生物医用材料系列3--天然高分子生物医学材料讲解学习
生物医用材料系列天然高分子生物医学材料
生命,
• 人们对生物医学高分子材料的重视与关切是因
为
–构成人体肌体的基本物质,诸如蛋白质、核
糖核酸、多糖、一些脂质都是高分子化合物; –人类肌体的皮肤,肌肉,组织和器官都是由 高分子化合物组成的。
1
• 天然高分子材料是人类最早使用的医学材料之一。
• 到了五十年代中期,由于合成高分子的大量涌现,曾 使这类材料退居次要地位。 • 天然材料具有不可替代的优点: – 多功能性质 – 与生物体的相容性、 – 生物可降解性,
15
• 膜的滤过速度一般以中分子量的维生素B12 (分子量1355)作为对照。 • 铜珞玢经过长期连续使用也可引起诸如神经
障碍、色素沉积等弊端,未移除的中分子量
物质在体内蓄积亦可引起病理症状和出现暂 时性白细胞减少症。
16
醋酸纤维素膜:
• 是纤维素上的羟基被乙酰基部分取代所得到的产 物, • 它降低了氢键的影响,增加链时分离,使聚合物 活性降低, • 因而可以采用溶剂浇注法和熔融法进行加工。
在已知的数百种多糖中,其化学结构差异
很大,因而表现出不同的性能特点,如
• 水溶性和水不溶性、
• 酸性、碱性、中性存在体;
• 凝胶态生理信息载体, • 抗凝血活性物质等形式。
6
一、纤维素
• 纤维素是由 D- 吡喃葡萄糖经由 β-1 , 4 糖苷键连接 的高分子化合物。 • 具有不同的构型和结晶形式,是构成植物细胞壁 的主要成分。
也可使其转变为Ⅱ型结构。
• 从热力学角度考虑,Ⅱ型结构更为稳定。
8
• 纤维的结晶程度在不同天然纤维也存在差异,
– 随着结晶程度的提高,其抗张程度、硬度、密度 增加, – 但弹性、韧性、膨润性、吸水性、化学反应性下 降。
天然药用高分子
药用天然高分子摘要:随着材料科学的高速发展,人们对疾病的认识越来越深刻、明了,对天然药物的利用价值越来越看重,对药用天然高分子的研究也迎来了自己的高速发展的时期。
本文主要对药用天然高分子的种类、结构、性质以及利用情况、发展前景进行陈述关键字:药用天然高分子结构种类利用前景一、常见药用天然高分子简介1、药用天然高分子认识:药用高分子材料(polymers for pharmaceuticals):具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料,而药用天然高分子是指来源于自然界中的,在药品的生产和制造加工工程中使用的高分子材料的总称。
它包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料。
应用药物缓释技术,通过医用高分子材料包覆在药物表面,当然药物不是成块状的,而是很小的。
有高分子材料的保护,药物在短时间内不会被身体吸收,而是随血液流动到特定区域,当到达之后药物表面的高分子材料已经溶解到血液中,最终随体液排出。
而药物能够有针对性的治疗病患处而作为包装材料,应满足以下要求:(1)保证药品质量特性和成分的稳定;要根据药品及制剂的特性来选用不同的包装材料。
首先,药品包装材料必须具有安全、无毒、无污染等特性;其次,药品包装材料必须具有良好的物理化学和微生物方面的稳定性,在保质期内不会分解老化,不吸附药品,不与药品之间发生物质迁移或化学反应,不改变药物性能。
(2)适应流通中的各种要求;药品生产出后需要经过储存、运输等各个流通环节才能达到患者手中,每个环节的气候条件、流通周期、运输方式、装卸条件等各不相同甚至有很大的差异。
因此,药品的包装材料还要与流通环境相适应。
