热管换热器原理介绍
换热器原理介绍
换热器基础知识简单计算板式换热器板片面积选用板式换热器就是要选择板片的面积的简单方法:Q=K×F×Δt,Q——热负荷K——传热系数F——换热面积Δt——传热对数温差传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。
最后算出的板换的面积要乘以一定的系数如1.2。
换热器的分类与结构形式换热器作为传热设备被广泛用于耗能用量大的领域。
随着节能技术的飞速发展,换热器的种类越来越多。
适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理可分为:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器按用途分为:1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2、预热器预热器预先加热流体,为工序操作提供标准的工艺参数。
3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4、蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
三、按换热器的结构可分为:可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。
2024年换热器培训教程
换热器培训教程一、引言换热器是工业生产过程中重要的热能交换设备,广泛应用于石油、化工、制药、食品、电力等领域。
换热器的设计、制造、安装和维护对企业的生产效率和经济效益具有重要影响。
为了提高换热器操作人员的技术水平,本教程将详细介绍换热器的工作原理、类型、选型、维护等方面的知识,帮助学员更好地理解和掌握换热器的操作技能。
二、换热器的工作原理换热器是利用两种不同温度的流体之间的热量交换来实现热量传递的设备。
其工作原理是利用流体的温差作为驱动力,通过传热表面的热量传递,使高温流体降温,低温流体升温。
换热器主要由壳体、管束、管板、法兰等组成。
流体在管内流动,通过管壁与壳程流体进行热量交换,完成热能的传递。
三、换热器的类型及选型1.管壳式换热器:管壳式换热器是应用最广泛的一种换热器,由壳体、管束、管板、法兰等组成。
根据管程和壳程的流体流动方式,可分为顺流、逆流、错流等形式。
2.板式换热器:板式换热器由一系列波纹形板片组成,板片之间形成流道,流体在板片间流动进行热量交换。
板式换热器具有传热效率高、占地面积小、清洗方便等优点。
3.空气冷却器:空气冷却器是利用空气作为冷却介质,对流体进行冷却的设备。
其主要由散热器、风机、电机等组成。
空气冷却器适用于高温、高压、腐蚀性等特殊工况。
4.螺旋板式换热器:螺旋板式换热器由两张波纹形板片相互缠绕而成,形成一系列螺旋形流道。
流体在螺旋形流道内流动,实现热量交换。
螺旋板式换热器具有结构紧凑、传热效率高等优点。
5.热管换热器:热管换热器利用热管技术,将热源和热汇之间的热量传递。
热管内部充满工作介质,在热源处蒸发,在热汇处凝结,实现热量传递。
热管换热器具有传热效率高、等温性好等优点。
1.流体的性质:包括流体的温度、压力、流量、粘度、密度等。
2.工艺要求:包括换热器的传热效率、压降、结构形式等。
3.设备成本:包括换热器的制造成本、安装成本、运行成本等。
4.使用寿命:换热器的材料、制造工艺、维护保养等。
热管换热器的工作原理
热管换热器的工作原理热管换热器是一种利用液体和蒸汽的相变过程来传递热量的设备。
它主要由热管、冷凝器和蒸发器组成。
热管是热管换热器的核心部件,通常由内部镶嵌有多个鳍片的金属管组成。
热管内填充有一种称为工作介质的特殊液体,通常为蒸发液体。
热管的两端分别连接一个冷凝器和一个蒸发器。
工作原理如下:1. 脉动蒸发:当热管的蒸发器端加热时,工作介质在蒸发器内迅速汽化。
汽化的工作介质变成蒸汽,并迅速上升到热管的冷凝器端。
2. 相变传热:在冷凝器端,蒸汽与冷凝器内的冷凝介质接触,传热给冷凝介质。
蒸汽在冷凝器内冷却,并逐渐凝结成液体。
3. 导热返回:在冷凝成液体后,冷凝介质流入热管的蒸发器端,通过鳍片的导热作用,将热量传递给蒸发器。
4. 重复循环:液体工作介质在蒸发器中再次汽化,蒸汽上升到冷凝器端再次冷凝,循环往复。
热管换热器的工作原理可基于两个基本原理来解释。
第一个是相变传热原理。
当液体在蒸发器内蒸发时,蒸汽所需的潜热可以从周围环境吸收,从而降低周围环境的温度。
相对应的,在冷凝器端,蒸汽释放出潜热,将热量传递给冷凝介质。
由于相变过程的热传导非常高效,所以热管换热器的热传输效率很高。
