110kV电缆线路护层接地方式及护层保护措施
110kV及以上高压电缆线路的接地系统
110kV及以上高压电缆线路的接地系统摘要:电力企业的发展为高压电缆线路接地系统的优化创造了有利条件,但不同接地系统其应用效果不一,因此需要进行更加深入的探讨,从而可有效保证社会用电安全。
对此,本文将对110kv及以上高压电缆线路的接地系统进行分析,并探讨其在应用过程中存在的一些问题及相关优化措施。
关键词:高压电缆;接地系统;应用;措施高压电缆线路接地系统可有效保证电路安全,具有较高的应用价值。
在此过程中,相关技术人员存在一些误区,如,部分技术人员认为在高压电力电缆的铜屏蔽与钢铠之间的接地没有区别,但实际工作过程中,其接地方式需结合具体情况进行具体分析。
此外,电网规模的扩大也要求高压电缆线路具有更高的可靠性。
接地系统可有效防止感应电压对人身安全产生威胁,因此,在电网建设过程中,应当注重接地系统应用的分析。
1高压电力电缆接地系统概述当电流通过导体时,导体周围会产生感应电压,这一感应电压会影响电路可靠性,因此,在搭建高压电力电缆时,会采取一定的屏蔽措施。
接地系统的应用原理为通过铜网或者钢铠等金属形成一个屏蔽系统,保护电缆运行。
但接地系统在安装及设计上需要注意一系列问题,才能保证其应用效果。
目前,高压电力电缆接地主要包括金属护套一点接地、金属护套两端接地、金属护套两端接地、敷设“三七开”回流线及电缆换位,金属护套交叉互联等五种方式,应用场景不同,接地施工方式也不同[1]。
因此,相关人员应当提升自身素质,为电网可靠性发展提供技术支撑。
2电缆接地系统应用特点2.1金属护套一点接地金属护套一点接地系统中感应电压会随着电缆长度的增长而增加,因而常用于短电缆线路,在应用过程中,基本上不产生环流。
此外,在安装过程中,在无安全措施的情况下,需保证其另一端感应电压小于50v,如超过50v,则需设置绝缘接头。
尤其是在电路短路时,过高的过电压会损坏护层绝缘,因此,为避免此类现象影响接地系统应用性能,需在未接地端安装保护器。
110kV高压单芯电缆线路金属护套接地方式
110kV高压单芯电缆线路金属护套接地方式110kV高压电缆线路护套必须接地运行,并且考虑限制其护套感应电压,文章讲解其不同的接地方式和原理,以便运行人员更好地巡查、维护和消缺,以免造成高压电缆过电压导致电缆外护层击穿,从而形成环流和腐蚀,最终影响电缆线路物载流量、运行寿命及人身安全。
标签:电缆护套不接地危害;护套接地方式;中点接地方式;交叉互联接地方式近年来,随着城市改造建设的加快,110kV高压电缆线路大量投入运行,并且大量110kV高压电缆线路敷设在人群密集区,其运行的安全性倍感重要。
《电力安全规程》规定:电气设备非带电的金属外壳都要接地,因此电缆的金属屏蔽层都要接地。
通常35kV及以下电压等级的电缆都采用两端接地方式,按照GB50217-1994《电力工程电缆设计规程》的要求,35kV及以下电压等级的电缆基本上为三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在金属屏蔽层两端基本上没有感应电压,所以采用两端接地不会有感应电流流过金属屏蔽层,两端就基本上没有感应电压,所以两端接地后不会有感应电流流过金属屏蔽层。
但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。
当单芯电缆线芯通过电流时就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。
此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%~95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。
基于110(kV)电缆线路护层接地方式及保护的研究
际情 况 来 对 通 道 进 行 设 计 和 规 划 。 通 常 情 况下 不 应 在 地 势 过 低 、 或 者存 在 垮 塌 隐患 的 河 堤修 建 电缆通 道 , 因为 地 势 过 低 会容 易 使 长 期 积水 现 象 产 生 , 具 垮 塌 隐 患 的河 堤 由于 垮塌 现 象 出 现容 易 使 线 路 中 断。 埋 设 地 区 如 果 出现 白蚁 灾 害 , 这 时 电缆 保 护 套 除 了 防水 防火 功 能外还应使其具备有效防蚁的功能 , 可以选用硬度较高的外护套[ 3 1 。 3 . 3施 工 完 毕 后 , 加 强施 工 工程 的验 收
3 . 4强化 对 于线路 故 障情 况 下 的护层 感 应 电压设 计验 算
即使 正 常 工作 情 况 下护 层 感 应 电压 满 足 了相 关要 求 , 但 是 因为 正 常 工 作 时 的 护 层 感 应 电压 与 故 障状 况 出 现 时 的 护层 感 应 电压 具
有 较大的差别, 因此应对雷 击过 电流波( 过 电压 波) 状况下以及 故障 状 况 下 护层 感 应 电压 会 损 害 电 缆外 护 层 的值 进 行 验 算 。