既要有一定的耐热性、耐寒性、阻隔性等物理性能,以满足流通区域中的温度、湿度变化的要求;又要有一定的耐撕裂、耐压、耐戳穿、防跌落等机械性能,以防止装卸、运输、堆码过程中的各种形式的破坏和损伤。
(3)具有一定的防伪功能和美观性;为防止假冒伪劣药品、保证药品的纯正,药品包装材料应具有一定的防伪能力,患者通过包装材料可以方便的辨别药品的真假。
生物医用材料
生物医用高分子材料课程总结一、生物医用材料定义生物医用材料:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。
生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗;生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。
研究内容包括:各种器官的作用;生物医用材料的性能;组织器官与材料之间的相互作用分类方法:按材料的传统分类法分为:(1)合成高分子材料(如聚氨酯、聚酯、聚乳酸、聚乙醇酸、)(2)天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖)(3)金属与合金材料(4)无机材料(5)复合材料按材料的医用功能分为:(1)血液相容性材料(2)软组织相容性材料(3)硬组织相容性材料(4)生物降解材料(5)高分子药物二、生物相容性与安全性生物相容性,是生物医用材料与人体之间相互作用产生各种复杂的生物、物理、化学反应的一种概念。
生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。
主要包括:1.组织相容性:指材料用与心血管系统外的组织和器官接触。
要求医用材料植入体内后与组织、细胞接触无任何不良反应。
典型的例子表现在材料与炎症,材料与肿瘤方面。
影响组织相容性的因素:1)材料的化学成分;2)表面的化学成分;3)形状和表面的粗糙度:2.血液相容性:材料用于心血管系统与血液直接接触,主要考察与血液的相互作用材料,影响因素:材料的表面光洁度;表面亲水性;表面带电性,具体作用机理表现在:血小板激活、聚集、血栓形成;凝血系统和纤溶系统激活、凝血机能增强、凝血系统加快、凝血时间缩短;红细胞膜破坏、产生溶血;白细胞减少及功能变化;补体系统的激活或抑制;对血浆蛋白和细胞因子的影响。
主要发生在凝血过程,生物材料与血小板,生物材料与补体系统的作用过程。
高分子科学导论天然高分子材料课件
壳聚糖
总结词
天然高分子材料中唯一一种阳离子型高 分子,具有良好的生物相容性和可降解 性等优点。
VS
详细描述
壳聚糖是由N-乙酰葡萄糖胺通过β-1,4糖 苷键连接而成的线性高分子,广泛存在于 甲壳类动物的外壳中。壳聚糖具有良好的 生物相容性和可降解性,可用于药物载体、 组织工程、环境保护等领域。壳聚糖可通 过化学改性等方法进行修饰,提高其性能 和应用范围。
木质素
总结词
天然高分子材料中结构最复杂的一种,具有优良的耐热性、耐腐蚀性和绝缘性等。
详细描述
木质素是由苯丙烷结构单元构成的芳香族高分子,广泛存在于植物细胞壁中,主要起到增强细胞壁的 作用。木质素的结构复杂,具有优良的耐热性、耐腐蚀性和绝缘性,可用于制造塑料、胶粘剂、染料、 香料等产品,也可用于生物医学领域。
蛋白 质
总结词
天然高分子材料中功能最多样化的一种,具有生物活性 和生物相容性等优点。
详细描述
蛋白质是由氨基酸分子通过肽键连接而成的生物大分子, 是生命活动中必不可少的物质。蛋白质具有多种生物功 能,如催化、运输、识别、防御等,同时具有良好的生 物活性和生物相容性,可用于药物传递、组织工程、生 物传感器等领域。蛋白质的来源丰富,可通过动物、植 物和微生物进行提取和制备。