第二个原理是液体的循环工作原理。
热管内的工作介质在蒸发器端蒸发成蒸汽后,蒸汽的上升作用和重力的配合使得液体循环并将蒸汽带到冷凝器端。
液体在冷凝器端冷却凝结后,由于重力作用,液体流回蒸发器,再次蒸发成蒸汽,循环往复完成热量的传递。
热管换热器的工作原理使其具有以下优点:1. 高热传输效率:利用相变传热和液体循环工作原理,热管换热器的热传输效率高于传统的热交换器。
2. 快速响应:由于热管内的蒸汽和液体循环快速,热管换热器能够在很短的时间内响应温度的变化。
3. 节省空间:由于热管换热器可以实现高热传输效率,所以相同换热功率的热管换热器相对较小,占用的空间较少。
4. 不需要外部电源:热管换热器的工作原理不依赖于外部电源,因此可以在没有电力供应的环境下运行。
九种换热器的工作原理
九种换热器的工作原理换热器是在不同温度的两种或两种以上流体间实现热量传递的节能设备,对于大面积供热而言,换热器的存在必不可少。
按照换热器的传热方式,换热器可分为三大类:直接接触式换热器,也叫混合式换热器,是冷热流体进行直接接触并换热的设备。
通常情况下,直接接触的两种流体是气体和汽化压力较低的液体;蓄能式换热器的工作原理,是利用固体物质的导热特性,具体而言,热介质先将固体物质加热到一定温度,冷介质再从固体物质获得热量,通过此过程可实现热量的传递;间壁式换热器,也是利用了中介物的热传导,冷、热两种介质被固体间壁隔开,并通过间壁进行热量交换。
对于供热企业而言,间壁式换热器的应用最为广泛。
根据结构的不同,它还可划分为管式换热器、板式换热器和热管换热器。
1、管壳式换热器管壳式换热器又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
管壳式换热器根据所采用的补偿措施,管壳式换热器可分为固定管板式换热器、浮头式换热器、U型管式换热器、填料函式换热器等四种类型。
2、固定管板式换热器固定管板式换热器是管壳式换热器的一种。
固定管板式换热器两端的管板采用焊接的方式与壳体连接,主要由外壳、管板、管束、顶盖(封头)等部件构成。
固定管板式换热器的优点是:结构简单;在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。
固定管板式换热器的缺点是:壳程不能进行机械清洗;当换热管与壳体的温差较大(大于50℃)时会产生温差应力,解决措施是在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高;只适用于流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的工作场合。
3、浮头式换热器浮头换热器是管壳式换热器的一种,它有一端管板不与外壳相连,可以沿轴向进行自由浮动,也称为浮头。
热管换热器工作原理及特点-概述说明以及解释
热管换热器工作原理及特点-概述说明以及解释1.引言1.1 概述热管换热器是一种高效换热设备,利用热管作为传热介质,通过在换热器内部的传热管路中进行传热工作,实现热量的传递和换热。
热管换热器具有结构简单、能耗低、换热效率高等特点,在工程领域得到了广泛的应用。
本文将重点介绍热管换热器的工作原理、特点以及在工程应用中的优势,希望通过深入的研究和分析,能为读者提供更加全面和深入的了解,为今后热管换热器在工程实践中的应用提供借鉴和参考。
1.2 文章结构本文将首先介绍热管换热器的工作原理,包括其基本工作原理和传热过程,以帮助读者深入了解热管换热器的工作机制。
接着,我们将探讨热管换热器的特点,包括其高效换热、结构简单等优势,以便读者对热管换热器在工程中的应用有更全面的认识。
最后,我们将重点讨论热管换热器在工程应用中的优势,以展示其在实际工程中的重要性和价值。
通过对热管换热器的原理、特点和应用优势进行全面介绍,本文旨在帮助读者深入理解和应用热管换热器技术。
1.3 目的:本文旨在深入介绍热管换热器的工作原理及特点,探讨其在工程应用中的优势。
通过对热管换热器的全面解析,旨在帮助读者全面了解该换热器的优点和适用领域,为工程实践提供参考和指导。
同时,通过对热管换热器未来发展前景的展望,进一步探讨该技术在换热领域的潜力和发展方向。
希望本文能为读者提供一份全面且深入的研究参考,促进热管换热器技术的不断创新与发展。
2.正文2.1 热管换热器的工作原理热管换热器是一种利用热管换热原理实现热量转移的换热设备。
其工作原理是通过热管内介质的相变过程来实现热量的传递。
热管换热器主要包括蒸发段和冷凝段两部分。
在蒸发段,工作介质(如液态水)受热后蒸发成为蒸汽,蒸汽通过热管的热传递作用被传输到冷凝段。