【 摘 要】近年 来, 随着我 国社 会经济 的发展 以及城 市建设 的逐 渐深入扩 大, 电网网架结构也随之得到 了相应的 改善, 并投入 了大量的1 1 O ( k v ) 电缆 线路 。1 o ( k v ) 电缆 由于其具有较 长设 计寿命 、 较 少 受到 外界 自然环 境影 响以及较 小 日常维护 工作量等优 势 而被 广泛推 广, 得 到 了同领 域相关 专 家以 及 广大用 户的肯定, 并逐 渐成 为替代城 市架 空线路 的关键 输 电网络。 然 而, 1 1 0 ( k V )  ̄ 网络 由于其 架设 较 复杂等原 因依 然存在 诸 多问题 , 且 如何选择 适 宜的 电缆金属 护层 接地 方式 、 确 保输 电 网络 安全运 行, 保 障用 户正 常用 电 已经成 为 目 前 电缆 线路 工作者 正积极研 究的课 题 。 【 关键词】 1 1 0 ( k V ) 电缆线路 护层 接 地 方式
关于110KV及以上交联电缆的护层
管子,因 为它含有 自 由状态的石灰,受 潮的 石灰会引 起铅套的强烈腐蚀[ - 4 ]
在腐蚀性特 别强的环境中使用电缆时。可以考虑选用不锈钢套 电缆。 242 机械 性能 .. 为了便于比较 ,在表 l 中列出了铅和铝的一些主要物理和机械性能 .由这些数据可知, 铅套 的机械 强度远低于铝套。 铅 套的机械强度低 . 别是铅 的蠕变极限和疲劳极 限太低 , 特 是它的致命弱点。因此 电缆 在长途 输过程 中受到振动而使铅套损坏的事例也不少。 或者电缆铅套受到振动 后虽然没有损 坏 ,但 也会缩短其 使用寿命。 由于铅 套的机 械强度低, 受到机械力作 用后容易产生变形 n 这些机械应 力和变形会 加剧
缘 层 。相 反 ,压 铝 时 E然 温 度 为 6 0 比焊 接泪 度低 ,但 整 个 铝套 都 是 同样 的温 度 , 一般 采 d 0℃
祖国万岁上传
用在阻水层外绕包铜 丝编织布带隔热 , 并在铝 套与 阻水层之间 留有较大的间隙以防烫伤绝缘 层。 这样也使阻水的效果受到不利影响, 而焊接铝套不必采用这样的隔热措施 .阻水 效果要 好得 多。 因此铝套 不论是挤包 的还是焊接的各有其优缺点, 不能一概而 论无缝 的要 比有缝的 好。 只要无缝铝套承担 的径 向阻水任务焊接铝 套也能胜任 , 那么采用挤包铝套固可. 采用焊 接铝套亦无不可 。目前采用挤包铝套 的一般是可 以利用制 造充油电缆 的压铝机的老厂 . 而新
X4 =01 4 . %,己超过 了它的最大允许值 0 %。由其计算式可知 , 3 . 1 唯一能降低最大疲劳应变 的办法就是限制铅套温升。 使铅套的最大疲劳应变不超过其最大允许值时相应的铅套 的允许
最大 温升△ --. 129 X -4 。 晶, 0 1 - . l 1 这样, 的载 X / 1 b3C 02 0- 电统 流最就要 相应降 低到11 . 01 A
关于110kV电缆线路护层接地方式及保护
关于110kV电缆线路护层接地方式及保护作者:张贤秋梁奉山王传坤宋辉来源:《中国科技博览》2016年第07期[摘要]对我国110kV电缆线路护层常见的护层接地方式进行分析,研究电缆线路护层接地的保护措施,希望可以降低自然条件对线缆的影响,减少输电过程中的电力损失,延长电缆线路的使用寿命,避免电缆线路接地对人们的生命安全造成威胁。
[关键词]110kV电缆线路;护层接地;接地方式;接地保护中图分类号:TM521 文献标识码:A 文章编号:1009-914X(2016)07-0392-01随着我国经济的发展,城市化进程的速度不断加快,110kV电缆线路的使用越来越广泛。
电缆线路的接地方式会对电力传输造成影响。
如果护层接地方式不恰当,会导致线缆的感应电压产生变化产生过电压现象。
过电压会导致线缆护层的绝缘层被击穿,产生线路故障,并且会出现大量的环流,增加线缆的电力损失。
一旦线缆出现接地故障修复会比较困难,会对整个城市造成比较大的影响,所以对此线缆护层的接地方式及保护进行研究,对于110kV电缆线路的安全稳定运行,有着重要的意义。
一、110kV电缆线路概述110kV电缆线路为单芯线缆,属于我国城市输电线路中的主要线缆。
该电缆线路的使用寿命比较长,降低了我国城市输电线路的线缆更换次数,使输电成本得到了有效的控制,另外该电缆线路对输电环境的适应能力比较强,不会因为环境差异而造成较大的输电线损。
加强对电缆线路的护层保护,可以提高电网输电的经济效益,110kV电缆线路属于架空线路有着较高的可靠性和安全性,在我国输电线路中应用的比较广泛。
在电缆线路护层接地的过程中,必须要对护层的接地电阻进行控制,避免护层接地电阻过低而出现感应电压过大的现象,将线缆护层击穿。
二、110kV电缆线路护层常见的接地方式(一)单侧接地如果电缆线路的长度超过了500m,一般会将该电缆线路护层的一段直接与地面相接,另一端是利用电阻保护器间接的接到地上。
对110kV及以上高压电缆线路的接地系统分析
对110kV及以上高压电缆线路的接地系统分析摘要:本文作者通过实际工作中总结与积累经验,主要针对110kv及以上高压电缆的接地的重要性,并通过分析高压电缆接地的要求、方式和采取的措施等。
关键词:高压电缆接地电流电缆接地方式一、前言:经过十几年高压电力电缆施工我们积累了相当一部分的经验,本文综合各类文献并结合工程实际,意图对110kv及以上高压电缆的接地就重要性等方面进行探索。