例如,近年来科学家们发现了一些具有特殊性能的天然高分 子材料,如抗菌、防霉、自修复等功能,这些材料在医疗、 环保、食品等领域有着广泛的应用前景。
天然高分子材料的功能化与高性能化
功能化和高性能化是天然高分子材料的另一个重要发展趋 势。通过化学改性、物理改性等方法,可以使天然高分子 材料具有更加优异的性能,满足各种不同的需求。
第四章药用天然高分子材料3ppt第七章医用高分
(六)羟丙甲纤维素(HPMC)
是纤维素的部分甲基和部分聚羟丙基醚
1、结构
甲基取代度为1.0~2.0,羟丙基平均取代摩尔数 为0.1~0.34
第四章药用天然高分子材料3ppt第七 章医用高分
2、性质
(1)溶解性:是一种经环氧丙烷改性的甲基纤维素 冷水溶解、热水不溶,具热致凝胶性。
能溶于甲醇和乙醇溶液、氯代烃、丙酮等,它在有机溶剂中 的溶解性优于水溶性。
二、纤维素醚类
(一)羧甲基纤维素钠 (Carboxymethylcellulose Sodium)、交联CMCNa、CMCCa 1、制法
第四章药用天然高分子材料3ppt第七 章医用高分
2、性质
(1)溶解性:易分散于水中成胶体溶液,不溶于乙醚、 乙醇、丙酮等有机溶剂,水溶液对热不稳定。有吸湿 性。
(2)稳定性:吸湿性不大,但高温高湿易水解。
(3)安全性:口服毒性低,体内不代谢,对耳、粘 膜及呼吸道有刺激性。 CAP 具有急性化学腐蚀作 用,严重者可以造成栓塞后动脉瘤模型的破裂。
(4)具有抗HIV活性和抗疱疹病毒作用
3、应用:肠溶包衣材料(制成水分散体)、缓 释材料。
第四章药用天然高分子材料3ppt第七 章医用高分
对水敏感的药物骨架、水不溶性载体、片剂的粘 合剂、薄膜材料、微囊囊材和缓释包衣材料等。
第四章药用天然高分子材料3ppt第七 章医用高分
(四)羟乙基纤维素(Hydroxyethyl Cellulose) 1、制法
2、性质 (1)溶解性:全溶于冷水、热水、弱酸、弱碱、强 酸、强碱,不溶于大部分有机溶剂(可溶于二甲基 亚砜、二甲基甲酰胺),在二醇类极性有机溶剂中 能膨化或部分溶解。
交联CMCNa:不溶于水,粉末流动性好。 良好吸水溶胀性,有助于片剂中药物溶 出和崩解。 CMCCa:取代度与CMCNa相近,但分子量 低,不溶于水,易吸水膨化。
生物医学高分子材料课件
02
03
元素组成
采用光谱分析、色谱-质 谱联用等方法分析材料中 的元素组成。
官能团结构
通过红外光谱、核磁共振 等方法确定高分子材料中 官能团的种类和数量。
热稳定性
采用热重分析法、差热分 析等方法测定高分子材料 的热稳定性和热分解性能 。
生物性能表征
细胞相容性
通过细胞培养、细胞活性染色 等方法评价高分子材料与细胞 的相互作用,测定细胞增殖、
《Polymer》
由Elsevier出版社发行,是全球高分子科学领域的重 要学术期刊之一。主要刊登聚合物合成、结构、性能 及其应用等方向的研究论文、综述和快讯等。
研究机构与高校学科建设
剑桥大学材料科学与工 程系
拥有先进的生物医学高分子材料研究 设备和实验室,开展与生物医用高分 子材料的合成、性质、表征及其应用 相关的研究工作。
改性方法
化学改性
化学改性是通过化学反应对高 分子材料的分子结构、分子量 、交联程度等进行改性的方法
。
物理改性
物理改性是通过物理手段对高分 子材料的分子结构、聚集态结构 、表面性质等进行改性的方法, 如热塑、热固、增强、填充等。
生物改性
生物改性是指利用生物技术对高分 子材料进行改性的方法,如基因工 程、细胞工程等。
电学性能测试
