初中数学知识点总结(提纲)
初中数学几何知识点提纲_中考数学几何复习提纲
初中数学几何知识点提纲_中考数学几何复习提纲1.基本概念-点、线、面的定义与性质-角的定义与性质-直线、射线、线段的性质2.角的分类-钝角、直角、锐角的定义与判断-平角与周角的定义与判断-对顶角、同位角的概念与性质3.图形的分类-三角形的分类与性质-四边形的分类与性质-多边形的分类与性质4.三角形的性质-三角形内角和定理-三角形外角和定理-同旁内角相等定理5.三角形的相似性-相似三角形的定义与判断-相似三角形的性质与判定方法-相似三角形中的比例关系6.三角形的面积-三角形面积计算公式-直角三角形的特殊性质-任意三角形的面积计算方法7.四边形的性质-平行四边形的性质与判定方法-矩形、正方形、菱形、长方形的性质与判定方法-梯形、平行四边形、矩形面积的计算方法8.圆的性质-圆的定义与性质-圆的直径、半径、弧长的计算方法-圆的面积的计算方法9.垂直与平行-垂直与平行线的判定方法-垂线的性质与判定方法-平行线的性质与判定方法10.空间几何-空间几何图形的投影与视图-空间几何图形的旋转、平移、镜面对称性质-空间几何图形的切割与拼接1.平面几何-点、线、面的定义与性质-基本图形(三角形、四边形、多边形)的分类与性质-三角形的内角和定理、外角和定理、中位线定理、高的性质与应用2.类似与全等-相似三角形的定义与性质-相似三角形的判定方法-相似三角形中的比例关系与应用3.角的平分线与垂直平分线-角的平分线的性质与判定方法-垂直平分线的性质与判定方法-相关题目的解题技巧与方法4.平行线与四边形-平行线的性质与判定方法-平行线与四边形内角和的关系-各种四边形的性质与判定方法5.圆-圆的定义与性质-弧长、弦长、扇形面积的计算方法-圆锥与球的性质与计算方法6.空间几何-空间几何图形的投影与视图-空间几何图形的旋转、平移、镜面对称性质。
初中数学知识点 初中数学知识点总结归纳(完整版)
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
2024初中数学知识点复习提纲
2024初中数学知识点复习提纲一、代数与函数1.一元一次方程与一元一次不等式•含有绝对值的一元一次不等式的解法•解一元一次方程和不等式时的变形方法•应用一元一次方程和不等式解决实际问题2.一次函数与一次函数图像•一次函数的定义、性质和图像表示•利用一次函数解决实际问题•一次函数和一元一次方程、不等式的关系3.二次根式•关于二次根式的定义、性质和化简方法•二次根式的运算和求值•应用二次根式解决实际问题4.整式的定义、性质和运算•多项式的基本概念、性质和表示方法•多项式的加、减、乘和整式除法运算•利用整式解决实际问题二、几何与测量1.平面几何初步•直线、线段、射线、角的基本概念及刻画方法•同位角、对顶角、内错角等角度关系•垂直、平行、相交、交错等线段关系•用角度关系和线段关系解决几何问题2.平面图形初步•三角形的基本性质、分类和判定方法•四边形、多边形、圆的定义和性质•识别和绘制各种平面图形•应用平面图形解决实际问题3.直线、角、面积测量•直线的测量方法和误差控制•利用角度测量解决几何问题•平面图形的面积计算及其应用4.立体几何•空间图形的基本概念、分类以及基本变换方法•立体图形的体积和表面积计算•应用立体几何解决实际问题三、数据与概率1.统计基础知识•数据和变量的定义、分类及其表示方法•统计描述性分析方法(频数、频率、中位数、平均数等)•数据图表的绘制和分析2.概率初步•随机事件和样本空间的定义、性质及表示方法•概率的定义、性质和计算方法•统计与概率的关系及其应用3.统计与概率的实际应用•利用统计和概率解决实际问题•假设检验及其应用以上是2024初中数学知识点复习提纲,希望对广大中学生有所帮助。
初中数学知识点总结完整版
初中数学知识点总结完整版初中数学是一个系统性很强的学科,包含了众多的知识点。
为了帮助同学们更好地掌握初中数学,下面对其主要知识点进行一个全面的总结。
一、数与代数1、有理数有理数包括整数和分数。
整数又分为正整数、零和负整数;分数包括正分数和负分数。
有理数的运算有加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个数等于乘以这个数的倒数;0 除以任何一个不等于 0 的数都得 0。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
实数的运算与有理数的运算类似,只是在开方运算中要注意正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
3、代数式代数式包括整式、分式和二次根式。
整式包括单项式和多项式。
单项式是数字与字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算有加、减、乘、除。
乘法公式:(a + b)(a b) = a² b²;(a ± b)²= a² ± 2ab + b²。
分式:形如 A/B(A、B 是整式,且 B 中含有字母,B ≠ 0)的式子叫做分式。
分式有意义的条件是分母不为 0;分式的值为 0 的条件是分子为 0 且分母不为 0。
二次根式:形如√a(a ≥ 0)的式子叫做二次根式。
二次根式有意义的条件是被开方数为非负数。
二次根式的性质:√a² =|a| ;√ab =√a · √b(a ≥ 0,b ≥ 0);√a/b =√a /√b(a ≥ 0,b > 0)。
