(遵义专用)2019届中考数学复习 第13课时 反比例函数(课后作业)课件

合集下载

中考数学复习第13课时《反比例函数》说课稿

中考数学复习第13课时《反比例函数》说课稿

中考数学复习第13课时《反比例函数》说课稿一. 教材分析《中考数学复习第13课时》这一课时,是在学生已经掌握了比例函数的基础上进行教学的。

本课时主要让学生了解反比例函数的定义、性质及其图象,能够熟练运用反比例函数解决实际问题。

教材通过丰富的实例,引导学生探究反比例函数的图象和性质,培养学生的观察能力、思维能力和创新能力。

二. 学情分析初中生在学习反比例函数时,已经具备了一定的函数基础,对比例函数的概念和图象有一定的了解。

但学生在学习过程中,可能会对反比例函数的定义和性质产生混淆,特别是在解决实际问题时,不知道如何运用反比例函数。

因此,在教学过程中,我要注重引导学生理解反比例函数的定义,掌握其性质,并能运用到实际问题中。

三. 说教学目标1.知识与技能目标:让学生掌握反比例函数的定义、性质及其图象,能够熟练运用反比例函数解决实际问题。

2.过程与方法目标:通过观察、实验、探究等方法,让学生了解反比例函数的图象和性质,培养学生的观察能力、思维能力和创新能力。

3.情感态度与价值观目标:激发学生学习反比例函数的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。

四. 说教学重难点1.教学重点:反比例函数的定义、性质及其图象。

2.教学难点:反比例函数在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极参与。

2.教学手段:利用多媒体课件、反比例函数图象软件等,直观展示反比例函数的图象和性质,提高学生的学习兴趣。

六. 说教学过程1.导入:通过复习比例函数的知识,引出反比例函数的概念,激发学生的学习兴趣。

2.新课导入:讲解反比例函数的定义,让学生通过实例理解反比例函数的概念。

3.性质探究:引导学生观察反比例函数的图象,总结反比例函数的性质。

4.应用拓展:通过实际问题,让学生运用反比例函数解决问题,巩固所学知识。

5.练习环节:布置一些有关反比例函数的练习题,让学生独立完成,检测学习效果。

中考数学一轮复习:第13课时反比例函数的综合应用课件

中考数学一轮复习:第13课时反比例函数的综合应用课件

2. (202X莆田5月质检10题4分)如图,点A,B分别在反比例函数y=1 (x>0),y

a x
(x<0)的图象上,若OA⊥OB,OOBA
=2,则a的值为(
A)
x
A. -4
B. 4
C. -2
D. 2
第2题图
3. (202X福建16题4分)已知矩形ABCD的四个顶点均在反比例函数y= 1 的图象
15
12
.
x
设OC=a,点B在直线y=x上,∴点B(a,a).
又∵BC⊥x轴,∴△BOC为等腰直角三角形.
返回目录
No
第13课时 反比例函数的综合应用
∵AB⊥l,AD⊥BC,
∴△ABD为等腰直角三角形.
设BD=b,则AD=b,
∴点A(a+b,a-b).
将点A(a+b,a-b)代入y=12,得 x
a-b=a1+2b,
x
(1)如图①,过点A分别作x轴,y轴的垂线,垂足分别为B,C.若四边形OBAC的
面积为2,则k的值为___2_____;
例题图①
No
第13课时 反比例函数的综合应用
(2)过点A作x轴的垂线,垂足为B. ①如图②,点C是y轴上任意一点.若S△ABC=1,则k的值为__2______; ②点A与点C关于原点对称. (i)如图③,若S△ABC=2,则k的值为___2_____;
第13课时 反比例函数的综合应用
返回目录
第13课时 反比例函数的综合应用
No
思维导图
返回目录
利用k的几何意义 确定反比例函数
的解析式
反比例函数 的综合应用
反比例函数 系数k的几何意义
k的几何意义
计算与双曲线 y