二、高压电力电缆接地分析当导体内通过电流时会在其周围产生感应电压,对于在发电厂、变电所等用于低压及二次系统控制的电缆,为了防止继电保护装置误动以保证保护装置可靠性以外,也防止控制电缆屏蔽因感应电压而导致保护装置损坏,所以均采取带屏蔽铜网的电缆,并对屏蔽接地有着非常严格的规定;并且要求电缆支架等都要求接地以防止感应电压危及人身安全;而高压电力电缆同样存在这样的问题,本文将针对高压电力电缆在施工及运行中遇到的的一系列敷衍出的问题进行讨论:首先是敷设时的机械保护(电缆抗弯、防水、防火、腐蚀——采取铝、铜等金属外护套)→其次运行中线芯电流(在金属护套上形成1∶1的单匝变压器产生感应电动势——危害人身安全及电气设备运行经济性、可靠性等,采取外屏蔽接地)→接地电流或环流→各种接地方式的解决方法。
为了尽可能减少护套环流我们可以采取多种金属护套的连接与接地方式,这是我要着重讨论的问题。
高压电缆线路的接地方式有下列几种:.金属护套一点接地(一端或中点):无环流,感应电压与电缆长度成正比,短电缆线路常用;⑵. 金属护套两端接地:有环流,感应电压为零,但影响载流量,轻负荷电缆线路常用;⑶. 金属护套交叉换位连接:两端接地,中间用绝缘接头将护层交叉换位连接,无环流,感应电压与电缆长度成正比,但可以限制在允许的范围内,长电缆线路常用。
⑷.电缆换位,金属护套交叉互联:要求测得电缆金属感应电压必须是小于50v为前提,如果不是的话,必须进行相应的检查,是否是电缆的原因还是由于电缆的长度太长而造成的,还是其他原因造成的,如果是长度的原因(一般要求在500~800m的范围具体看测试结果),应相应调整其长度,比如说一组交叉互联加一组接地(一段接地)或其他方式。
110kV电缆线路穿管直埋施工技术方案及保障措施
卡力岗变-莫多电站110kV线路工程110kV 电缆线路(穿管直埋)施工技术方案及保障措施批准:2010年 07 月 26 日审核:2010年 07 月 26 日编制:2010年 07 月 26 日第一章工程概况及电缆线路设计说明一、工程概况本工程为青海兴海莫多水电开发有限公司所属莫多水电站的110kV送出线路工程。
线路起于110kV卡力岗变, 止于在建莫多电站110kV升压站。
线路除在110kV卡力岗变出线段0.2km采用电缆线路敷设外,其余采用架空线路呈单回路架设至莫多电站升压站,线路正常时需输送的最大容量为48MW,导线采用LGJ-240型钢芯铝铰线,电缆采用300mm2截面铜芯交联聚乙烯绝缘电缆。
线路全长约 6.11km,其中电缆线路长0.2km,架空线路长5.91km。
二、电缆线路设计说明1、路径简述线路自110kV卡力岗变西数第一出线间隔采用电缆引下,而后向南继续采用电缆敷设至变电所南侧内围墙后,拐向西沿围墙外侧向西敷设,穿过变电站西侧外围墙后,线路拐向北,在耕地敷设,敷设约92m后立电缆终端塔改为架空线路。
2、电缆及其附件选择本工程在110kV卡力岗变需采用电缆进线,根据电缆输送容量及环境条件,电缆拟采用国产单芯交联聚乙烯绝缘皱纹铝护套低烟、无卤、阻燃聚烯烃外护套纵向阻水电力电缆,其型号DWZR-YJLW03-Z 110/1×300,电缆的标称截面为300mm2。
电缆附件采用YJZGG型110kV 干式绝缘终端与变电站户内开关联接,其型号为YJZGG-110/1×300;采用YJZWI4型110kV 户外预制式终端与架空导线联接,其型号为YJZWI4-110/1×300。
3、电缆敷设方式电缆敷设在直线段采用穿管(玻璃钢管)直埋敷设方式,在弯曲处采用蛇形软管铺砖敷设方式,电缆埋深均为1.5m,并在两侧电缆终端处设置余长。
,电缆弯曲半径不小于电缆直径的20倍。
110kV电缆线路护层接地方式及护层保护的一些措施
经非 线性 电阻保 护 器 间接 接 地 的连 接 方 式 。 由于 金
—
d sr cu e 1 0 k l c tu t r , 1 V ee —
d s se 。 l 0 lcrc c b e h sS n d a tg s l n y tm KV ee t a l a O ma y a v na e : g 1 i o
tr l ei n ma n u n e f m au a n io me t l te d l o k a o te a n n e ar n n u n e t i em i t f me mi i lif e c ' r l , o n t r le v r n n i l a y w r b u x mi e a d r p i、 o if e c o ct t i l y
s e ey B t 1 0 k a l o mal a i g e c r a l y e i a y mitk b u a l at y tm c u s d rn h c n r 。 u , V c b e n r l y h s sn l o e c be t p ,f n s e a o t c b e e r s se o c r u g t e 1 a h i c u s fc b e d sg 、 r d cn 、 n t lt n、 x mi e a d r p i n ,n u e v r ot g i e d o trs e t r a d wn O o r eo a l e i n p o u i g i sa a i e a n n e a r g i d c d o e v l e w l la u e h ah b e k o 、 C l o i a l c r o h ic i c re t C rO i n e e t a tr d c o d c p c t n h re h a l i t 。 