复数专项练习题
复数练习题及答案
复数练习题及答案复数是英语语法中一个重要的概念,掌握好复数形式对于正确表达和理解英语句子至关重要。
本文将为大家提供一些复数练习题及答案,帮助读者巩固复数的使用。
练习题一:将下列名词变为复数形式。
1. book2. child3. mouse4. tooth5. tomato6. sheep7. leaf8. man9. woman10. box答案一:1. books2. children3. mice4. teeth5. tomatoes6. sheep8. men9. women10. boxes练习题二:选择正确的复数形式填空。
1. There are three __________ in the garden. (sheep / sheeps)2. I have two __________. (child / children)3. The __________ are playing in the park. (mouse / mice)4. He has four __________. (tooth / tooths)5. We bought some __________ at the market. (tomato / tomatoes) 答案二:1. There are three sheep in the garden.2. I have two children.3. The mice are playing in the park.4. He has four teeth.5. We bought some tomatoes at the market.练习题三:将下列句子中的名词变为复数形式。
1. The cat is sleeping on the chair.2. My brother has a new car.3. The child is playing in the park.4. She bought a beautiful dress.5. I need a pen to write.1. The cats are sleeping on the chairs.2. My brothers have new cars.3. The children are playing in the park.4. She bought beautiful dresses.5. I need pens to write.练习题四:将下列句子中的动词变为复数形式。
复数练习题附答案
复数练习题附答案复数是数学中的一个基本概念,它拓展了实数的概念,允许我们处理像-1的平方根这样的数。
复数可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i^2 = -1。
下面是一些复数的练习题,以及它们的答案。
练习题1:计算以下复数的加法:\[ (3 + 4i) + (1 - 2i) \]答案1:首先分别将实部和虚部相加:\[ 3 + 1 = 4 \]\[ 4i - 2i = 2i \]所以,结果是 \( 4 + 2i \)。
练习题2:计算以下复数的乘法:\[ (2 + 3i) \times (1 - 4i) \]答案2:使用分配律:\[ 2 \times 1 + 2 \times (-4i) + 3i \times 1 + 3i \times (-4i) \]\[ = 2 - 8i + 3i - 12i^2 \]由于 \( i^2 = -1 \),所以:\[ = 2 - 5i + 12 \]结果是 \( 14 - 5i \)。
练习题3:求复数 \( z = 3 - 2i \) 的共轭复数。
答案3:共轭复数是将虚部的符号改变得到的数,所以:\[ \bar{z} = 3 + 2i \]练习题4:求复数 \( z = 2 + i \) 的模(magnitude)。
答案4:复数的模定义为:\[ |z| = \sqrt{a^2 + b^2} \]其中 \( a \) 和 \( b \) 分别是复数的实部和虚部。
所以:\[ |2 + i| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] 练习题5:求复数 \( z = 1 + i \) 的逆。
答案5:复数的逆通过公式 \( \frac{1}{z} =\frac{\bar{z}}{|z|^2} \) 计算。
首先求模:\[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \]然后求共轭复数:\[ \bar{z} = 1 - i \]最后求逆:\[ \frac{1}{1 + i} = \frac{1 - i}{2} \]因为 \( |1 + i|^2 = 2 \)。
复数练习题(有答案)
一、复数选择题1.复数21i=+( ) A .1i -- B .1i -+C .1i -D .1i +2.复数11z i=-,则z 的共轭复数为( ) A .1i -B .1i +C .1122i + D .1122i - 3.在复平面内,复数534ii-(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3-C .43,55⎛⎫-⎪⎝⎭ D .43,55⎛⎫-⎪⎝⎭ 4.212ii+=-( ) A .1B .−1C .i -D .i5.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -6.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上 A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y7.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i - B .3i --C .3i +D .3i -+8.若(1)2z i i -=,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.若1m ii+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D10.若1i iz ,则2z z i ⋅-=( )A .B .4C .D .811.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4B .2C .0D .1-12.已知i 是虚数单位,a 为实数,且3i1i 2ia -=-+,则a =( ) A .2B .1C .-2D .-113.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3B .5C .6D .814.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .715.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2i B .|z |=5C .12z i =+D .5z z ⋅=17.已知复数122z =-+(其中i 为虚数单位,,则以下结论正确的是( ).A .20zB .2z z =C .31z =D .1z =18.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i19.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>20.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >21.