采用电阻率、介电常数等方法测定材料的电学性 能,使用的仪器包括电导率计、四探针测试仪等 。
热学性能测试
采用差热分析、热重分析等方法测定材料的热学 性能,使用的仪器包括差热分析仪、热重分析仪 等。
光学性能测试
采用透光率、浊度等方法测定材料的光学性能, 使用的仪器包括紫外-可见分光光度计等。
医用防护服
医用防护服是一种由高分子材料制成 的防护用品,用于防止病原体传播和 感染,常用于手术室、实验室等高风 险场所的工作人员和患者防护。医用 防护服应具有良好的防护性能、舒适 性和透气性等特点。
生物医用天然高分子
天然医用高分子材料的进展内容摘要:多糖和蛋白质是自然界中重要的天然高分子,具有很好的生物相容性、可降解性和低毒性,因此由它们所形成的天然生物医用高分子材料有着广泛的应用前景。
本文着重评述当前几类重要天然生物医用高分子材料的研究进展状况和发展趋势,涉及具有特殊功能的多糖、两亲性多糖衍生物、生物大分子前药以及天然高分子类水凝胶。
关键词:多糖蛋白质两亲性多糖衍生物生物大分子前药水凝胶生物医用高分子材料是生物材料的重要组成部分,目前在医药领域已得到广泛应用,如用于疾病的诊断和治疗、损伤组织和器官的替换或修复、合成或再生等。
根据不同来源,可将其分为天然和人工合成的生物医用高分子材料两大类。
天然生物医用高分子原材料源于自然界,资源丰富、容易获取,具有很好的生物相容性、可降解性和较低的毒性,因而有着广阔的应用前景。
近几年来,将天然高分子改性用作生物医用材料的研究工作十分引人关注,本文将着重介绍本课题组近期有关研究进展,同时评述了该领域的研究状况和发展趋势。
天然高分子一般是指自然界动、植物以及微生物资源中的生物大分子[1]。
目前应用于生物医用领域的天然高分子主要包括多糖类和蛋白质类等。
多糖类包括纤维素、淀粉(直链淀粉和支链淀粉)、海藻酸盐、果胶、卡拉胶、瓜尔胶壳聚糖、透明质酸、硫酸软骨素、肝素细菌纤维素、葡聚糖、黄原胶、香菇多糖、裂褶菌多糖。
蛋白质类包括大豆蛋白、玉米醇溶蛋白、干酪素、血清蛋白、胶原蛋白等。
1 具有特殊功能和生物活性的天然多糖多糖为单糖组成的天然高分子化合物,广泛地存在于动、植物和微生物体中。
纤维素(Cellulose) 是地球上最丰富的天然高分子,是自然界中取之不尽、用之不绝的可再生资源。
纤维素主要来源于树木、棉花、麻、谷类植物。
一些纤维素衍生物,如甲基纤维素、羧甲基纤维素以及羟乙基纤维素等常用作药物载体、药片黏合剂、药用薄膜、包衣及微胶囊材料。
通过细菌的酶解过程产生的纤维素( 即细菌纤维素),具有良好的生物相容性、湿态时高的力学强度、优良的液体和气体通透性,能防止细菌感染,促使伤口的愈合。
生物医用材料
生物无机与有机高分子复合材料
❖ 几乎所有的生物体组织都是由两种或两种 以上的材料构成的
例如人体中的骨骼和牙齿可看作由胶原蛋白、 多糖基质等高分子构成的连续相和弥散于中 的羟基磷灰石晶粒复合而成。
❖ 利用高弹性模量的无机材料增强高分子材 料的刚性,并赋予其生物活性
❖ 利用高分子材料的可塑性增进生物无机材 料的韧性。
共聚调控降解时间
聚羟基丁酸酯PHB及其共聚物 可生物降解,用于药物释放载体和组织工程 多糖和蛋白质是自然界中重要的天然高分子,具有很好的生
物相容性、可降解性和低毒性,
聚原酸酯(Polyorthoesters,POE)
POE是通过多元酸或多元原酸酯与多元醇类 经无水条件下缩合形成原酸酯键而制成。
料的机械性能,导致断裂,还产生腐蚀产物, 对人体有刺激性和毒性。
常用的医用金属材料
❖ 1)齿科:镶牙、齿科矫形、牙根种植及辅助器件 ❖ 2)人工关节和骨折内固定器械:人工肩关节、肘关节、全髋