九年级数学知识点提纲
九年级数学知识点提纲一、有理数及其运算1. 有理数概念2. 有理数的加减乘除3. 有理数的大小比较4. 有理数的绝对值二、代数式与分式1. 代数式的基本概念2. 代数式的运算法则3. 分式的概念与运算法则4. 分式方程的解法三、二次根式与无理数1. 二次根式的定义与性质2. 二次根式的化简与计算3. 无理数的概念与性质4. 无理数的运算法则四、平面图形的性质与计算1. 平面图形的基本概念2. 三角形的性质与分类3. 四边形的性质与分类4. 平行四边形与梯形的性质与计算五、三角形的性质与分类1. 三角形角度的性质2. 三角形边长的关系3. 三角形的分类与判定4. 三角形的面积计算与相似性质六、数列与函数1. 数列的概念与表示2. 等差数列与等比数列3. 函数的概念与性质4. 一次函数与二次函数七、方程与不等式1. 一元一次方程与二元一次方程2. 一元二次方程的解法3. 线性不等式的解法与图形表示4. 绝对值方程与不等式八、统计与概率1. 数据的收集与整理2. 统计图表的表示与分析3. 概率的基本概念与计算4. 事件的排列与组合计算九、几何变换与相似1. 平移、旋转、翻转的概念与性质2. 相似三角形的判定与性质3. 相似三角形的计算与应用4. 黄金分割与相似十、立体图形的认识与计算1. 空间图形的基本概念与性质2. 球体、圆锥、圆台的性质与计算3. 容积的计算与应用4. 空间立体图形的投影与展开图以上是九年级数学知识点提纲,包含了九年级数学的主要知识点。
通过学习这些知识点,可以帮助学生全面掌握九年级数学的基础概念、方法与技巧,为进一步学习高中数学奠定坚实的基础。
掌握了这些知识点,学生可以更好地解决数学问题,提高数学思维能力,并为将来的学习与应用打下坚实的数学基础。
初中数学知识点总结归纳重点
初中数学知识点总结归纳重点初中数学是学生数学学习的重要阶段,它为高中数学打下坚实的基础。
初中数学主要包括数与代数、几何、统计与概率三个部分。
以下是初中数学的重点知识点总结:一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方。
- 有理数的性质:绝对值、相反数、倒数。
2. 整数- 整数的性质:奇数、偶数、质数、合数。
- 整数的四则运算:加法、减法、乘法、除法。
- 整数的整除性:因数、倍数、最大公约数、最小公倍数。
3. 分数与小数- 分数的表示和性质:真分数、假分数、带分数。
- 分数的四则运算:加法、减法、乘法、除法。
- 小数的表示和性质:小数点的位置移动引起大小变化。
- 小数的四则运算:加法、减法、乘法、除法。
4. 代数表达式- 代数式的概念:用字母表示数的式子。
- 单项式与多项式:单项式是字母和数的乘积,多项式是若干个单项式的和。
- 代数式的运算:合并同类项、分配律、结合律、交换律。
5. 一元一次方程- 方程的概念:含有未知数的等式。
- 解一元一次方程:移项、合并同类项、系数化为1。
- 方程的应用:列方程解实际问题。
6. 二元一次方程组- 方程组的概念:含有两个未知数的一组方程。
- 解方程组的方法:代入法、消元法、图解法。
7. 不等式- 不等式的概念:表示不等关系的式子。
- 不等式的解集:找出满足不等式的所有数值。
- 解一元一次不等式:基本步骤与解方程类似,但要注意符号的变化。
8. 函数- 函数的概念:一个变量的值依赖于另一个变量的值。
- 函数的表示:图像、表格、解析式。
- 线性函数和二次函数:y=kx+b(k≠0)、y=ax²+bx+c(a≠0)。
二、几何1. 平面图形- 点、线、面的概念:点无大小,线有长度无宽度,面有长度和宽度。
- 角的概念和分类:邻角、对角、同位角等。
- 三角形的性质:边长关系、内角和定理、外角性质。
2. 四边形- 平行四边形的性质:对边平行且相等、对角相等。
初中数学总复习提纲
初中数学总复习提纲一、数的性质和运算1.自然数、整数、有理数、实数和虚数的含义及其性质2.整数的运算规则:加法、减法、乘法、除法、绝对值运算3.有理数的运算规则:加法、减法、乘法、除法、混合运算4.指数与指数运算5.逻辑与集合二、代数式与方程式1.代数式的定义及其性质2.平方、完全平方、立方和完全立方的求解3.一元一次方程的解法4.一元一次方程组的解法5.一元二次方程的解法及其应用6.用方程表示实际问题并解决实际问题7.勾股定理及其应用三、数与图形1.二维图形的边、角、面及其性质2.三角形、四边形和多边形的性质及其关系3.三角形的线段、角、面积公式及应用4.三角形的相似性质及其应用5.圆的定义、性质及公式6.圆的面积和周长的计算7.空间几何体的计算四、函数与应用1.函数的概念和性质2.函数图像的平移、伸缩和反射3.一次函数、二次函数、三次函数及其图像4.绝对值函数、分段函数及其图像5.函数的复合、反函数和逆函数6.数据的收集、整理、统计和分析7.概率与统计五、单位换算与计算检验1.长度、面积、体积和质量的单位换算2.时间、速度、密度、温度、角度的单位换算3.百分数和比例的计算4.计算结果的检验5.合理估算的方法与应用六、解题方法与思维培养1.数学解题的基本方法2.算术平均数、几何平均数和均值不等式的应用3.推理与证明4.逻辑思维与数学思维的培养5.综合应用题的解决方法以上是初中数学总复习的提纲,根据这个提纲进行复习,可以全面复习初中数学知识,有助于提高数学应试能力。