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z22.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 23.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为224.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn nz i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =- D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数25.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=29.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模30.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】根据复数的除法运算法则可得结果. 【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-.故选:C2.D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.因为,所以其共轭复数为. 故选:D.解析:D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.3.D 【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可. 【详解】 因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为. 故选:D解析:D 【分析】运用复数除法的运算法则化简复数534ii-的表示,最后选出答案即可. 【详解】因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D4.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i ii i i i i +++++====--+-, 故选:D5.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.6.C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为,所以复数对应的点是,所以在直线上. 故选:C. 【点睛】本题考查复数的乘方和除法运解析:C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.7.A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A8.B 【分析】先求解出复数,然后根据复数的几何意义判断. 【详解】 因为,所以,故对应的点位于复平面内第二象限. 故选:B. 【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B 【分析】先求解出复数z ,然后根据复数的几何意义判断. 【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.9.C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.10.A 【分析】化简复数,求共轭复数,利用复数的模的定义得. 【详解】 因为,所以, 所以 故选:A解析:A 【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --. 【详解】因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-= 故选:A11.A 【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 , 故选:A解析:A 【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+ 3,1a b ==,4a b +=故选:A12.B 【分析】 可得,即得. 【详解】 由,得a =1. 故选:B .解析:B 【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =. 【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1. 故选:B .13.D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D解析:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D14.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 15.A 【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.18.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解. 【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.19.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.20.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.21.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 22.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于23.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围24.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.25.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-; 因为2422,2z i z =-=-,所以()5052020410102zz ==-,2211z z i i i z +=-++=-=.故选:ACD .本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.26.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 29.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。
复数练习题含答案