关节、半髋关节、膝关节、踝关节、腕关节及指关节。各种 规格的皮质骨和松质骨加压螺钉、脊椎钉、骨牵引钢丝、人 工椎体和颅骨板等, ❖ 3)心血管系统:各种传感器、植入电极的外壳和合金导线, 可制作不锈钢的人工心脏瓣膜、血管内扩张支架等 ❖ 4)其它:如用于各种眼科缝线、人工眼导线、眼眶填充、固 定环等。
要方法)a.热喷涂b.脉冲激光融覆c.离子溅射d.喷 砂法e.电结晶法f.电化学法g.离子注入
医用金属材料研究进展
医用镁及镁合金材料的研究 镁合金具备作为可降解骨植入材料的多方面优点:
(1) 镁是人体内含量最多的阳离子之一,几乎参 与人体内所有的新陈代谢过程。
(2) 镁及镁合金的弹性模量约为45GPa,更接近 人骨的弹性模量,能有效降低应力遮挡效应; 镁与镁合金的密度约为1.7g/cm3,与人骨密度 (1.75g/cm3)接近,符合理想接骨板的要求。
生物医用材料系列3--天然高分子生物医学材料
– 精制的天然纤维素其结晶度约为70%, – 丝光纤维约为48%, – 再生纤维约为38%~40%。 – 无定形区的纤维分子排列杂乱,因而较易进行化
学反应。
10
溶解性:纤维素是一种非还原性的碳水化合物,
– 不溶于水和一般有机溶剂, – 溶解于某些碱性溶剂和高浓度的无机酸溶液如
– 天然纤维素属纤维Ⅰ型, – 再生纤维素属纤维Ⅱ型。 • 用强碱处理天然纤维,结晶结构发生变化,由Ⅰ型 变为Ⅱ型。 • 用铜胺碱溶液溶解天然纤维素,再进行还原沉淀, 也可使其转变为Ⅱ型结构。 • 从热力学角度考虑,Ⅱ型结构更为稳定。
9
• 纤维的结晶程度在不同天然纤维也存在差异,
– 随着结晶程度的提高,其抗张程度、硬度、密度 增加,
16
• 膜的滤过速度一般以中分子量的维生素B12 (分子量1355)作为对照。
• 铜珞玢经过长期连续使用也可引起诸如神经 障碍、色素沉积等弊端,未移除的中分子量 物质在体内蓄积亦可引起病理症状和出现暂 时性白细胞减少症。
17
醋酸纤维素膜:
• 是纤维素上的羟基被乙酰基部分取代所得到的产 物,
• 它降低了氢键的影响,增加链时分离,使聚合物 活性降低,
30
甲壳素缝线
– 吸收性缝线主要用于消化道外科、整形外科等 的手术缝线。对创伤的愈合起到机械支持作用, 愈合后缝线逐渐分解,最终在体内消化吸收。
– 甲壳素缝合线系采用高纯度的甲壳素粉末,用 适宜溶剂溶解,配制成10%的甲壳素浓溶液, 经湿法纺丝制得细丝,除去残留溶剂后制成不 同型号的缝合线。
31
– 甲壳素缝线的力学性能良好,能很好地满足临 床实践要求。4—0号缝线的直线强力2.25kg,润 湿强力为1.96kg;打结强力为1.21kg,润湿打结 强力1.25kg,此值优于羊肠线但略低于聚乳酸 (PGA)缝线。
药用天然高分子材料教学培训(共31张PPT)
(3) 吸湿与解吸:游离羟基易与极性水分子形成氢键缔 合,产生吸湿作用。
(4) 溶胀性:纤维素在浓碱液(12.5%~19%)中能形成 碱纤维素,具有稳定的结晶格子;温度降低,溶胀作 用增加。
培训专用
(5) 降解
热降解:受热时或发生水解或氧化降解。
20~150,只进行纤维素的解吸;
150~140,产生葡萄糖基脱水; 240~400,断裂纤维素分子中的苷键和C-C键; 400时,芳构化和石墨化。
培训专用
培训专用
(三) 应用
是广泛应用的崩解剂,系淀粉的羧甲基醚,水性羧甲基的存在, 使淀粉分子内及分子间氢键减弱.结晶性减小,轻微的交联结构降 低了它的水溶性,从而在水中易分散并具溶胀性.吸水后体积可增
加300倍。目前国内外均有商品出售。
培训专用