每个模块都要结合习题进行巩固,多做一些实际应用题,提高解决问题的能力。
同时,要注重思维培养和解题方法的掌握,通过多思考、多讨论、多练习,培养学生的数学思维能力。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
2024初中数学知识点全总结
2024初中数学知识点全总结2024年,在初中数学学科中,学生将学习一系列基本的数学知识点,包括以下内容:一、数与式1.自然数、整数、有理数、实数的概念和性质;2.计数法、科学计数法、百分数的表示及应用;3.整数的概念、四则运算、约数与倍数;4.有理数的概念、四则运算、乘方、开方、比大小;5.实数的概念、不等式的性质及解法。
二、代数式与方程式1.代数式的概念、同类项的合并及多项式运算;2.一元一次方程的概念、解法及应用;3.一元一次不等式的概念、解法及应用;4.分式的概念、四则运算、约分与基本问题的解答;5.二元一次方程组及其应用。
三、图形1.平面图形的基本概念和性质(点、线、角、多边形等);2.三角形的性质(角的度量、三角形分类、勾股定理等);3.四边形的性质(矩形、菱形、平行四边形、梯形等);4.平面镜像、轴对称、中心对称的概念及应用;5.相似与全等的概念及判定;6.平移、旋转、翻转的概念及操作方法。
四、数与量1.长度、面积、体积、质量、时间、速度等量的概念及计量方法;2.对一些简单的量进行加、减、乘、除、比较等运算;3.解决实际问题时,运用合适的量的单位进行计量。
五、函数1.函数的概念、函数的运算、函数的性质及其图像;2.一次函数、二次函数、反比例函数等函数的概念及性质;3.函数与线性关系、函数与几何关系及函数与实际问题的应用。
六、统计与概率1.统计数据的收集、整理、分析;2.频数表示、频数分布表、频数分布图;3.地图、图表和轴线图的解读,统计图的制作;4.概率的概念、基本事件的计算、互斥事件与独立事件的判断。
七、几何运动1.点的平移;2.线段的平移;3.角度的平移;4.平面图形的变换(平移、旋转、对称、放缩)。
初中数学复习提纲
初中数学复习提纲一、有理数1.有理数的概念及性质:a.有理数的定义;b.有理数的比较大小;c.有理数的加法、减法、乘法、除法运算;d.有理数的化简及约分;e.有理数的负数及绝对值;f.有理数的十分制及百分制换算。
二、代数式1.代数式的基本概念:a.代数式的定义及元素的分类;b.代数式的值及求值;c.代数式的化简;d.代数式的展开与合并;e.代数式的因式分解;f.代数式的公式变形。
三、方程与不等式1.一元一次方程:a.一元一次方程的概念及解法;b.一元一次方程的应用。
2.一元一次不等式:a.一元一次不等式的概念及解法;b.一元一次不等式的应用。
3.二元一次方程组:a.二元一次方程组的概念及解法;b.二元一次方程组的应用。
四、几何1.直线、角、面的概念及性质:a.直线及直线的分类;b.角的概念及角的分类;c.角的性质;d.面的概念及面的分类;e.面的性质。
2.图形的周长与面积:a.三角形、矩形、正方形的周长与面积;b.圆的周长与面积;c.梯形、平行四边形的周长与面积;d.圆环的周长与面积。
3.合作与相似:a.合作的概念及性质;b.相似的概念及性质;c.相似三角形的应用。
五、统计与概率1.统计的基本概念及方法:a.数据的搜集、整理、分析;b.频数表、频率表与频率多角形;c.平均数、中位数与众数;d.极差与四分位数。
2.概率的基本概念及计算:a.随机事件与样本空间;b.事件的概率与计算;c.事件的互斥与相互独立;d.古典概型与加法定理;e.条件概率与乘法定理。
六、函数1.函数的概念及表示法:a.函数的定义及特点;b.函数的表示与自变量与因变量的关系。
2.一次函数与二次函数:a.一次函数的概念、性质与图像;b.一次函数的斜率与截距;c.二次函数的概念、性质与图像;d.二次函数的顶点与对称轴。
以上为初中数学复习提纲,涵盖了有理数、代数式、方程与不等式、几何、统计与概率、函数等重要知识点,每个知识点包括了基本概念、性质与解题方法,并且列举了一些常用的应用题目。
初中数学内容提纲
初中数学内容提纲代数部分(一)有理数1.有理数的概念有理数。
数轴。
相反数。
数的绝对值。
有理数大小的比较.(1)有理数的意义,用正数与负数表示相反意义的量,把给出的有理数归类。
(2)数轴、相反数、绝对值等概念和数轴的画法,用数轴上的点表示整数或分数(以刻度尺为工具),求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)有理数大小比较的法则,用不等号连接两个或两个以上不同的有理数。
2.有理数的运算有理数的加法与减法。
代数和.加法运算律。
有理数的乘法与除法。
倒数。
乘法运算律。
有理数的乘方。
有理数的混的运算。
科学记数法。
近似数与有效数字。
(1)有理数的加、减、乘、除、乘方的意义,有理数的运算法则、运算律、运算顺序以及有理数的混合运算(不超过6个数),运用运算律简化运算。
(2)倒数概念,求有理数的倒数。
(3)大于10的有理数的科学记数法。
(4)近似数与有效数字的概念,根据指定的精确度或有效数字的个数,用四舍五入法求有理数的近似数;用计算器求一个数的平方与立方(尚无条件的学校可使用算表)。
(5)有理数的加法与减法、乘法与除法可以相互转化。
(二)整式的加减代数式。
代数式的值.整式。
单项式。
多项式。
合并同类项. 去括号与添括号。
数与整式相乘。