S h n u e v r ot u ft e cr u t u r n 、 O SO , v n a s e u e la a a i a d s o n t e c e l ei l y t b f me o t e id c d o e v l — a e mu tb o told。 T i t x n l s st e n r l w y o n rme a s e t a t i g a d s me me s r f h ah d ma e g s e c n rle h s e ta ay e h oma a fi e t h a h e r n n o a u e o e t a g n l h s
110kv电缆线路护层接地方式及保护措施
110kv电缆线路护层接地方式及保护措施摘要:当前,110kv电缆线路已经逐渐成为城市中替代架空线路的关键输电环节,然而也存在不足之处,主要原因在于该输电系统的架设工作较为复杂,而且技术性要求相当高。
因此,现阶段我国供电企业需要重点探讨的问题是如何充分掌握110kv电缆线路护层接地方法,采取有效的保护措施,只有这样才可以促进企业持续健康发展。
基于此,本文首先介绍了110kv电缆线路的优势性能,然后分析了110kv电缆线路护层的常见接地方法,最后提出了110kv电缆线路护层的保护措施,以供大家学习和参考。
关键词:110kv电缆线路护层;接地方式;保护措施近年来,在社会经济日益发展的背景下,我国电力行业不仅迎来很多发展机遇,而且面临严峻的挑战,要想更好地满足社会对电能的需求,供电企业在发展中将电网建设规模不断扩大。
在该情况下,110kv电缆线路的投入使用可以使电网具有更强的供电能力,而为了提高电网运行的可靠性和稳定向,必须要不断完善且落实110kv电缆线路保护层接地方法,还要结合实际情况,合理制定有效的保护措施。
一、110kv电缆线路的优势性能就110kv电缆线路来讲,其内部是单芯结构形式,在具体应用中体现出多个优势特点,具体表现在以下几个方面:其一,可以使电缆的使用寿命得到延长,以显著减少电网运行过程中产生的总成本,为供电企业创造更多的经济效益。
其二,此电缆线路可以迅速适应自然气候带来的影响,在最大限度上减少网损,而且提升供电质量。
其三,利用电缆线路的保护层可以明显减少电缆线路受损的情况,以免投入大量的维修费用。
其四,该电缆线路是采用高空架网的形式来铺设,所以既安全又可靠。
二、110kv电缆线路护层的常见接地方法(一)单端接地电缆的线路长度不超过500米时,一般来说,终端部分运用电缆金属护套使其中的一端直接接地,而且将另一侧通过非线性的电阻保护器,以做好间接接地处理,让金属护套对地处在绝缘的状态中,以免出现有回路的问题。
110kV电缆线路护层接地方式及保护
110kV电缆线路护层接地方式及保护发布时间:2021-12-15T01:29:42.638Z 来源:《福光技术》2021年20期作者:史庆岩[导读] 自改革开放以来,我国社会经济与国民生活水平得到了进一步发展,城市化进程不断加快,我国电力系统整体建设规模逐渐扩大,促使整个电网架构发生了巨大变化。
国网山东省电力公司烟台供电公司山东烟台 264000摘要:自改革开放以来,我国社会经济与国民生活水平得到了进一步发展,城市化进程不断加快,我国电力系统整体建设规模逐渐扩大,促使整个电网架构发生了巨大变化。
为了满足发展需要,我国整体的电网行业加大了对110kV电缆线路的投入。
但是当过电压在击穿110kV电缆外护层的绝缘部分之后,便会造成110kV电缆金属护层多个位置上出现故障问题,进而使得环流及热损耗增强,甚至会使得110kV电力电缆无法得到正常工作,并会对其使用年限造成不利影响。
同时在故障出现之后,无法通过测寻、修复来进行解决,更无法通过停电检修来进行解决,因此需要做好护层保护工作。
本文先分析了常见护层的接地方式,然后对其保护措施进行了探讨关键词:110kV;电缆线路;护层;接地方式;保护1常见护层的接地方式1.1单端接地单端接地是最为常见的护层接地方式,通常是在电缆线路大于500米的时候采用的一种接地方式。
这种方式接地的时候通常采用电缆金属护套在终端位置由一端直接接地,另一端则经过非线性电阻保护器间接接地的连接方式。
在这种接地方式中,由于金属保护套的其他部位对地绝缘,所以在这样的方式中护套和地构不成完整地回路,也就影响不了电缆正常工程的使用。
1.2交叉互联交叉互联接地的方式也是比较常见的护层接地方式。
利用此方法进行护层接地,一般需要将电缆线分成若干个大段,而且每个大段原则上需要分成长度相当的三个小段,每个小段直接用绝缘接头的方式进行连接。
在绝缘接头处金属护套的三项之间要用同轴电缆经过接连地箱的连接片进行换位连接。
110kV线路保护
跳闸并闭锁重合闸。
三、110kV线路保护调试
7、重合闸 试验方法 (1)投入重合闸压板。 (2)用状态序列,先是故障前正常状态加正常电压
正常电流。 (3)保护跳闸,经重合闸时间后重合闸动作。 (4)闭锁重合闸,等保护充电,直至“充电”灯亮
,投闭锁重合闸压板,保护放电。
谢谢!
