器相对应,每个通道设有一个16位计数值锁存器。
必要时可用来锁存计数值。
当某通道用作计数器时,应将要求计数的次数预置到该通道的计数器中、被计数的事件应以脉冲方式从CLK端输入,每输入一个计数脉冲,计数器容减“1”,待计数值计到“0”。
OUT端将有输出。
表示计数次数到。
当某个通道用作定时器时。
由CLK输入一定频率的时钟脉冲。
根据要求定时的时间长短确定所需的计数值。
并预置到计数器中,每输入一个时钟脉冲,计数器容减“1”,待计数值计到“0”。
OUT将有输出,表示定时时间到。
允许从CLK输入的时钟频在1~2MHz围。
因此,任一通道作计数器用或作定时器用,其部操作完全相同,区别仅在于前者是由计数脉冲进行减“1”计数。
而后者是时钟脉冲进行减“1”计数。
作计数器时,要求计数的次数可直接作为计数器的初值预置到减“1”计数器中。
作定时器时,计数器的初值即定时系数应根据要求定时的时间进行如下运算才能得到:定时系数=需要定时的时间/时钟脉冲周期①设置通道:向方式控制字寄存器端口写入方式选择控制字,用于确定要设置的通道及工作方式;②计数/定时:向通道写入计数值,启动计数操作;③读取当前的计数值:向指定通道读取当前计数器值时,8253将计数器值存入锁存器,从锁存器向外提供当前的计数器值,计数器则继续作计数操作。
④计数到:当计数器减1为0时,通过引脚OUT i向外输出“到”的脉冲信号。
计数初值输入存放在初值寄存器中,计数开始或重装入时被复制到计数器中。
锁存器在非锁存状态,其值随计数器的变化而变化;一旦锁存了计数器的当前值,直到锁存器值被读取后才能解除锁存状态。
5.方式选择控制字二、8253的通道工作方式8253中各通道可有6种可供选择的工作方式,以完成定时、计数或脉冲发生器等多种功能。
8253的各种工作方式如下:1.方式0:计数结束则中断工作方式0被称为计数结束中断方式,它的定时波形如图9.3.4所示。
当任一通道被定义为工作方式0时,OUT i输出为低电平;若门控信号GATE为高电平,当CPU利用输出指令向该通道写入计数值WR#有效时,OUT i仍保持低电平,然后计数器开始减“1”计数,直到计数值为“0”,此刻OUT i将输出由低电平向高电平跳变,可用它向CPU发出中断请求,OUT i端输出的高电平一直维持到下次再写入计数值为止。
在工作方式0情况下,门控信号GATE用来控制减“1”计数操作是否进行。
当GATE=1时,允许减“1”计数;GATE=0时,禁止减“1”计数;计数值将保持GATE 有效时的数值不变,待GATE重新有效后,减“1”计数继续进行。
显然,利用工作方式0既可完成计数功能,也可完成定时功能。
当用作计数器时,应将要求计数的次数预置到计数器中,将要求计数的事件以脉冲方式从CLK i端输入,由它对计数器进行减“1”计数,直到计数值为0,此刻OUT i输出正跳变,表示计数次数到。
当用作定时器时,应把根据要求定时的时间和CLK i的周期计算出定时系数,预置到计数器中。
从CLK i,输入的应是一定频率的时钟脉冲,由它对计数器进行减“1”计数,定时时间从写入计数值开始,到计数值计到“0”为止,这时OUT i输出正跳变,表示定时时间到。
有一点需要说明,任一通道工作在方式0情况下,计数器初值一次有效,经过一次计数或定时后如果需要继续完成计数或定时功能,必须重新写入计数器的初值。
2.方式1:单脉冲发生器工作方式1被称作可编程单脉冲发生器,其定义波形如图9.3.5。
进入这种工作方式,CPU装入计数值n后OUT i输出高电平,不管此时的GATE输入是高电平还是低电平,都不开始减“1”计数,必须等到GATE由低电平向高电平跳变形成一个上升沿后,计数过程才会开始。
与此同时,OUT i输出由高电平向低电平跳变,形成了输出单脉冲的前沿,待计数值计到“0”,OUT i输出由低电平向高电平跳变,形成输出单脉冲的后沿,因此,由方式l所能输出单脉冲的宽度为CLK i周期的n倍。
如果在减“1”计数过程中,GATE由高电平跳变为低电乎,这并不影响计数过程,仍继续计数;但若重新遇到GATE的上升沿,则从初值开始重新计数,其效果会使输出的单脉冲加宽,如教材图9-22(b)中的第2个单脉冲。
这种工作方式下,计数值也是一次有效,每输入一次计数值,只产生一个负极性单脉冲。
3.方式2:速率波发生器工作方式2被称作速率波发生器,其定时波形如图9.3.6所示。