整式的加减法.(1)用字母表示有理数.(2)代数式、代数式的值的概念,列出代数式表示简单的数量关系,求代数式的值。
(3)整式、单项式及其系数与次数、多项式次数、项与项数的概念,把一个多项式按某个字母降幂排列或升幂排列.(4)合并同类项的方法,去括号、添括号的法则,数与整式相乘的运算以及整式的加减运算。
(5)用字母表示数、列代数式和求代数式的值、整式的加减,抽象概括的思维方法和特殊与一般的辩证关系。
(三)一元一次方程等式。
等式的基本性质.方程和方程的解.解方程. 一元一次方程及其解法. 一元一次方程的应用.(1)等式和方程的有关概念,等式的基本性质,检验一个数是不是某个一元方程的解。
中考数学复习提纲及建议
中考数学复习提纲及建议中考数学复习提纲数学中考复习提纲(实数与数轴)1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
二、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
三、实数的运算 1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算。
数学中考复习提纲(有效数字和科学记数法)1、科学记数法:设N>0,则N= a×10(其中1≤a<10,n为整数)。
2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。
精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。
完整版初中数学知识点归纳总结精华版
初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。
2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。
2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。
2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。
5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。
2.线:只有长度,没有宽度、高度的物体。
3.面:只有长度和宽度,没有高度的物体。
直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。
2.性质:三角形的内角和为180°,三角形的对边相等。
3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。
2.性质:四边形的内角和为360°,四边形的对边相等。
3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。
5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。
6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。
2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。
初中数学知识点归纳总结(精华版)
第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:,+8,sin60o。
第二章整式的加减考点一、整式的有关概念(3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
考点二、角(3分)1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
初中数学知识点复习提纲
初中数学知识点复习提纲新一轮中考复习备考周期正式开始,你是不是还在为了数学怎么复习而苦恼呢?你知道初中数学的知识点有哪些吗?以下是小编精心收集整理的初中数学知识点复习提纲,肯定会对你有所帮助的,来阅读一下吧!初中数学知识点复习提纲1.有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.5.1完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.5.2因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.5.3单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.5.4一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.5.5一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.6.1分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.6.2分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊.6.3最简根式的条件:最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点.6.4特