【大师特稿】中考数学一轮复习第13讲:反比例函数教案

【大师特稿】中考数学一轮复习第13讲:反比例函数教案

第13讲:反比例函数一、复习目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象2、能够将反比例函数有关的实际应用题转化为函数问题二、课时安排1课时三、复习重难点1、反比例函数图象与性质2、反比例函数图象、性质的应用四、教学过程(一)知识梳理反比例函数的图象与性质·PN=|y|·|x|=(二)题型、技巧归纳考点1:反比例函数的概念技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立.考点2:反比例函数的图象与性质技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y =kx的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.考点3反比例函数的应用技巧归纳:先根据双曲线上点C 的坐标求出m 的值,从而确定点C 的坐标,再将点C 的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y =k x的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.(三)典例精讲例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)[解析] 设反比例函数的关系式为y =kx,把点(-1,6)代入可求出k =-6,所以反比例函数的关系式为y =-6x,故此函数也经过点(-3,2),答案选A.例2在反比例函数y =k x (k <0)的图象上有两点()-1,y 1,⎝ ⎛⎭⎪⎫-14,y 2,则y 1-y 2的值是( ) A .负数 B .非正数C .正数D .不能确定 [解析] 反比例函数y =kx :当k <0时,该函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大.又∵点(-1,y 1)和⎝ ⎛⎭⎪⎫-14,y 2均位于第二象限,-1<-14, ∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,故选A.例3 如图点A ,B 在反比例函数y = (k>0,x>0)的图象上,过点A ,B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为________.[解析] ∵S △AOC =6,OM =MN =NC =13OC ,∴S △OAC =12×OC×AM,S △AOM =12×OM×AM=13 S △OAC =2=12|k|.又∵反比例函数的图象在第一象限,k >0,则k =4.例4 如图13-2,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线y =4y x=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y = 交于点P 、Q ,求△APQ 的面积.解:(1) ∵点C(1,m)在双曲线y =4x上,∴m =4,将点C(1,4)代入y =2x +n 中,得n =2;(2)在y =2x +2中,令y =0,得x =-1,即A(-1,0).将x =3代入y =2x +2和y =4x,得点P(3,8),Q ⎝ ⎛⎭⎪⎫3,43,∴PQ =8-43=203.又∵AD =3-(-1)=4,∴△APQ 的面积=12×4×203=403. (四)归纳小结本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题(五)随堂检测1、已知点A(-2,y 1)、B(1,y 2)和C(2,y 3)都在反比例函数ky x= (k<0)的图象上,那么y 1、y 2和y 3的大小关系如何?2、已知反比例函数7y x=-图象上三个点的坐标分别是A(-2,y 1)、B(-1,y 2)、C(2,y 3),能正确反映y 1、y 2、y 3的大小关系的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 2>y 3>y 13、已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围.4、如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.五、板书设计反比例函数六、作业布置反比例函数课时作业七、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。

九年级中考数学一轮复习课件:第13课时-反比例函数图象性质及应用

九年级中考数学一轮复习课件:第13课时-反比例函数图象性质及应用

反比例函
h=
函 数关系
的函数关系式为⑪______s___

3.行程问题:当路程s一定时,行驶时间t是

行驶速度v的反比例函数,即
t
=
s v
实 际 应 用
解题 步骤
1.分析实际问题情景,建立反比例函数模型 2.用待定系数法求出反比例函数关系式 3.确定自变量取值范围,注意函数中的自变量 的具体意义
4.利用反比例函数的性质解决问题
设∴yy乙乙==kxx++2b.(k≠0),依题意得: b
2
5,解得bk
1, 2
当y乙=10时,x=8.
∴乙容器进水管打开8分钟时,两容器水量相等;
(3)【思路分析】使两容器第12分钟时水量相等,为18 升,而当x=6时,y乙=8.再列式计算.
解:当x=6时,y乙=8.
∴(18-8)÷(12-6)= 5 (升/分),
第一部分 考点研究
第三章 函 数
第13课时 反比例函数图象性 质及应用
考点精讲
反 比 例 函 反比例函数及 数 其图象性质
1.定义:一般地,形如 y = kx(k为
常数,k≠0)的函数叫做反比例函 数.其中x是自变量,y是x的函 数,且x≠0
2.反比例函数的图象性质
图 象 性
3.反比例函数中比例系数k的 几何意义
12-8
(2)【思路分析】由图可知,甲容器在第3分钟时水量为:
5×(3-2)=5(升),则交点坐标为(3,5),设y乙=kx+b(k≠0), 利用待定系数法求得该函数解析式,把y=10代入求值即可.
解:存在.
由图可知,甲容器在第3分钟时水量为:5×(3-2)=5(升),