注意:用保护起动重合闸方式在断路器偷跳时无法起动 重合闸。
二、110kV线路保护原理
重合闸的充电与闭锁: (一)重合闸的充电
重合闸的压板在投入状态
三相断路器的合闸状态
没有压力闭锁的开入量输入 &
没有外部闭锁的开入量输入
若为检电压方式,没有TV断路信号
允 重合闸充电10—15S 许
重 合
测量保护安装处至故障点的距离,实际上是测量 保护安装处至故障点之间的阻抗。该阻抗为保护 安装处的电压和电流的比值,即Z=U/I。
二、110kV线路保护原理
距离保护的保护范围:
(1)距离Ⅰ段的保护范围应限制在本线路内,其动 作阻抗应小于线路阻抗,通常其保护范围为被保 护线路的全长的80%~85%。
(3)记录打印试验过程中各段的动作报告、动作时间。
三、110kV线路保护调试
5、零序方向过流保护
试验方法
(1)投入零序过流保护软压板、硬压板。重合把手切换至“ 综重方式”,将控制字“投重合闸”、“投重合闸不检” 置1。将Ⅰ、Ⅱ、Ⅲ、Ⅳ段零序保护的控制字置1。
(2)本试验用零序菜单进行。按照保护装置的定值,将Ⅰ、 Ⅱ、Ⅲ、Ⅳ段的电流定值和时间定值输入零序菜单中的对 应项,零序菜单中的零序补偿系数、灵敏角度要与保护装 置定值一致;根据故障方向、故障类别、动作区域选0.95 倍和1.05倍。0.95倍的时候应该可靠不在该段动作,而在 下一段动作;1.05倍时应该可靠在该段动作;正方向时应 该可靠动作;反方向时不动作。
110KV线路保护的保护配置(毕业设计)
第3节110KV线路保护的保护配置我国110KV的电力网,都是直接接地的系统。
所谓直接接地系统,是指在该电网中任一点的综合零序阻抗小于或者等于同一点综合正序阻抗的三倍。
在直接接地网中,当发生接地故障时,会产生很大的接地故障电流,因此,需要配置作用于跳闸的、切除相间短路故障和接地故障的继电保护装置。
线路继电保护的配置原则,在原水利部颁发的《继电保护和安全自动装置技术规程SD6—83》中已有明确规定。
以下就各类保护装置的特点分别予以论述。
1、光纤保护光纤作为继电保护的通道介质,具有不怕超高温与雷电电磁干扰、对电场绝缘、频带宽和衰耗底等优点。
而电流差动保护原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相运行、单侧电源运行方式的影响,差动保护本身具有选相能力,保护动作速动快,最适合作为主保护。
近年来,光纤技术、DSP技术、通信技术、继电保护技术的迅速发展为光纤电流差动保护的应用提供了机遇。
1 光纤保护的基本方式及其特点光纤保护目前已在国内部分地区得到较为广泛的使用,对已投入运行的光纤保护,按原理划分,主要有光纤电流差动保护和光纤闭锁式、允许式纵联保护两种。
1.1光纤电流差动保光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。
目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点,是其他保护形式所无法比拟的。
光纤电流差动保护在继承了电流差动保护优点的同时,以其可靠稳定的光纤传输通道,保证了传送电流的幅值和相位正确可靠地传送到对侧。
时间同步和误码校验问题,是光纤电流差动保护面临的主要技术问题。
在复用通道的光纤保护上,保护与复用装置时间同步的问题,对于光纤电流差动保护的正确运行起到关键的作用,因此目前光纤差动电流保护都采用主从方式,以保证时钟的同步;由于目前光纤均采用64Kbit/s数字通道,电流差动保护通道中既要传送电流的幅值,又要传送时间同步信号,通道资源紧张,要求数据的误码校验位不能过长,这样就影响了误码校验的精度。
110kv电缆安全防护方案
110kv电缆安全防护方案一、方案目标本方案旨在提供一套全面、实用的110kv电缆安全防护措施,以确保电缆设备的安全稳定运行,降低因电缆故障引发的安全事故风险,保障电力系统的正常供电。
二、电缆选型针对110kv电缆的运行环境和安全要求,选择合适的电缆型号,确保电缆具有足够的电气性能、机械强度和耐腐蚀性能。
同时,应选用低烟无卤阻燃电缆,提高电缆的阻燃性能,防止火灾事故的发生。
三、电缆敷设在电缆敷设过程中,应遵循相关规范和标准,采用适当的敷设方式,如直埋、排管、隧道等。
同时,应确保电缆敷设的环境条件符合要求,避免在高温、潮湿、腐蚀等恶劣环境下敷设电缆。
在敷设过程中,应注意避免电缆受到机械损伤、过度弯曲等情况,保持电缆的完整性和稳定性。
四、接地系统为确保110kv电缆的安全运行,应建立完善的接地系统。
接地系统应满足相关规范和标准的要求,具有足够的接地电阻和良好的电气连接。
同时,应定期对接地系统进行检查和维护,确保接地系统的正常运行。
五、防雷措施为防止雷电对110kv电缆的危害,应采取有效的防雷措施。
在电缆线路的入口处安装避雷器,避免雷电波侵入。
同时,应定期对避雷器进行检查和维护,确保避雷器的正常运行。
在雷电频繁的地区,应适当增加防雷设施的密度和防护等级。
六、防水措施为防止水对110kv电缆的危害,应采取有效的防水措施。
在电缆沟、隧道等处设置防水设施,如防水板、防水涂料等,防止水进入电缆设施。
同时,应定期对防水设施进行检查和维护,确保防水设施的正常运行。
在雨季或地下水位较高的地区,应加强防水措施的监管和维护力度。