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.6.5对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称x相反;原点对称记,横纵坐标全变号.7.1自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.7.2函数图象的移动规律:若把一次函数的解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.7.3一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.7.4二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见;b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线;左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现;横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.7.5反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.8.1特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2,正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.三角函数的增减性:正增余减8.2平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.8.3梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线. 8.4添加辅助线歌:辅助线,怎么添?找出规律是关键.题中若有角(平)分线,可向两边作垂线; 线段垂直平分线,引向两端把线连;三角形边两中点,连接则成中位线;。
知识点总结复习提纲
知识点总结复习提纲一、语文1.修辞手法:比喻、拟人、夸张等2.古诗词鉴赏:宋词、唐诗等3.阅读理解:文章主旨、段落大意等4.汉字的结构与发展:甲骨文、小篆、楷书等5.修辞方法:描写、议论、说明等二、数学1.四则运算:加减乘除2.初中代数:一元一次方程、一元二次方程等3.初中几何:三角形、四边形、圆等4.初中数学应用题:问题解决、实际应用等5.概率统计:排列组合、概率计算、统计分析等三、物理1.力学:牛顿三定律、弹簧力、摩擦力等2.热学:热力学定律、热传导、热膨胀等3.光学:光的反射、折射、色散等4.电磁学:电荷、电流、电场、磁场等5.原子物理:原子结构、核反应、放射性等四、化学1.物质的结构与性质:分子结构、离子结构、物质变化等2.化学实验:酸碱中和、气体制备、物质分离等3.化学方程式:化学反应的表示、平衡等4.化学元素:周期表、元素的性质、应用等5.化学应用:化学能源、环保化学、食品安全等五、生物1.生物基础知识:细胞结构、生物膜、生物蛋白等2.生理生化:呼吸、循环、消化、代谢等3.生物遗传:DNA、RNA、基因突变等4.生态环境:生态系统、生态平衡、环境保护等5.生物应用:生物工程、生物技术、药物开发等六、历史1.古代史:先秦、秦汉、三国、两晋、南北朝等2.近代史:明清、民国、抗战、解放、改革开放等3.世界史:文艺复兴、宗教改革、殖民扩张、工业革命等4.中国革命史:辛亥革命、五四运动、土地革命、抗日战争、解放战争等5.当代国际关系:冷战、全球化、反恐、和平发展等七、地理1.自然地理:地球形状、地球运动、大地构造等2.人文地理:人口地理、城市地理、乡村地理等3.经济地理:资源分布、经济布局、交通运输等4.环境地理:自然环境、人文环境、环境变化等5.地理信息技术:遥感、地理信息系统、全球定位系统等八、政治1.政治基本知识:政治体制、政治制度、政治文化等2.国家法律知识:宪法、行政法、刑法等3.公民权利与义务:公民自由、人权、法律责任等4.中外政治制度:社会主义制度、资本主义制度等5.国际政治与外交:主权、领土、国际组织、国际关系等以上就是各科目的知识点总结复习提纲,希望对大家的复习有所帮助。
初三数学复习提纲
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质: A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义: 几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.实数无理数(无限不循环小数)正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数0 实数 负数 整数 分数无理数有理数 正数整数分数无理数有理数 │a │ a (a ≥0)(a 为一切实数) a(a≥-a(a<0) │a │=2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
(完整版)初中数学知识点归纳总结(精华版)
(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。