初三数学《反比例函数》PPT课件共18页

初三数学《反比例函数》PPT课件共18页

则S=_____
4
2
P
-5
O
A
5
-2
5。已知反比例函数y =k/x 和一次函数 y=kx+b 的图象都经过点(2,1) (1)分别求出这个函数的解析式 (2)试判断是A(-2, -1)在哪个函数的图象上 (3)求这两个函数的交点坐标

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
y
y
k x
4x(k的<图0)象上,则y1
与y2的大小关系(从大到小)为
.
yy1>1 >y20>y2
y
A
oy1 x2
x
1
y2
B
x
做一做
1.如果反比例函数 y 1的3m图象位于第二、
x
四象限,那么m的范围为
.
m>
1 3
由1-3m<0 得-3m<- 1

m>
1 3
做一做
2.如图,点P是反比例函数 y 图2 象上的 x
1的2 图象与一次函数 x
y= kx+4的图象相交于P、Q两点,且P点的纵坐标是6.
(1)求这个一次函数的解析式 (2)求△POQ的面积
y P

N

oM
x
Q
例 2. 在 压 力 不 变 的 情 况 下 , 某 物 体 承 受 的 压 强 p(Pa)是它的受力面积S(m2)的反比例函数,其图 象如图所示: (1)求p与S之间的函数关系式; (2)求当S=0.5m2时物体承受的压强p ; (3)求当p=2500Pa时物体的受力面积S.
一点,PD⊥x轴于D.则△POD的面积为 .
1

2019届中考数学(遵义专用)专项训练课件:第12课时 反比例函数(1)

2019届中考数学(遵义专用)专项训练课件:第12课时 反比例函数(1)

解:(1)设点 D 的坐标为(4,m)(m>0),则点 A 的坐标为(4,3+m). 3+m . ∵点 C 为线段 AO 的中点,∴点 C 的坐标为2, 2 k ∵点 C,D 均在反比例函数 y=x的函数图象上, k=4m, m=1, 4 ∴ 解得 ∴反比例函数的解析式为 y = . 3+m x k=4, k=2× 2 ,
k 4.若正比例函数 y=-2x 与反比例函数 y=x图象的一个交点坐标为(-1, 2),则另一个交点的坐标为 B A.(2,-1) B.(1,-2) C.(-2,-1) D.(-2,1)
k 5.如图,过反比例函数 y=x(x>0)的图象上一点 A 作 AB⊥x 轴于 点 B,连接 AO.若 S△AOB=2,则 k 的值为 C
【中考预测】 1.如图,平面直角坐标系中,点 A 是 x 轴上任意一点,BC 平行于 3 k x 轴,分别交 y=x(x>0),y=x(x<0)的图象于 B,C 两点.若△ABC 的 面积为 2,则 k 值为 A 1 1 A.-1 B.1 C.-2 D.2
6 2.如图,曲线 C2 是双曲线 C1:y=x(x>0)绕原点 O 逆时针旋转 45° 得到的图形,P 是曲线 C2 上任意一点,点 A 在直线 l:y=x 上,且 PA= PO,则△POA 的面积等于____ 6 .
二、填空题 7.若反比例函数 y=(m+1)x2-m2 的图象在第二、四象限,m 的值
- 3 . 为______
k 8.已知反比例函数 y=x(k>0)的图象与经过原点的直线 l 相交于点 (-1,-2) . A,B 两点.若点 A 的坐标为(1,2),则点 B 的坐标为____________ k -6 . 9.已知反比例函数 y=x的图象经过点 A(2,-3),那么 k=______
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档