复数练习题含答案一、单选题1.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 52.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆. 3.复数(2i 的虚部为( ) A .2 B.C.2-D .04.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-15.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +6.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③7.设i为虚数单位,则)10i 的展开式中含2x 的项为( )A .6210C x - B .6210C x C .8210C x -D .8210C x8.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .iB .i -C .1D .1-11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3π B .23π C .34π D .56π12.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限13.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件14.若复数4i1iz =-,则复数z 的模等于( ) AB .2C .D .415.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-16.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件17.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件18.若复数z 对应的点在直线y =2x 上,且|z |z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i19.已知复数324i 1iz +=-,则z =( )ABC.D.20.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .2二、填空题21.复数121i,22i z z =+=-,则12_________.z z -=22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________24.已知复数2z =+i ,其中i 为虚数单位,那么复数()2z ·z 所对应的复平面内的点在第________象限25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.复数2i z a =+,a ∈R ,若13i i+-z为实数,则=a ________. 27.若()1i 1i z +=-,则z =_______ 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.若复数2(1i)34iz +=+,则z =__________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 33.计算cos 40isin 40cos10isin10________.34.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.35.方程()()2223256i 0x x x x --+-+=的实数解x =________.36.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 37.已知z =22022z z z ++⋅⋅⋅+=___________. 38.若a ∈R ,且i2ia ++是纯虚数,则a =____. 39.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 40.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________. 三、解答题41.已知关于x 的方程2(4i)4(1)i 0()x x a a --+-+=∈R 有实数根. (1)求实数a 的值;(2)设2i z a =+,求223z z -+的值.42.已知复数13i z m =-,212i()z m R =+∈. (1)若12z z 是实数,求m 的值;(2)若复数12zz 在复平面内对应的点在第三象限,且15z ≥,求实数m 的取值范围.43.已知复数()()()22232i R z m m m m m =--++-∈,. (1)若0z >,求m 的值; (2)若z 是纯虚数,求z z ⋅的值.44.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 .45.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.【参考答案】一、单选题1.A 2.D 3.C 4.C 5.A 6.B 7.A 8.C 9.D 10.D 11.C 12.D 13.A 14.C 15.B 16.A 17.B 18.D 19.B 20.A 二、填空题2122.12i -##2i+1-23.12或12##12-或12 24.四 25.四 26.3- 27.i28.2930.825i 625-31.i -32.-1+2i##2i -13312i34 35.2 36.③ 37.0 38.12-##0.5- 39.13i +##3i 1+ 40.9 三、解答题41.(1)1a = (2)2- 【解析】 【分析】(1)由已知,方程2(4i)4(1)i 0()x x a a --+-+=∈R 有实数解,可列出关于x 和a 方程组,解方程即可完成求解;(2)将第(1)问计算出的a 带入2i z a =+中,然后直接计算223z z -+即可. (1)由2(4i)4(1)i 0x x a --+-+=,整理得()244(1)i 0x x x a -++--=,则244010x x x a ⎧-+=⎨--=⎩,解得21x a =⎧⎨=⎩. 所以实数a 的值为1. (2)由(1)可得12z i =+.223z z -+2(12i)2(12i)3=+-++34i 24i 3=-+--+2=-.42.(1)32m =- (2)46m ≤< 【解析】 【分析】(1)由复数的除法法则化简后根据复数的定义计算;(2)由对应点所在象限求得参数范围,再由模求得参数范围,两者结合可得.(1)123i (3i)(12i)6(23)i 12i (12i)(12i)5z m m m m z -----+===++-,它是实数,则(23)0m -+=,32m =-; (2)由(1)12z z 对应点坐标为623(,)55m m -+-,它在第三象限, 则6052305m m -⎧<⎪⎪⎨+⎪-<⎪⎩,解得362m -<<,又15z =,4m ≤-或4m ≥, 综上,46m ≤<. 43.(1)2m =- (2)4或100 【解析】 【分析】(1)根据复数0z >,可知z 为实数,列出方程,解得答案;(2)根据z 是纯虚数,列出相应的方程或不等式,再结合共轭复数的概念以及复数的乘法运算,求得答案. (1)因为0z >,所以R z ∈,所以220m m +-=,所以2m =-或1m =. ①当2m =-时,50z =>,符合题意; ②当1m =时,40z =-<,舍去. 综上可知:2m =-. (2)因为z 是纯虚数,所以2223020m m m m ⎧--=⎨+-≠⎩,所以1m =-或3m =,所以2i z =-,或10i z =,所以2i 2i 4z z ⋅=-⨯=或10i (10i)100z z ⋅=⨯-=, 所以4z z ⋅=或100. 44.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++, 所以22+1=2=0a b a ab b -++ 解得:13,22a b =-=±,即13i 22x =-± 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+- 解得:13,22c d ==±,即13i 22x =±故:123456131313131,1,i,i,i,i 22222222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F , 其中13131313(1,0),(1,0),(,),(,),(,),(,)22222222A B C D E F ----- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1故261S ==45.(1)2;(2)21i 3z =-;(3)25m -<<. 【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限.。