2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。
3. 实数实数包括有理数和无理数,可以用数轴表示。
4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。
二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。
2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。
3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。
三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。
2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。
3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。
四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。
2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。
3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。
五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。
2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。
六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类2、无理数(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数2、绝对值3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根2、算术平方根3、立方注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分)1、有效数字2、科学记数法 考点五、实数大小的比较 (3分)1、数轴2、实数大小比较的几种常用方法 考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律2、加法结合律3、乘法交换律4、乘法结合律5、乘法对加法的分配律6、实数的运算顺序第二章 代数式考点一、整式的有关概念 (3分)1、代数式2、单项式 考点二、多项式 (11分)1、多项式2、同类项3、去括号法则4、整式的运算法则整式的乘法:),(都是正整数n m aa a nm n m +=• ),(都是正整数)(n m a a mn nm =)()(都是正整数n b a ab nnn=22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m aa a nm nm都是正整数考点三、因式分解 (11分)1、因式分解2、因式分解的常用方法(1)提公因式法: (2)运用公式法: (3)分组分解法: (4)十字相乘法: 考点四、分式 (8~10分)1、分式的概念2、分式的性质(1)分式的基本性质: (2)分式的变号法则: 3、分式的运算法则;;bcadc d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n b a b a n n n =;c b a c b c a ±=± bdbcad d c b a ±=± 考点五、二次根式 (初中数学基础,分值很大)1、二次根式2、最简二次根式3、同类二次根式4、二次根式的性质5、二次根式混合运算第三章 方程(组)考点一、一元一次方程的概念 (6分)1、方程2、方程的解3、等式的性质4、一元一次方程 考点二、一元二次方程 (6分)1、一元二次方程2、一元二次方程的一般形式 考点三、一元二次方程的解法 (10分)1、直接开平方法2、配方法3、公式法4、因式分解法 考点四、一元二次方程根的判别式 (3分) 考点五、一元二次方程根与系数的关系 (3分)考点六、分式方程 (8分)1、分式方程2、分式方程的一般方法3、分式方程的特殊解法 换元法: 考点七、二元一次方程组 (8~10分)1、二元一次方程2、二元一次方程的解3、二元一次方程组 4二元一次方程组的解 5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程 7、三元一次方程组第四章 不等式(组)考点一、不等式的概念 (3分)1、不等式2、不等式的解集3、用数轴表示不等式的方法 考点二、不等式基本性质 (3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