七、监控检测为及时发现和解决电缆故障,应建立完善的监控检测系统。
通过安装在线监测装置和智能传感器等设备,实时监测电缆的运行状态和环境参数。
同时,应定期进行电缆绝缘电阻、介损等电气性能的检测和试验,以及环境温湿度、腐蚀等外部因素的监测和分析。
通过监控检测数据的采集、处理和分析,及时发现和解决潜在的安全隐患和故障问题。
高压单芯电缆护层过电压保护原理及方式[1].1
110kV单芯电缆护层保护
护层保护原理
感应电压的大小还与电缆排列方式、 距离以及屏蔽层的平均直径有关 以对称敷设(正三角形敷设) 时, 电 缆金属护套的感应电动势最小且 相等
等边三角形敷设
平行敷设时, 两边电缆护套上产 生的感应电动势最大,中间相最 小
平行敷设
110kV单芯电缆护层保护
护层保护原理
护层接地及保护方式
按照经济合理的原则采用不同的接地方式 (110kV及以上)
一端直接接地,另一端通过保护器接地----可采用方式 中点直接接地,两端屏蔽通过护层保护接地---常用方式
中点通过护层保护接地,两端直接接地---可采用方式
护层交叉互联----常用方式
110kV单芯电缆护层保护
护层接地及保护方式
110kV单芯电缆护层保护
护层保护原理
单芯电缆-----按照经济合理的原 则采用不同的接地方式 (110kV及以上)
• 因为单芯电缆的线芯与金属护层的关系,可看作一个 单匝变压器。当单芯电缆线芯通过电流时,就会有磁 力线交链铝包或金属屏蔽层,使它的两端出现感应电 压。感应电压的大小与电缆线路的长度和流过导体的 电流成正比,电缆很长时,护套上的感应电压叠加起 来可达到危及人身安全的程度
高压单芯电缆护层过电压保护
原理及方式
110kV单芯电缆护层保护
护层保护原理
三芯电缆-----通常都采用两端金 属护层直接接地方式 (35kV以下)
• 因为在正常运行中,流过三个线芯的电流向量总和为 零,在铝包或金属屏蔽层外基本上没有磁链,这样, 在铝包或金属屏蔽层两端就基本上没有感应电压,所 以两端接地后不会有感应电流流过铝包或金属屏蔽层
0.1Hz 超低频耐压试验原理和优点 原理:
110kV线路保护概述
二、110kV线路保护原理
零序方向过流保护的特点: (1)灵敏度高。发生单相接地故障时,故障相的 电流与三倍零序电流3I0相等,所以零序电流保护 的灵敏性更高些。 (2)系统发生震荡或者短时过负荷时,零序电流 保护不会误动。 (3)只能用来保护接地短路故障,对两相不接地 的短路和三相短路不能起到保护作用。
二、110kV线路保护原理
5、过负荷 过负荷保护可由控制字来控制投退。过负荷电流 定值按躲最大负荷整定,并应留有一定裕度。若 未投入过负荷跳闸功能,告警时间按所设置过负 荷时间定值告警。若投入过负荷跳闸功能,过负 荷告警时间固定为30s,按照过负荷时间定值跳闸 出口。三相电流中的一相超过过负荷定值时,过 负荷就动作。过负荷保护可通过控制字整定,置0 时只发信号,置1时延时跳闸并闭锁重合闸。
110kV线路保护原理与调试
一、110kV线路保护配置 二、110kV线路保护原理 三、110kV线路保护调试
一、110kV线路保护配置
根据规程要求,110kV线路保护包括: 三段相间距离保护、三段接地距离保护 四段零序方向过流保护 低频率、低压保护 三相一次重合闸功能 过负荷告警功能 等。
三、110kV线路保护调试
6、过负荷 试验方法 (1)投入过负荷保护压板。 (2)用状态序列,先是故障前正常状态加正常电压 正常电流。 (3)故障状态:三相中的其中一相加入大于过负荷 保护定值的电流,过负荷保护动作。 过负荷保护可通过控制字整定,报警还是跳闸, 跳闸并闭锁重合闸。
三、110kV线路保护调试
5、零序方向过流保护
试验方法 (1)投入零序过流保护软压板、硬压板。重合把手切换至“ 综重方式”,将控制字“投重合闸”、“投重合闸不检” 置1。将Ⅰ、Ⅱ、Ⅲ、Ⅳ段零序保护的控制字置1。 (2)本试验用零序菜单进行。按照保护装置的定值,将Ⅰ、 Ⅱ、Ⅲ、Ⅳ段的电流定值和时间定值输入零序菜单中的对 应项,零序菜单中的零序补偿系数、灵敏角度要与保护装 置定值一致;根据故障方向、故障类别、动作区域选0.95 倍和1.05倍。0.95倍的时候应该可靠不在该段动作,而在 下一段动作;1.05倍时应该可靠在该段动作;正方向时应 该可靠动作;反方向时不动作。 (3) 记录打印试验过程中各段的动作报告、动作时间。
110kV高压单芯电缆金属护套接地方式探讨
110kV高压单芯电缆金属护套接地方式探讨摘要:近年来,随着城市转型的加速,大批110千伏高压电缆投入使用,大批110千伏高压电缆敷设到人口稠密地区。
基于目前接地110kV高压单芯电缆金属护套方法和需要考虑的问题,可以对其详细介绍,对110kV高压单芯电缆安全运行起到积极的作用和价值。
关键词:高压单芯电缆;金属护套;接地方式;110 kV外护套绝缘电缆频繁事故,促使设计、运营和维护部门对护套的电压和电流进行调查研究。
电缆的金属外护套几乎没有磁场和感应电压,当单芯电缆高压电流中循环时,电流变得非常大,金属屏蔽检测到非常高的感应电压,这可能威胁到人们的安全或导致电缆的绝缘和损坏。
因此,应采用适当的接地方法降低电缆的感应电压,以保证电缆安全、经济地运行。
以下是有关电缆性能的国家标准,各种接地方法,金属护套高压线性电缆的应用,不同铺设条件、护套接地的比较,电压对其电缆的影响,接地方式选择和限制,操作和维护。