在冷凝段,蒸汽失去热量后冷凝成为液态介质,释放出的热量再次通过热管传递到冷却介质。
通过这样的过程,热管换热器实现了热量的高效传递,并具有一定的节能效果。
热管换热器的两相流模型与耦合传热的研究
热管换热器的两相流模型与耦合传热的研究一、本文概述随着工业技术的快速发展,热管换热器作为一种高效节能的传热设备,在能源、化工、航空航天等领域得到了广泛应用。
热管换热器以其独特的两相流运行机制和优良的传热性能,成为现代传热技术的重要研究方向。
本文旨在深入探讨热管换热器的两相流模型与耦合传热机制,以期为优化热管换热器的设计、提高传热效率提供理论支撑和实践指导。
本文首先将对热管换热器的基本工作原理进行简要介绍,阐述两相流在热管中的流动特性及其对传热性能的影响。
随后,将重点讨论热管换热器的两相流模型,包括流动模型的建立、模型的数值求解方法以及模型的验证与改进等方面。
在此基础上,本文将进一步分析热管换热器中的耦合传热过程,探讨温度场、流场、热阻等因素之间的相互作用及其对传热效率的影响。
通过本文的研究,希望能够揭示热管换热器两相流与耦合传热的内在规律,为热管换热器的优化设计和性能提升提供理论依据。
本文的研究成果也将为其他相关领域的研究提供借鉴和参考,推动传热技术的不断进步和发展。
二、热管换热器两相流模型研究热管换热器作为一种高效的传热设备,其内部涉及到复杂的两相流动和传热过程。
为了更好地理解和优化热管换热器的性能,本研究针对其两相流模型进行了深入的研究。
我们建立了热管换热器的两相流数学模型。
该模型综合考虑了流体的流动特性、相变过程以及热传导等因素。
通过引入适当的控制方程,如质量守恒方程、动量守恒方程和能量守恒方程,我们成功描述了热管内部液态和汽态工质的流动与传热过程。
接着,我们利用数值计算方法对模型进行了求解。
通过选择合适的数值算法和边界条件,我们得到了热管内部流场和温度场的分布。
分析结果表明,两相流的存在对热管的传热性能有着显著的影响。
特别是在热管的蒸发段和冷凝段,两相流的存在使得传热过程更加复杂,但也有效地提高了热管的传热效率。
我们还对模型进行了实验验证。
通过搭建热管换热器实验平台,我们测量了不同工况下热管的传热性能。
热管及热管式换热器的研究
热管及热管式换热器的研究文章来源:中国换热器网添加人:admin 添加时间:2008-12-10<DIV><FONT face=Verdana>热管及热管式换热器的研究</FONT></DIV><DIV> </DIV><DIV><FONT face=Verdana> 能源是发展国民经济的重要物质基础,是人类赖以生存的必要条件,能源的开发和利用程度直接影响着国民经济的发展和人民物质文化生活水平的提高,余热回收是合理利用能源、节约能源、提高能源利用率等方面不可忽视的问题。
热管是一种具有高效传热性能的元件,它可利用很小的截面积远距离传输大量热量而无需外加动力。
热管式换热器具有输热能力大、均温性能优良、传热方向可逆、热流密度可变、适应环境能力较强、阻力损失较小等优点,所以热管式换热器能较大限度的回收利用低品位余热。
< BR> 1热管及热管式换热器的发展<BR> 1.1热管工作原理及特点<BR> 热管是依靠自身内部工作液体相变来实现传热的元件,一般由管壳、吸液芯、工质组成,管壳通常由金属制成,两端焊有端盖,管壳内壁装有一层由多孔性物质构成的管芯(若为重力式热管则无管芯),管内抽真空后注入某种工质,然后密封。
热管可分为蒸发段、绝热段和冷凝段三个部分,当热源在蒸发段对其供热时,工质自热源吸热汽化变为蒸汽,蒸汽在压差的作用下沿中间通道高速流向另一端,蒸汽在冷凝段向冷源放出潜热后冷凝成液体;工质在蒸发段蒸发时,其气液交界面下凹,形成许多弯月形液面,产生毛细压力,液态工质在管芯毛细压力和重力等的回流动力作用下又返回蒸发段,继续吸热蒸发,如此循环往复,工质的蒸发和冷凝便把热量不断地从热端传递到冷端。
<BR> 由于热管是利用工质的相变换热来传递热量,因此热管具有很大的传热能力和传热效率。
什么是热管换热器
什么是热管换热器热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。
热管式换热器:是指利用热管原理实现热交换的换热器。
有若干支热管组成的换热管束通过中隔板置于壳体内构成,中热管式换热器是指利用热管原理实现热交换的换热器。
有若干支热管组成的换热管束通过中隔板置于壳体内构成,中隔板与热管加热段、冷却段及相应的壳体内腔分别形成热、冷流体通道,热、冷流体在通道申横掠热管束连续流动实现传热。
多用于余热回收工程。