第二节 纤维素
存在:纤维素存在于一切植物中。
是构成植物细胞壁的基础物质。
HO OH O
OH O
HO OH O
NaOH
HO n
OH O
OH OH
OH O
HO OH O
ClCH2COOH
OCH2COONa O
OH O
HO
HO
OH O n
OH OH
培训专用
(二)性质
能分散于水,形成凝胶,在醇中溶解度约为 2%,不溶于其它有机溶剂。对碱及弱酸稳定, 对较强的酸不稳定,不易腐败变质。具有良好的 吸水性和吸水膨胀性,吸水膨大200-300倍而 颗粒本身不破坏,具有良好的可压性、流动性, 无引湿性,增加硬度不影响其崩解性,尤其适用 于制备不溶性药物片剂,促进药物的溶出。
培训专用
第一种合成高分子的诞生
❖ 1864年的一天,瑞士巴塞尔大学的化学教授舍恩拜因在自家的厨房 里做实验,一不小心把正在蒸馏硝酸和硫酸的烧瓶打破在地板上。 因为找不到抹布,他顺手用他妻子的布围裙把地擦干,然后把洗过 的布围裙挂在火炉旁烘干。就在围裙快要烘干时,突然出现一道闪 光,整个围裙消失了。为了揭开布围裙自燃的秘密,舍恩拜因找来 了一些棉花把它们浸泡在硝酸和硫酸的混合液中,然后用水洗净, 很小心地烘干,最后得到一种淡黄色的棉花。现在人们知道,这就 是硝酸纤维素,它很易燃烧,甚至爆炸。被称为火棉,可用于制造 炸药。这是人类制备的第一种高分子合成物。虽然远在这之前,中 国人就知道利用纤维素造纸,但是改变纤维素的成分,使它称为一 种新的高分子的化合物,这还是第一次。
04天然药用高分子材料 课件
16
糊精的制法是在干燥状态下将淀粉水解,其 过程有四步:酸化,预干燥,糊精化及冷却。
淀粉转化成糊精可因用酸量、加热温度 及淀粉含水量等不同,而得不同粘度的产品 ,其转化条件见表4-1(P1045% 50
%Released
善达 - 15.0%
40
30
20
片剂硬度 11.2 kp
10
片剂脆碎度 0.19%
0 0
溶出曲线
10
20
Time (minutes)
30
2288
第四章 药用天然高分子材料
崩解时间
Acetam inophen (350m g)
D is in te g r a tio n T im e (m in )
第四章 药用天然高分子材料
性质 ➢ 白色、淡黄色粉末,熔点178℃; ➢ 易溶于热水,具有触变性;不溶于乙醇、
乙醚; 应用 ➢ 固体制剂的填充剂-很少单独使用; ➢ 片剂的粘合剂-易松片、裂片的品种; ➢ 液体制剂的增黏剂(助悬);
1188679
(二)麦芽糖糊精
▪ 1·来源与制法 淀粉在酸或酶、干燥条件下,部分水解成
淀粉经物理或化学改性,淀粉粒全部或部 分破坏的产物。国内——部分预胶化淀粉 。
制法:
淀粉+水→混悬→加温35℃或62-72℃ →破 坏淀粉粒→部分脱水或干燥(↓含水量1014%)。
2233
第四章 药用天然高分子材料
性质 ✓ 外观:白色、类白色; ✓ 偏光显微镜:少部分双折射现象;
X-射线衍射:结晶峰消失; 扫描电镜:表面不规则,呈现裂隙、凹隙 ,此结构利于粉末直接压片;
天然高分子生物医学材料
Biomedical Materials)
医学ppt
1
构成人类肌体的基本物质,诸 如蛋白质、核糖核酸、多糖、 一些脂质都是高分子化合物; 人类肌体的皮肤、肌肉、组织 和器官都是由高分子化合物组 成的。
医学ppt
2
天然高分子材料是人类最早使 用的医学材料之一。
医学ppt
7
第一节 天然多糖类材料 (Natural materials polysaccharides)
医学ppt
8