一、110 kV高压单芯电缆金属护套接地问题根据中国目前的电力电缆设计方案,35kV以下的电缆是一种三芯电缆。
在电缆线中,综合为零电流通过流经三个。
因此,金属屏幕两端没有感应电压。
这意味着在这种类型的电缆中,当两端直接连接到地面时,感应电流不会通过金属屏幕。
当电压超过35kV时,电缆通常是单根电缆。
当电流通过电缆芯时,存在磁力线和金属层,两端产生感应电压,与电缆的长度和流经导体的电流成正比。
如果高压电缆很长,则可以将感应电压应用于护套上,这将危及人类安全。
如果电缆在短路故障工作电压或雷电冲击,屏幕会产生高电感电压,有时会导致击穿护套。
即使在这种情况下,当金属屏蔽层末端接地处理是三相互联时,其也会产生非常大的环流,换流值为电缆芯电流的50-95%。
电缆损坏的原因显而易见。
同时,金属屏幕表面产生热量,影响电缆线路运行时的能耗,加速其绝缘老化。
也就是说,对于35kV以上的高压电缆,电缆的两端不能直接接地。
但是,如果金属屏幕的一端没有接地,如果沿着高压单芯电缆电流,则金属屏蔽不会暴露在不接地端的冲击电压下,系统会短路,短路电流通过元件,会产生高电压,金属屏蔽频率为一端互联接地。
110kv交联电缆敷设安装规范及注意事项
110kV交联电缆敷设安装规范及注意事项1 电缆敷设前应按下列要求进行检查:1.1 电缆通道畅通,排水良好。
金属部分的防腐层完整。
隧道内照明、通风符合要求。
1.2 电缆型号、电压、规格应符合设计。
1.3 电缆外观应无损伤,当对电缆的密封有怀疑时,应进行潮湿判断;直埋电缆应经试验合格。
1.4 电缆放线架应放置稳妥,钢轴的强度和长度应与电缆盘重量和宽度相配合。
1.5 敷设前应按设计和实际路径计算每根电缆的长度,合理安排每盘电缆,减少电缆接头。
1.7 在带电区域内敷设电缆,应有可靠的安全措施。
2 电缆敷设时,不应损坏电缆沟、隧道、电缆井和人井的防水层。
3 电力电缆在终端头与接头附近宜留有备用长度。
4 电缆各支持点间的距离应符合设计规定。
当设计无规定时,不应大于表7中所列数值。
表5 电缆各支持点间的距离 mm5 电缆的最小弯曲半径不小于25(D+d)。
6 电缆敷设时,不应使电缆在支架上及地面上摩擦拖拉。
电缆上不得有铠装压扁、电缆扭结、护层破裂等未消除的机械损伤。
7 用机械敷设电缆时的最大牵引强度宜符合表8的规定。
表6 电缆最大牵引强度(N/mm2)8 机械敷设电缆的速度不宜超过15m/min。
9 电缆转弯处的侧压力:滑动敷设时不应大于3 kN/ m;滚动敷设时,每只滚轮铅套电缆不大于0.5K N,皱纹铝套电缆不大于2 K N。
10 敷设电缆时,电缆允许敷设最低温度,在敷设前24h内的平均温度以及敷设现场的温度不应低于0℃。
11 电缆敷设时应排列整齐,不宜交叉,加以固定,并及时装设标志牌。
12 电缆进入电缆沟、隧道、坚井、建筑物、盘(柜)以及穿入管子时,出入口应封闭,管口应密封。
13 生产厂房内及隧道、沟道内电缆的敷设13.1 电缆的排列,应符合相关规定。
13.2 电缆与热力管道、热力设备之间的净距,平行时应不小于1m,交叉时应不小于0.5m,当受条件限制时,应采取隔热保护措施。
电缆通道应避开锅炉的看火孔和制粉系统的防爆门;当受条件限制时,应采取穿管或封闭槽盒等隔热防火措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110kV电缆线路护层接地方式及护层保护措施
发表时间:2018-01-10T10:10:50.130Z 来源:《电力设备》2017年第27期作者:田浩宇1 钟泽宇2
[导读] 摘要:近年来,随着城市改造建设的加速、电网网架结构的改善,城区110kV电缆线路大量投入运行。
(12国网太原供电公司山西太原 030012)
摘要:近年来,随着城市改造建设的加速、电网网架结构的改善,城区110kV电缆线路大量投入运行。
110kV电缆线路以其设计寿命长、受外界自然条件影响小、日常维护工作量相对较小、不影响城市景观等优点得到了肯定。
文章对110kV电缆护层接地方式及护层保护的措施进行了分析。
关键词:110kV电缆线路;护层保护;接地方式;电网网架结构;电力系统
当过电压在击穿电缆外护层的绝缘部分之后,便会造成电缆金属护层多个位置上出现故障问题,进而使得环流及热损耗增强,甚至会使得电力电缆无法得到正常工作,并会对其使用年限造成不利影响。
同时在故障出现之后,无法通过测寻、修复来进行解决,更无法通过停电检修来进行解决,因此需要做好护层保护工作。
1 常见护层接地方式
1.1 单端接地
电缆的线路长度低于500m时,通常终端部分都是采取电缆金属护套来实现将其中的一端直接接地,并把另外一侧通过非线性的电阻保护器,从而完成间接接地处理,促使金属护套对地处于绝缘状态,进而防止有回路的问题产生。
1.2 交叉互联
将电缆线路划分成多个大段,并且再将每一个大段,划分成均等的各个小段,在每个小段间,应当采取绝缘接头的方式,使各个小段能够连接,并且对于绝缘接头上的金属护套三相间,采用同轴电缆作为材料,同时借助接地箱连接片来做到换位连接,此外对于绝缘接头来说,应当做好接地箱的安装工作。
同时需要完成护层保护器的安装工作,对于各个大段来说,其两端对应的护套应当做到互联接地。
1.3 护套两端接地