热管换热器涉及换热器结构的改进,尤其是热烟道上的换热器结构的改进;解决以往烟道中换热器传热效率低的问题;该热管换热器是由炉体、集灰池墙体、隔板、隔墙板、换热管、挡水板、进、出水管构成,其主要改进是在下部构成集灰池,在上面的储水池中安装挡水板;其优点是消除受热介质直流现象,使受热介质受热均匀,提高传热效率,再加上在下部设置了集灰池,使换热管减少灰尘的沉积,提高了传热效率;该热管换热器可以广泛的安置在热烟道中,尤其是安置在窑炉排烟道中回收利用余热效果明显,受热介质可以取暖、可以洗浴。
热管换热器的应用热管换热器的构造原理:热管是一种高效传热元件,其导热能力比金属高几百倍至数千倍。
热管还具有均温特性好、热流密度可调、传热方向可逆等特性。
用它组成换热器不仅具有热管固有的传热量大、温差小、重量轻体积小、热响应迅速等特点,而且还具有安装方便、维修简单、使用寿命长、阻力损失小、进、排风流道便于分隔、互不渗漏等特点。
热管是由内壁加工有槽道的两端密封的铝(轧)翅片管经清洗并抽成高真空后注入最佳液态工质而成,随注入液态工质的成分和比例不同,分为KLS低温热管换热器、GRSC-A 中温热管换热器、GRSC-B高温热管换热器。
热管一端受热时管内工质汽化,从热源吸收汽化热,汽化后蒸汽向另一端流动并遇冷凝结向散热区放出潜热。
热管的换热基本知识及其换热计算
热管的换热原理及其换热计算一热管简介热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。
热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。
其结构如图所示:热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。
蒸发段的饱和蒸汽压随着液体温度上升而升高。
在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。
放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。
冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。
如此往复,不断地将热量从蒸发段传至冷凝段。
绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。
在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。
根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。
基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。
(1) 产品展示(2) 产品参数说明项目技术参数热管长度> 100mm主体材料铜管毛细结构槽沟/烧结芯/丝网管工作介质冷媒设计工作温度30~200℃设计使用倾角> 5°传热功率50~1000w (根据实际产品规格型号) 热阻系数< 0.08℃/W (参考值)传热功率测试原理测试总体要求1)加热功率有功率调节仪控制输入;2)热管保持与水平台面α角度(根据具体应用定);3)管壁上监测点的温度变化在5min内小于0.5℃认为传热达到稳定状态,记录此时传热功率为最大传热功率。
热管式换热器工作原理
热管式换热器工作原理
热管式换热器是用来转换热量的设备。
它通过可靠的物理接触,
可以将流经其中的冷热流体的温度差转换为有效的传热量。
热管式换
热器的基本工作原理是将两个不同温度的流体进行热交换。
在管路中,冷热流体分别进入上部和下部的两个室,流量的大小和温度的不同密
切相关。
这样,当温热的流体流经热管,其热能被传递到冷流体中,
冷流体接受了热能,其温度会随之升高。
同样,当冷流体流经热管时,其温度也会随之降低,温热的流体则可以继续从上部室得到热能。
在传热单元中,冷热流体分别由上部室和下部室流入,并在换热
器壁上交换温度。
换热器壁上的冷热差热量会阻碍流体的流动,在一
定程度上减慢流体的流速,减少潜热的损失。
同时,热管式换热器的
物理构型和结构也有助于减少热量的损失。
两侧流体在换热器中的反
复往复运动,有效地实现了传热过程,使冷热流体的温度差得到控制
和调节,最终达到热能转换效果。
热管式换热器具有以下优点:结构紧凑,安装和拆卸简便;操作
可靠,耗能低;使用温差低,温差高可以获得较好的高热量效果;具
有传热效率高,不需要额外的加热设备;热能转换效率高,温度变化
范围广等优点。
因此,热管式换热器深受工业市场的欢迎,得到了广
泛的应用。
热管式通风换热器热回收的实验与研究