复数练习题(有答案)
复数练习题(有答案)一、单选题1.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+2.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.5.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2-B .1-C .1D .26.向量1OZ ,2OZ ,分别对应非零复数z 1,z 2,若1OZ ⊥2OZ ,则12Z Z 是( ) A .负实数 B .纯虚数C .正实数D .虚数a +b i(a ,b ∈R ,a ≠0)7.设复数z 满足i 3i z z --=,则z 的虚部为( ) A .2i -B .2iC .2-D .28.已知复数z 满足()1i 1z +=,则z 的虚部为( ) A .12-B .1i 2-C .12 D .1i 29.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2- B .2C .i -D .1-10.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75B .-115C .-185D .513.已知复数23i z =-,则()1i z +=( ) A .3i - B .3+3i - C .3i + D .3i -+ 14.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .iB .i -C .1D .1-15.已知复数z 满足()1i 2i z -=(其中i 为虚数单位),则z =( ) ABC .12D .216.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 517.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件18.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 20.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .筹四象限二、填空题21.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.22.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________ 24.若复数z 满足i 3i=iz -+,则z =________. 25.已知复数3i (2i)z =⋅-,则z 的虚部为__________. 26.若()1i 1i z +=-,则z =_______27.计算:3i1i+=-___________. 28.设z C ∈,且1i 0z z +--=,则i z +的最小值为________.29.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.30.已知复数z 满足()1i 42i -=+z ,则z =_________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.计算cos 40isin 40cos10isin10________.33.已知复数12,z z ,满足121z z ==,且12z z +=,则12z z =________.34.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.35.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.36.若复数22(9)(23)i z m m m =-++-是纯虚数,其中m ∈R ,则|z |=________. 37.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 38.设i 是虚数单位,复数z =,则z =___________. 39.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 40.若i 为虚数单位,复数z 满足42ii 12iz --=+,则z =___________. 三、解答题41.把下列复数表示成代数形式: (1)554cos33isin ππ⎛⎫+ ⎪⎝⎭;(2)77cos 44isinππ⎫+⎪⎭42.设复数3cos isin z θθ=+.求函数()tan arg 02y z πθθ⎛⎫=-<< ⎪⎝⎭的最大值以及对应的θ值.43.(1)若复数22(56)(3)i z m m m m =-++-表示实数,求实数m 的值 ;(2)若复数22(56)(3)i z m m m m =-++-表示纯虚数,求实数m 的值. 44.已知复数()()211i z a a a R =-++∈.(1)若复数z 是虚数,求实数a 的值; (2)若复数z 是纯虚数,求实数a 的值.45.已知复平面内正方形的三个顶点所对应的复数分别是12i +,2i -+,12i --,求第四个顶点所对应的复数.【参考答案】一、单选题 1.D 2.A 3.D 4.D 5.B 6.B 7.C 8.A 9.D 10.D 11.C 12.B 13.B 14.D15.A 16.A 17.A 18.D 19.B 20.C 二、填空题21.1##1+2223.12或12##12-或122425.-2 26.i2728. 29.()34-,30.13i + 31.i -3212i33.12- 3435.2i +##i 2+ 36.12 37.22i +##2i 2+38.39.2i -+ 40.1 三、解答题41.(1)2-【解析】 【分析】根据复数的运算及三角函数诱导公式求解即可. (1) 因为51coscos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭,5sinsin 2sin 333ππππ⎛⎫=-=-= ⎪⎝⎭所以5514cos 42332isinππ⎛⎫⎛⎫+==- ⎪ ⎪ ⎪⎝⎭⎝⎭(2)因为7coscos 2cos 444ππππ⎛⎫=-= ⎪⎝⎭,7sinsin 2sin 444ππππ⎛⎫=-=-= ⎪⎝⎭所以77cos 44isinππ⎫⎫+==⎪⎪⎪⎭⎭42.3πθ=时,函数y【解析】 【分析】由3cos isin z θθ=+求得()1arg 3tg z tg θ=,再由两角差的正切建立关于tg θ的函数,()2arg 3y tg z tg tg θθθ=-=+,再由基本不等式法求解. 【详解】 解:解:由02πθ<<得0tg θ>.由3cos isin z θθ=+得sin 1(arg )3cos 3tg z tg θθθ==. 