对于电缆线路来说,若是距离相对较短,并且传输功率不足时,那么对于金属护套来说,能够出现的感应电压便相对有限,所造成的损耗也十分微弱,从而不会对载流量产生较多的影响。
在护套当中存在的中点接地,真实情况是单端接地。
对于电缆线路来说,当距离比较长时,需要在电缆线路内借助金属护套来做到接地,并且在电缆两端的位置上要做到对地绝缘,同时还要做好护层保护器的配置工作。
1.4 电缆换位金属护套交叉互联
金属护套若是存在交叉互联,那么就应当采用三相电缆作为材料来使得连续换位得以保证,从而使得三相电缆哪怕不是以水平形式排列,也能够通过每个小段的换位来实现每个大段的全换位,使得感应电压的相量之和,得出的数值为零,就是代表基本上不存在环流。
然而这一类型的连接方式只能够在电缆换位空间内加以运用与开展。
2护层保护及限制护层过电压的相关措施
2.1 110kV以上电缆通道的规划与设计
对于110kV及其以上电压等级的电缆通道,在规划与设计时不仅需要满足对应要求,还应当满足电缆埋设区域特征。
通常需要在地势上有所注重,避免地势较低造成的积水问题出现,同时也要防止安装在存在隐患或是施工的区域,从而避免存在破坏。
在白蚁灾害较为严重的地区,还应当在防水、防腐、防火的同时,做好防蚁工作,从而防止出现破坏问题。
2.2 对电缆分段长度做到合理设计与计算
对于电缆来说,在分段时长度不应当太长,需要结合实际状况与感应电压得出的值来做出划分。
在交流系统当中,只有使电缆金属护层感应电压处于正常值,方可完成单芯电力电缆的配置工作。
同时在电缆截面选择时,应当结合工作电流在进行原则。
对于没有按照品字结构,来对单芯电力电缆做出配置,当一条通路配置大于两个以上时,需要在感应电压计算出相互之间存在的影响。
2.3 提升护层感应电压的设计与验算结果
当护层感应电压处于故障与正常工作两种不同情况时,得出的结果有着很大的差别。
当处于正常工作电流的时候,虽然护层感应电压是满足标准要求的,但依旧需要通过验算来查看当故障问题出现之后是否有损坏问题出现。
2.4 符合电缆设计规范前提下采用新型外护套
为了能够使电缆护层的厚度满足技术层面的需求,在合理的情况下,应当适当地对新型外护套加以使用。
目前认为是,当电缆外护套的厚度达到4.0mm时,它的绝缘水平可以在长时间内处于一个稳定状态。
对于所用到的材质来说,目前在江西这边所用到的电缆材质大多数为PE或者为PVC材质,同时在外面会涂上一层石墨。
对于PE材质来说,其制作出来的护套有着较高的硬度,并且受到环境温度变化的影响较小,而对于PVC材质来说,其制作出来的护套硬度不强,同时会受到环境温度变大所造成的影响。
另外,还有其他多种形式的电缆外护套可以在施工中得到选择与应用。
2.5 按照规范来对电缆外护层实施检测保护
电缆牵引力与测压力,需要控制在既定范围之内,然后结合电缆通道的走向来完成施工方案的制定工作,并在敷设路径上完成滑轮的布置。
继而再根据图纸开展施工工作,这时电缆排列方式、分段长度需符合设计标准;铺设后需进行回填细沙,并做好耐压试验的开展工作,如果出现损坏等问题需要及时发现并做好处理工作。
2.6 通道允许时应用回流线
回流线增添之后,对于单相短路回流电流来说,不会流经大地,而是会通过回流线得到返回。
回流线的应用,在单相接地当中,会使外护层绝缘与保护器所受到的工频过电压,会与电网电位之间缺乏关联性,对于回流线的磁通,会抵消接地电流时所产生的一部分磁通,进而使得电压值可以得到降低。
对于回流线当中的阻抗,与两端接地的电阻来说,应当和系统中最大零序电流与回流线感应电压进行匹配。
2.7 使地阻能够达到标准要求
电力电缆线路保護接地,能够对电力电缆线路在运行时提供安全保障。
对于电力电缆线路来说,不管是在工作与运行当中,还是发生内部过电压、雷电过电压以及出现接地故障,都应当以大地为回路,并运用电位钳来对接地电位实施控制。
接地电位和接地装置所对应的
电阻值有着较大的关联,同时接地电阻值也会因为入地电缆频率及波形变化产生影响,另外也会与接地装置对应的辐射方式等条件存在着较大的关联。
这样一来,接地电阻值若无法为电缆运行加以保障,那么故障发生时,接地电流会呈现极大程度的上升,甚至能够达到几百伏。
这样一来,由于出现地点位反击,使得电力电缆外护层绝缘会被击穿,并使金属护层出现接地故障等问题,另外还会受到地点位上升的影响,造成电气设备间出现相邻反击,从而不仅可能会带来跨步电压,也会容易导致人员伤亡事件的出现。
所以在地理与经济条件有所保障的前提下,需对优化措施做到有效运用。
2.8 加强环流监测
电力电缆线路若是处于单端接地时,那么一般是没有环流出现的,当处于交叉互联接地时,那么也会因为对称排列使得三相环流能够达到平衡状态,通过环流检测来与之前的记录做出比较,这样对于电缆护层当中的问题便可实施有效处理。
同时对护层绝缘水平还需不断测试,当出现参数不合理问题时便要及时更换。
3 结语
对于110kV电力电缆金属护层过电压保护来说,其会与电力电缆规划设计工作、施工安装工作、运行维护等各项工作相关。
而对于这里面涉及到的所有环节,均需要严格把关,只有这样方可使电力电缆线路得到长久运行。
参考文献
[1]周永盛.110kV高压单芯电缆线路金属护套接地方式[J].科技创新与应用,2015,(9).
[2]于建伟,于建水,郗力强,高晨语.10kV电缆线路的运行维护及管理[J].化工管理,2016,(20)。