热管式通风换热器热回收的实验与研究摘要:针对普通住宅日常通风换气的特点设计出一台小型热虹吸管式通风换热器的样机,并利用热虹吸管换热器对房间通风系统中的冷量(热量)进行热回收实验研究。
通过实验测试了该换热器在不同风量和新、排风温差条件下的热回收效率,以及新、排风的压力损失随风速的变化情况。
实验结果表明,新风的温降(升)随着新、排风温差的增大而增大,随着风量的增大而减小;该样机的最大热回收效率在夏季可达70%,冬季为63%,新、排风的最大阻力损失仅为25Pa,节能效果显著。
随着生活水平的提高,空调在人们生产生活中的应用越来越广泛,然而在享受空调带给我们的舒适环境的同时,却也让我们付出了许多代价。
一方面,越来越多的空调带来的电能消耗让国家能源吃紧,拉闸限电在各大城市频频发生;另一方面,空调所带来的“空调综合症”又严重威胁着人们的身体健康。
为了改善室内空气品质,最普遍的做法就是直接开窗通风换气,但这势必会增加空调负荷和采暖能耗。
现阶段,随着我国加快建设节约型社会的步伐,各项节能措施也相继出台。
关于建筑能耗大户的空调和供热方面的改革势在必行。
如果能将房间通风换气时的余热进行回收并预热新风,则在改善室内空气品质的同时,也能使室内空调负荷和采暖能耗大大地降低。
在众多热回收方式中,由高效传热元件热管组成的热管换热器因其具有结构简单、耗材少、新排风之间无交叉污染、换热效率高、压力损失小以及动力消耗少等优点,正得到越来越广泛的应用[1]。
但目前利用热管换热器直接在普通建筑进行通风换气和热回收的应用性研究[2-3]相对较少,缺少较为真实全面的实验数据。
如果能利用热管的优点,将其应用在普通住宅通风换气时的余热回收,将能克服和改善现有的新风换气机普遍存在的换热系数不高、辅助动力过大、配套设施过多、成本过高等问题。
鉴于市场上还未有此类成型产品,本研究根据实际情况加工出一台适合于进行普通房间热回收的样机,通过实验测试其在不同的风量和室内外温差条件下的热回收效果。
热管的换热原理及其换热计算
热管的换热原理及其换热计算一热管简介热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。
热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。
其结构如图所示:热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。
蒸发段的饱和蒸汽压随着液体温度上升而升高。
在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。
放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。
冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。
如此往复,不断地将热量从蒸发段传至冷凝段。
绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。
在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。
根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。
基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。
(1) 产品展示(2) 产品参数说明项目技术参数热管长度> 100mm主体材料铜管毛细结构槽沟/烧结芯/丝网管工作介质冷媒设计工作温度30~200℃设计使用倾角> 5°传热功率50~1000w (根据实际产品规格型号) 热阻系数< 0.08℃/W (参考值)传热功率测试原理测试总体要求1)加热功率有功率调节仪控制输入;2)热管保持与水平台面α角度(根据具体应用定);3)管壁上监测点的温度变化在5min内小于0.5℃认为传热达到稳定状态,记录此时传热功率为最大传热功率。
热管换热器设计说明书
第一章热管及热管换热器的概述热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。
具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。
将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。
热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。
随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中。