多糖是由于许多单糖分子经失 水缩聚,通过糖苷键结合而成 的天然高分子化合物,多糖 水解后如果只产生一种单糖则 称为均聚糖如纤维素、淀粉等, 最终水解产物是二种或二种以 上单糖则称为杂聚糖如菊粉等。 自然界广泛存在的多糖主要有:
医学ppt
16
纤维素的分子呈长链状,是一 种结晶性高分子化合物,不同 种纤维素之间的结晶结构存 在差异,天然纤维素属纤维I 型,再生纤维素属纤维Ⅱ型。 用强碱处理天然纤维,结晶结 构发生变化,由I型变为II 型。
医学ppt
17
纤维的结晶程度在不同天然纤 维间也存在差异,一般来说, 随着结晶程度的提高其抗张 程度、硬度、密度增加,但弹 性、韧性、膨润性、吸水性、 化学反应性下降。精制的天然 纤维素其结晶度约为70%, 丝光纤维约为48%,再生纤 维约为38%~40%。
医学ppt
20
但是由于它的结晶性和C2、 C3和C6的反应活性不同, 其取代度一般均在0~3.0 之间。
医学ppt
21
纤维素在医学上最重要的用途 是制造各种医用膜,这种纤维 膜的制造反应包括以下三个步 骤:
医学ppt
22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 膜的滤过速度一般以中分子量的维生素B12 (分子量1355)作为对照。
• 铜珞玢经过长期连续使用也可引起诸如神经 障碍、色素沉积等弊端,未移除的中分子量 物质在体内蓄积亦可引起病理症状和出现暂 时性白细胞减少症。
17
醋酸纤维素膜:
• 是纤维素上的羟基被乙酰基部分取代所得到的产 物,
• 它降低了氢键的影响,增加链时分离,使聚合物 活性降低,
• 因而可以采用溶剂浇注法和熔融法进行加工。
18
• 醋酸纤维素的性质主要取决于乙酰化程度,增塑 剂的性质和比例,亦取决于纤维素分子的链长。
• 醋酸纤维素膜在工业上作为超滤膜,反渗透膜和 不对称膜的生产工艺已经比较成熟,自然地将其
引入体外的血液净化系统。
• 醋酸纤维素的价格低廉,目前技术已能对水和溶 质的渗透性进行控制,体外血液净化方面得到广 泛的应用。
天然高分子生物医学材料
第一节 天然多糖类材料 第二节 天然蛋白质材料
1
• 人们对生命科学的浓厚兴趣在于人类本身就是 生命,
• 人们对生物医学高分子材料的重视与关切是因 为 –构成人体肌体的基本物质,诸如蛋白质、核 糖核酸、多糖、一些脂质都是高分子化合物; –人类肌体的皮肤,肌肉,组织和器官都是由 高分子化合物组成的。
2、粘胶法:纤维素与碱和二硫化碳反应,生成 黄原酸,然后与酸反应再生。
3、热塑性醋酸纤维素与碱反应水解再生。
13
• 硝酸纤维素:
是人们最早使用的血液透析膜材料,系用浓硝 酸和浓硫酸混合酸处理而得, 酯化后的纤维素仍 保持其纤维结构,反应式如下:
纤维素—OH+HNO3
纤维—O—NO2 +H2O
14
赛珞玢
15
铜珞玢(Cuprophan):
• 由铜氨法再生的纤维素膜。 是目前人工肾使用较多 的透析膜材料,有平膜型、管型和空心纤维型多种 形式,亦可对活性炭进行包膜。
• 对于溶质的传递,纤维素膜起到筛网和微孔壁垒的 作用。
• 溶质的渗透性一般与溶质的分子体积成反比,如果 忽略荷电或吸收性质对溶质的影响,其渗透性只和 溶质的分子体积和膜孔大小有关。
• 1938年W. Thalhimer将赛珞玢管作为透析膜使用, • 1944年W. J. Kolff等人用赛珞玢制造的人工透析器
首次用于临床。 • 1965年作为透析膜材料的赛珞玢到逐渐被淘汰。
原因: – 粘胶中含有磺化物, – 赛珞玢膜中残存磺化物将对人体产生不良影响。 – 尿素、肌酐等的透析性也不十分好。
膜,这种纤维膜的制造应包括以下三个步骤:
1.化学改性生产可溶性或热塑性纤维素衍生物; 2.用溶液浇注或熔融法形成薄膜; 3.对纤维素衍生物进行处理得到再生纤维素。 严格地讲,因为处理过程中伴有分子量的降低, 再生都是不完全的。
12
目前再生纤维素的生产主要有以下三种技术:
1、铜氨法:将纤维素溶于铜氨溶液中形成可溶 性络合物,然后与酸反应再生。
• 多糖是由于许多单糖分子经失水缩聚,通过糖苷 键结合而成的天然高分子化合物;
• 多糖水解后如果只产生一种单糖则称为均聚糖如 纤维素、淀粉等,
• 如果最终水解产物是二种或二种以上单糖则称为 杂聚糖如菊粉等。杂多糖的种类虽多,但存在的 量远不及均多糖。
5
Байду номын сангаас
自然界广泛存在的多糖有: 1、植物多糖,如纤维素、半纤维素、淀粉、果胶等。 2、动物多糖,如甲壳素、壳聚糖、肝素、硫酸软骨
2
• 天然高分子材料是人类最早使用的医学材料之一。
• 到了五十年代中期,由于合成高分子的大量涌现,曾 使这类材料退居次要地位。
• 天然材料具有不可替代的优点: – 多功能性质 – 与生物体的相容性、 – 生物可降解性, – 加之对它的改性与复合, – 特别是最近对杂化材料研究的需要,使它成为不可 缺少的重要生物医学材料之一。
7
一、纤维素
• 纤维素是由D-吡喃葡萄糖经由β-1,4糖苷键连接 的高分子化合物。
• 具有不同的构型和结晶形式,是构成植物细胞壁 的主要成分。
• 常与木质素、 半纤维素、树脂等伴生在一起, 是 存在于自然界中数量最多的碳水化合物 。
8
• 纤维素分子呈长链状,是一种结晶性高分子化合物 • 不同种纤维素之间的结晶结构存在差异,
铜胺碱[Cu(NH3)4](OH)2,铜乙二胺碱[Cuen2 ] (OH)2,季胺碱[(C2H5)4N]OH和72%的硫酸、44% 的盐酸、85%的磷酸等, – 亦可溶解于若干种盐的浓水溶液中。 – 纤维素在酸的作用下可发生降解反应,完全水解 时得到唯一单糖葡萄糖。
11
纤维素在医学上最重要的用途是制造各种医用
– 但弹性、韧性、膨润性、吸水性、化学反应性下 降。
– 精制的天然纤维素其结晶度约为70%, – 丝光纤维约为48%, – 再生纤维约为38%~40%。 – 无定形区的纤维分子排列杂乱,因而较易进行化
学反应。
10
溶解性:纤维素是一种非还原性的碳水化合物,
– 不溶于水和一般有机溶剂, – 溶解于某些碱性溶剂和高浓度的无机酸溶液如
– 天然纤维素属纤维Ⅰ型, – 再生纤维素属纤维Ⅱ型。 • 用强碱处理天然纤维,结晶结构发生变化,由Ⅰ型 变为Ⅱ型。 • 用铜胺碱溶液溶解天然纤维素,再进行还原沉淀, 也可使其转变为Ⅱ型结构。 • 从热力学角度考虑,Ⅱ型结构更为稳定。
9
• 纤维的结晶程度在不同天然纤维也存在差异,
– 随着结晶程度的提高,其抗张程度、硬度、密度 增加,
素等。 3、琼脂多糖,如琼脂、海藻酸、角叉藻聚糖等。 4、菌类多糖,如D-葡聚糖、D-半乳聚糖、甘露聚糖
等。 5、微生物多糖,如左旋糖酐、黄原胶、凝乳糖、出
芽短梗孢糖等。
6
在已知的数百种多糖中,其化学结构差异 很大,因而表现出不同的性能特点,如 • 水溶性和水不溶性、 • 酸性、碱性、中性存在体; • 凝胶态生理信息载体, • 抗凝血活性物质等形式。
3
• 由于它们的结构和组成的差异,表现出不同的性 质,应用的领域也不完全一样。
• 相似之处在于它们在体内很容易降解,降解产物 对人体无毒且可为人体所吸收,参与人体的代谢 循环,因此具有广泛的潜在用途。
• 目前天然生物高分子材料主要有 – 天然多糖类材料和 – 天然蛋白质材料二大类。
4
第一节 天然多糖类材料