故213(arg )113tg tg y tg z tg θθθθ-=-=+23tg tg θθ=+∵3tg tg θθ+≥∴23tg tg θθ≤+当且仅当302tg tg πθθθ⎛⎫=<< ⎪⎝⎭时,即tg θ=时,上式取等号. 所以当3πθ=时,函数y43.(1)0m =或3;(2)2m = 【解析】 【分析】(1)由虚部为0直接求解即可;(2)由实部为0,虚部不为0直接求解即可. 【详解】(1)由复数22(56)(3)i z m m m m =-++-表示实数,可得230m m -=,解得0m =或3;(2)由复数22(56)(3)i z m m m m =-++-表示纯虚数,可得2256030m m m m ⎧-+=⎨-≠⎩,解得2m =. 44.(1)1a ≠-; (2)1. 【解析】 【分析】(1)根据虚数的概念求解即可;(2)根据纯虚数的概念由虚部不为0,实部为0建立关系式求解即可. (1)因为()()211i z a a a R =-++∈是虚数,所以10a +≠,解得1a ≠-, (2)因为()()211i z a a a R =-++∈是纯虚数,所以21010a a ⎧-=⎨+≠⎩,解得1a =.45.2i - 【解析】 【分析】根据复数的几何意义以及正方形的性质进行求解即可. 【详解】设复数12i +,2i -+,12i --对应的点分别为,,A B C 则(1,2)A ,(2,1)B -,(1,2)C --,所以()()3,1,1,3AB BC =--=-,所以033·AB BC =-+=,所以90ABC ∠=︒ 设第四个点为(,)D x y ,则按照,,,A B C D 的顺序才能构成正方形, 所以AB DC =,即(3-,1)(1x -=--,2)y -- 即1321x y --=-⎧⎨--=-⎩,解得21x y =⎧⎨=-⎩,则(2,1)D -,对应的复数为2i -, 故答案为:2i -。
小学名词变复数专项练习
小学名词变复数专项练习一.规则变化:1)一般在名词词尾加s。
map—maps地图bird—birds鸟XXX桔子bike—bikes自行车;2)以s。
x。
ch。
sh结尾的名词加es。
box—boxes盒子class—classes班级。
watch—watches手表dish-dishes盘,碟子,餐具;3)以O结尾的名词后面加s或es(有生命的加es,无生命的加s)photo—photos相片radio—radios收音机zoo—zoos动物园XXX—potatoes土豆记忆口诀:(1)英雄和黑人吃西红柿和土豆(下划线词变复数加es)(2)小千克边弹钢琴边听收音机,还到植物园看袋鼠。
(下划线词的复数加s)potato(土豆),XXX(西红柿),hero(英雄),Negro (黑人)。
photo (照片),piano(钢琴),radio(收音机),zoo(植物园),kilo(千克)kangaroos(袋鼠)(4)以辅音字母加y结尾的名词,变y为i+esbaby—babies婴儿family—families家庭;以元音字母加y结尾的名词直接加sboy—boys男孩toy—toys玩具;(5)以fe或f末端的名词,把fe或f变成vesXXX小刀wife—wives妻子leaf—leaves树叶二:名词复数的不规则变化1)child---children。
foot---feet。
tooth---XXXmouse---mice。
man---men。
woman---women2)单复同形如:deer,sheep,fish,Chinese,Japaneseli,jin,yuan,two li,three mu,four jin但除人民币元、角、分外,美元、英镑、法郎等都有复数形式。
如:。
adollar,twodollars;ameter,twometers3)集体名词,以单数形式出现,但实为复数。
如:people police cattle等本身就是复数,不能说a people,a police,a cattle,但可以说a person,a policeman,a head of cattle。
(完整版)复数练习题含答案
(完整版)复数练习题含答案一、单选题1.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( ) A .1B .15C .3D .162.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( ) A .sin 30°+icos 30° B .cos 160°+isin 160° C .cos 30°+isin 30°D .sin 160°+icos 160°3.已知 i 是虚数单位,复数41322i ⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.设||(12i)34i z -=+,则z 的共轭复数对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限6.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --7.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .筹四象限 8.设复数z 满足i 4i 0z ++=,则||z =( )A 17B .4C 7D 59.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件12.复数2i z =-(i 为虚数单位)的虚部为( ) A .2B .1C .iD .1-13.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15- B .15C .1i 5-D .1i 514.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2 B .1C .2-D .i16.若5i2iz =+,则||z =( ) A .2 BC.D .3 17.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( ) A .3 B .4 CD18.已知复数i(1i)z =-,则其共轭复数z =( ) A .1i -- B .1i -+C .1i -D .1i +19.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i20.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题 21.复数1077(cosisin )66ππ+表示成代数形式为________. 22.已知复数2z =+i ,其中i 为虚数单位,那么复数()2z ·z 所对应的复平面内的点在第________象限23.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 24.若复数z 满足i 3i=iz -+,则z =________. 25.复数1i z =+(其中i 为虚数单位)的共轭复数z =______. 26.写出一个在复平面内对应的点在第二象限的复数z =__________. 27.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.28.若复数2(1i)34iz +=+,则z =__________.29.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示). 30.若2z =,arg 3z π=,则复数z =________.31.