热管气-气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。
热管气-气换热器是目前应用最广泛的一种气-气换热器。
我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。
大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气-气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。
据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。
如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6]。
利用热管气-气换热器代替传统的管壳式气-气换热器,一方面,能够大大提高预热空气进入炉内的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气-气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低。
热管及其应用热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。
热管换热器bes的工作原理
热管换热器bes的工作原理
热管换热器(BES)的工作原理是基于热管技术,是一种高效的热交换设备。
其工作原理可以简要概括为:热管内部的工作介质在受热时蒸发并形成蒸汽,蒸汽在压力作用下在管内传输,流向冷端。
在冷端,蒸汽失去热量,重新凝结成液体。
这一过程中释放出的热量被传递到热管的外表面,然后再传递给外部环境或需要加热的物体。
热管内部的工作介质循环流动,不需要任何机械泵或风扇来推动,这是热管式换热器的一大优势。
这种自然循环的过程使得热管能够高效传递热量,而且可以在各种环境条件下工作,包括重力微弱的太空中。
而BES换热器的工作原理是将流体引导进入多个相互交错的块中,流体在
块的内部形成旋流运动,从而增加了热传递表面积,提高了热传递效率。
如需了解更多关于热管换热器(BES)的工作原理,建议咨询专业人士获取
帮助。
各种换热器工作原理
1.套管式换热器1^1每一段套管称为〃一程",程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。
热量通过内管管壁由一种流体传递给另一种流体。
通常,热流体(A流体)由上部引入,而冷流体(B流体)则由下部引入。
套管中外管的两端与内管用焊接或法兰连接。
内管与U形肘管多用法兰连接,便于传热管的清洗和增减。
每程传热管的有效长度取4~7米。
这种换热器传热面积最高达18平方米,故适用于小容量换热。
优点:结构简单,能耐高压。
传热面积可根据需要增减,应用方便。
缺点:管间接头多,易泄露。
占地面积较大,单位传热面消耗金属量大。
2、浮头式换热器浮头式换热器浮头端结构由圆筒、外头盖侧法兰、浮头管板、钩圈、浮头盖、外头盖及丝孔、钢圈等组成。
钩圈式浮头的详细结构见下图所示。
盖娜去兰外头盖法兰B型钩圈浮头盖法兰优点:当换热管与壳体有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力。
管束可从壳体内抽出,便于管内和管间的清洗。
缺点:结构较复杂,用材量大,造价高。
浮头盖与浮动管板之间若密封不严,发生内漏,造成两种介质的混合。
3、沉浸蛇管换热这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中。
优点:结构简单,能承受高压,可用耐腐蚀材料制造。
缺点:容器内液体湍动程度低,管外换热系数小为提高传热系数,容器内可安装搅拌器。
板式换热器是液一液、液一汽进行热交换的理想设备。
它是由具有一定波纹形状的一系列金属片叠装而成的一种新型高效换热器。
板式换热器的结构原理:可拆卸板式换热器是由许多冲压有波纹薄板按一定间隔,四周通过垫片密封,并用框架和压紧螺旋重叠压紧而成,板片和垫片的四个角孔形成了流体的分配管和汇集管,同时又合理地将冷热流体分开,使其分别在每块板片两侧的流道中流动,通过板片进行热交换。
5、具有补偿圈的换热器由挡板、补偿圈和放热嘴构成的换热器。
当流体为高温换热时,由于壳体与管束因温度相差太大,引起不同的热膨胀率,补偿圈就是为了消除这种热应力。
干熄焦热管换热器的应用
干熄焦热管换热器的应用摘要:伴随着干熄焦技术的不断革新和发展,热管换热器也逐渐被应用在干熄焦系统之中。