考试题型:考点三、一元一次不等式 (6~8分)1、一元一次不等式的概念2、一元一次不等式的解法(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1 考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念2、一元一次不等式组的解法第五章 统计初步与概率初步考点一、平均数 (3分) 1、平均数的概念(1)平均数: )(121n x x x nx +++=(2)加权平均数: n f x f x f x x k k ++=2211,2、平均数的计算方法(1)定义法 (2)加权平均数法: (3)新数据法:考点二、统计学中的几个基本概念 (4分)1、总体2、个体3、样本4、样本容量5、样本平均数6、总体平均数 考点三、众数、中位数 (3~5分) 1、众数 2、中位数 考点四、方差 (3分) 1、方差的概念])()()[(1222212x x x x x x n s n -++-+-= ]')'''[(12222212x n x x x ns n-+++= 3、标准差:])()()[(1222212x x x x x x ns s n -++-+-==考点五、频率分布 (6分) 1、频率分布的意义2、研究频率分布的一般步骤及有关概念 (1)研究样本的频率分布的一般步骤是:(2)频率分布的有关概念 ①极差: ②频数: ③频率: 考点六、确定事件和随机事件 (3分) 1、确定事件 2、随机事件: 考点七、随机事件发生的可能性 (3分) 考点八、概率的意义与表示方法 (5~6分) 1、概率的意义 2、事件和概率的表示方法考点九、确定事件和随机事件的概率之间的关系 (3分)1、确定事件概率2、确定事件和随机事件的概率之间的关系 考点十、古典概型 (3分) 1、古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法:事件A 发生的概率为P (A )=nm考点十一、列表法求概率 (10分) 1、列表法2、列表法的应用场合当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
考点十二、树状图法求概率 (10分) 1、树状图法2、运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点十三、利用频率估计概率(8分)第六章 一次函数与反比例函数考点一、平面直角坐标系 (3分)1、平面直角坐标系2、点的坐标的概念 考点二、不同位置的点的坐标的特征 (3分)1、各象限内点的坐标的特征2、坐标轴上的点的特征3、两条坐标轴夹角平分线上点的坐标的特征4、和坐标轴平行的直线上点的坐标的特征5、关于x 轴、y 轴或远点对称的点的坐标的特征6、点到坐标轴及原点的距离点P(x,y)到原点的距离等于22y x考点三、函数及其相关概念 (3~8分) 1、变量与常量 2、函数解析式3、函数的三种表示法及其优缺点(1)解析法 (2)列表法 (3)图像法 4、由函数解析式画其图像的一般步骤 考点四、正比例函数和一次函数 (3~10分)1、正比例函数和一次函数的概念2、一次函数的图像3、一次函数、正比例函数图像的主要特征:4、正比例函数的性质5、一次函数的性质6、正比例函数和一次函数解析式的确定 考点五、反比例函数 (3~10分)1、反比例函数的概念2、反比例函数的图像3、反比例函数的性质4、反比例函数解析式的确定5、反比例函数中反比例系数的几何意义第七章 二次函数考点一、二次函数的概念和图像 (3~8分) 1、二次函数的概念2、二次函数的图像①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法考点二、二次函数的解析式 (10~16分)(1)一般式: (2)顶点式: (3)交点式 考点三、二次函数的最值 (10分)如果自变量的取值范围是全体实数,当abx 2-=时,a b ac y 442-=最值。
如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
考点四、二次函数的性质 (6~14分) 1、二次函数的性质2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:(0,c )3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。
因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点。
补充:1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)如图:点A 坐标为(x 1,y 1)点B 坐标为(x 2,y 2)则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间) 左加右减、上加下减第八章 图形的初步认识考点一、直线、射线和线段 (3分) 1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成 (2)点动成线,线动成面,面动成体。
3、直线的概念4、射线的概念5、线段的概念6、点、直线、射线和线段的表示7、直线的性质8、线段的性质9、线段垂直平分线的性质定理及逆定理 考点二、角 (3分)1、角的相关概念2、角的表示3、角的度量4、角的性质5、角的平分线及其性质 考点三、相交线 (3分)1、相交线中的角2、垂线 垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
考点四、平行线 (3~8分) 1、平行线的概念(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。