进入这种工作方式,OUT i输出高电平,装入计数值n后如果GATE为高电平,则立即开始计数,OUT i保持为高电平不变;待计数值减到“1”和“0”之间,OUT i将输出宽度为一个CLK i周期的负脉冲,计数值为“0”时,自动重新装入计数初值n,实现循环计数,OUT i将输出一定频率的负脉冲序列,其脉冲宽度固定为一个CLK i周期,重复周期为CLK i周期的n倍。
如果在减“1”计数过程中,GATE变为无效(输入0电平),则暂停减“1”计数,待GATE恢复有效后,从初值n开始重新计数。
这样会改变输出脉冲的速率。
如果在操作过程中要求改变输出脉冲的速率,CPU可在任何时候,重新写人新的计数值,它不会影响正在进行的减“1”计数过程,而是从下一个计数操作用期开始按新的计数值改变输出脉冲的速率。
4.方式3:方波发生器工作方式3被称作方波发生器,其定时波型如图9.3.7所示。
任一通道工作在方式3,只在计数值n为偶数,则可输出重复周期为n、占空比为1:1的方波。
进入工作方式3,OUT i输出低电平,装入计数值后,OUT i立即跳变为高电平。
如果当GATE为高电平,则立即开始减“1”计数,OUT i保持为高电平,若n为偶数,则当计数值减到n/2时,OUT i跳变为低电平,一直保持到计数值为“0”,系统才自动重新置入计数值n,实现循环计数。
这时OUT i端输出的周期为n×CLK i周期,占空比为1:1的方波序列;若n为奇数,则OUT i端输出周期为n×CLK i周期,占空比为((n+1)/2)/((n-1)/2)的近似方波序列。
如果在操作过程中,GATE变为无效,则暂停减“1”计数过程,直到GATE再次有效,重新从初值n开始减“l”计数。
如果要求改变输出方波的速率,则CPU可在任何时候重新装入新的计数初值n,并从下一个计数操作周期开始改变输出方波的速率。
5.方式4:软件触发方式计数工作方式4被称作软件触发方式,其定时波形如图9.3.8所示。
进入工作方式4,OUT i 输出高电平。
装入计数值n后,如果GATE为高电平,则立即开始减“1”计数,直到计数值减到“0”为止,OUT i输出宽度为一个CLK i周期的负脉冲。
由软件装入的计数值只有一次有效,如果要继续操作,必须重新置入计数初值n。
如果在操作的过程中,GATE 变为无效,则停止减“1”计数,到GATE再次有效时,重新从初值开始减“1”计数。
显然,利用这种工作方式可以完成定时功能,定时时间从装入计数值n开始,则OUT i 输出负脉冲(表示定时时间到),其定时时间=n×CLK周期。
这种工作方式也可完成计数功能,它要求计数的事件以脉冲的方式从CLK i输入,将计数次数作为计数初值装入后,由CLK i端输入的计数脉冲进行减“1”计数,直到计数值为“0”,由OUT t端输出负脉冲(表示计数次数到)。
当然也可利用OUT j向CFU发出中断请求。
因此工作方式4与工作方式0很相似,只是方式0在OUT i端输出正阶跃信号、方式4在OUT i端输出负脉冲信号。
6.方式5:硬件触发方式计数工作方式5被称为硬件触发方式,其定时波形如图9.3.9所示。
进入工作方式5,OUT i 输出高电平,硬件触发信号由GATE端引入。
因此,开始时GATE应输入为0,装入计数初值n后,减“1”计数并不工作,一定要等到硬件触发信号由GATE端引入一个正阶跃信号,减“1”计数才会开始,待计数值计到“0”,OUT i将输出负脉冲,其宽度固定为一个CLK i周期,表示定时时间到或计数次数到。
这种工作方式下,当计数值计到“0”后,系统将自动重新装入计数值n,但并不开始计数,一定要等到由GATE端引入的正跳沿,才会开始进行减“1”计数,因此这是一种完全由GATE端引入的触发信号控制下的计数或定时功能。
如果由CLK i输入的是一定频率的时钟脉冲,那么可完成定时功能,定时时间从GATE上升沿开始,到OUT i端输出负脉冲结束。
如果从CLK i端输入的是要求计数的事件,则可完成计数功能,计数过程从GATE 上升沿开始,到OUT i输出负脉冲结束。
GATE可由外部电路或控制现场产生,故硬件触发方式由此而得名。
如果需要改变计数初值,CPU可在任何时候用输出指令装入新的计数初值m,它将不影响正在进行的操作过程,而是到下一个计数操作周期才会按新的计数值进行操作。