干熄焦设备国产化率的提升,也使得在干熄焦设备中作用为循环气体二次降温的热管换热器提升了操作能力,降低了使用成本,工艺水平也得到稳定。
本篇文章将对热管换热器在干熄焦系统的应用展开相关的研究与探讨,并对应用环节中存有的问题进行分析和提出解决策略。
关键词:干熄焦;热管换热器;应用一、热管换热器的原理干熄焦热管换热器通常所应用的是气—液热管换热器,根据一定的行列间距值,将热管成束的安放在密闭框架壳体中,按照热辐射的原理在中部安插隔板,进行对循环气体中的余热的加热段回收以及通过热传导加热除氧,隔开水的散热端,这便是热管换热器的结构原理。
热管的一边受到热管内部的介质进行汽化,汽化后形成的蒸汽受到密度和热管自身的倾斜角度(倾斜角度为15°)问题,向另一边进行流动,蒸汽在除氧气给水遇冷下凝结并散热,散发热能,冷凝液受到密度和作用的影响出现回流。
接着受热进行汽化,按此步骤不断循环把热量从加热区运输到散热区。
热管的介质受到生产厂家的影响,各不相同。
主要组成成分为蒸馏水、防腐剂以及氢化剂等。
二、热管换热器的作用热管换热器要设置在干熄炉之前,当循环风进入到热管换热器之后,热管可以在进行吸收换热的同时使进入干熄炉的冷却焦炭温度降低,排焦温度也会在这个过程中一同降低,这也为接下来的工序进行奠定了基础。
热管由于磨损、腐蚀以及超温等情况出现泄漏,这属于单根热管失效,并不会产生冷热流体的混杂问题。
可以通过设置蒸发段和冷凝段的传热面积、吸收腐蚀性的烟气余热来对热管管壁的温度进行调节,让热管尽量避开腐蚀地方。
它自身具备的特殊传热性、可调整管壁温,降低了露点腐蚀情况的出现的概率。
三、应用热管换热器的优点(一)避免出现窜漏问题给水预热器应用的是水走管内、烟走管外的模式。
如果管道出现穿孔,管内冷却水将会发生泄漏,导致停炉。
但是在热管换热器的中间使用隔板对烟气和冷却水进行隔离后,当发生热管穿孔现象时,会产生管道内少部分的工质泄漏,冷却水内不会掺入人烟气,不会影响正常的生产工作进行。
热管换热器工作原理及类别
热管换热器工作原理及类别
热管换热器是一种高效的热传递设备,其工作原理基于热管传热的原理,通过热管的内部传导和对流传热来实现热量的传递。
热管换热器由热管、散热片、外壳等组成。
其中,热管是热管换热器的核心部件,其内部充满着一定量的工质,在热管内部的循环流动中,热量通过蒸发、传导和冷凝的过程,从热源传递到冷源,实现热量的转移。
根据不同的工作原理和结构特点,热管换热器可以分为多种类型。
其中,常见的热管换热器包括直管式热管换热器、弯管式热管换热器、壳管式热管换热器、板式热管换热器等。
不同类型的热管换热器适用于不同的场合和工艺要求,可广泛应用于工业生产、制冷设备、航空航天、军工等领域。
总的来说,热管换热器具有传热效率高、体积小、重量轻、结构紧凑、可靠性高等优点,因此受到了广泛的关注和应用。
在今后的工业发展中,热管换热器的应用前景将会更加广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热管换热器原理介绍
晨怡热管2009-3-10 23:40:06
热管做为超导热体的高效传热元件,利用全封闭真空管内部工质的连续相变来完成热量的持续转移,自身并不产生热量。
具有很高的导热性及良好的等温性。
冷热两侧的传热面积可任意改变。
可远距离传热,可控制温度等优点,目前已广泛应用于化工、电力、冶金、石化、锅炉、建材轻纺、环保、干燥等行业中,己取得了良好的使用效果和显著的经济效益。
工作原理:热管内蒸发段工质受热后将沸腾或蒸发,吸收外部热源热量,产生汽化潜热,由液体变为蒸汽,产生的蒸汽在管内一定压差的作用下,流到冷凝段,蒸汽遇冷壁面及外部冷源,凝结成液体,同时放出汽化潜热,并通过管壁传给外部冷源,冷凝液靠重力(或吸液芯)作用下回流到蒸发段再次蒸发。
如此往复,实现对外部冷热两种介质的热量传递与交换。
应用范围:适用温度为150-450oC的烟气及废气,可回收余热30%-50%,节约燃料5%-10%,可用于加热空气,水及产生蒸汽。
按热管两端的冷热流体的不同,可选择气—气型热管换热器、气—液型热管换热器、气—汽型热管换热器、液—液型热管换热器.
气-气型热管换热器
气-液型热管换热器
气-液型热管元件
带翅片热管
应用领域:
化工:合成氨厂、化学反应器、燃烧炉、化工原料干燥、沸腾炉等
石化:裂解炉、加热炉、焦化、常减压、加压、制氢、干燥塔等的余热回收、催化裂化再生取热器
电力:烟气脱硫、废气热回收、锅炉空气预热、循环水冷却
冶金:高炉热风炉、冶炼炉、退火炉、窑炉
交通:柴油机余热利用、蒸汽机车/汽车排气余热利用轻工:粮食/食品烘干、热风炉
热管余热锅炉
炼铁烧结工艺热回收
电炉余热回收
责任编辑: banye 参与评论。