设i 为虚数单位,则复数2(1i)1i+-=____.32.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________. 33.计算cos 40isin 40cos10isin10________.34.已知4cosisin1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________.35.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.36.方程()()2223256i 0x x x x --+-+=的实数解x =________.37.若a ∈R ,且i2ia ++是纯虚数,则a =____. 38.已知复数2i4i ia b +=-,,R a b ∈,则a b +=______. 39.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.40.甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________. 三、解答题41.已知复数z 是纯虚数,212iz -+为实数. (1)求复数z ;(2)若m ∈R ,复数()22m z z --在复平面内对应的点位于第二象限,求m 的取值范围.42.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限; (2)位于第四象限;(3)位于直线x -y -3=0上. 43.已知复数64i1im z -=+(,i m ∈R 是虚数单位). (1)若z 是实数,求实数m 的值;(2)设z 是z 的共轭复数,复数4z z -在复平面上对应的点位于第一象限,求实数m 的取值范围.44.设复数1z 、2z 满足12122i 2i 10z z z z ⋅+-+=. (1)若1z 、2z 满足212i z z -=,求1z 、2z ;(2)若1z =k ,使得等式2|4i |z k -=恒成立?若存在,试求出k 的值;若不存在,请说明理由.45.若复数()()2222i z a a a a =-+--对应的点在虚轴上,求实数a 应满足的条件.【参考答案】一、单选题 1.B 2.B 3.C 4.D5.D6.D7.C8.A9.A10.D11.B12.D13.A14.D15.B16.B17.C18.C19.D20.A二、填空题21.-5i##-5i-22.四23.四2425.1i-##i+1-26.1i-+(答案不唯一)27.3528.825i 6 25 -29.13i+##3i+130.11+ 31.1i-+323312i34.2312π3536.2 37.12-##0.5- 38.6 39.i - 40.2 三、解答题41.(1)4i z =- (2)14-<<m 【解析】 【分析】(1)根据纯虚数的定义设出复数z 的表示形式,再根据复数除法运算法则,结合复数的分类进行求解即可;(2)根据完全平方公式,结合复数在复平面内对应点的特点进行求解即可. (1)因为复数z 为纯虚数, 所以设()i ,0z b b R b =∈≠, 则i (5122i 12i 12i (12)(122i)(2i)22(4)i i)b z b b b --+---+===+++++-,又212iz -+为实数 ∴404b b +=⇒=-,即4i z =-; (2)因为m R ∈,4i z =-所以有()222222228i 168i 16(88)i m z z m mz z z m m m m --=-+-=+-+=-++, 又复数()22m z z --在复平面内对应的点位于第二象限, 所以有:2160m -<且880m +>,即14-<<m . 42.(1)-3<x <2 (2)2<x <5 (3)x =-2 【解析】 【分析】根据复数的几何意义即可求解. (1)当实数x 满足22602150x x x x ⎧+-<⎨--<⎩,即-3<x <2时,点Z 位于第三象限; (2)当实数x 满足22602150x x x x ⎧+->⎨--<⎩,即2<x <5时,点Z 位于第四象限; (3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上;综上,(1)()3,2x ∈- ,(2)()2,5x ∈ ,(3)2x =- . 43.(1)32m =- (2)32m > 【解析】 【分析】(1)根据除法运算化简,再由复数为实数建立方程求解即可;(2)根据共轭复数的概念化简复数,再由复数对应的点在第一象限建立不等式求解即可. (1)(64i)(1i)32(32)i (1i)(1i)m z m m --==--++-,因为z 为实数,所以320m +=,解得32m =-. (2)因为z 是z 的共轭复数,所以32(32)i z m m =-++, 所以469(1015)i z z m m -=-++因为复数4z z -在复平面上对应的点位于第一象限, 所以690m ->,同时10150m +>解得32m >. 44.(1)1i z =-、2i z =-或13i z =、25i z =-(2)存在,k = 【解析】 【分析】(1)原方程可化为211||2i 30z z --=,再设1i z a b =+(a b R ∈、),代入前者化简后可求,a b 的值,从而可求1z 、2z ;(2)由题设可有2122i 12iz z z -=+22|4i |27z -=,从而可求k =.(1)由212i z z -=可得:212i z z =-,代入已知方程得()()11112i 2i 2i 2i 10z z z z ⋅-+--+=, 即211||2i 30z z --=,令1i z a b =+(a b R ∈、),∴()222i i 30a b a b +---=,即()222320a b b ai +---=,∴2223020a b b a ⎧+--=⎨-=⎩,解得01a b =⎧⎨=-⎩或03a b =⎧⎨=⎩,∴1i z =-、2i z =-或13i z =、25i z =-; (2)由已知得2122i 12i z z z -=+,又1z =222i 12iz z -=+ ∴222222222i 1|32i |2i |32i|z z z z -=+⇔+=+,∴()()()()22222i 2i 32i 2i z z z z +-=+-,整理得22224i 4i 110z z z +--=即22224i 4i 110z z z z +--=,所以()()22224i 4i 4i 27z z z +--=,故()()224i 4i 27z z -+=,∴22|4i |27z -=,即24i z -=k =24i z k -=恒成立. 45.a =0或2 【解析】 【分析】y 轴为虚轴,虚轴上的数,实部为零,据此即可求解. 【详解】∵复数()()2222i z a a a a =-+--对应的点在虚轴上,∴220a a -=,解得2a =或0a =.。
复数练习题(有答案)
复数练习题(有答案)1.复数选择题1.若复数 $z=1+i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1-i$。
答案:C2.若复数 $z=1-i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1+i$。
答案:D3.在复平面内,复数 $z=3+4i$ 对应的点的坐标为()解析:$z$ 对应的点的坐标为 $(3,4)$。
答案:A4.已知复数 $z=\frac{1}{1+i}$,则 $z$ 的共轭复数为()解析:$\bar{z}=\frac{1}{1-i}=\frac{1+i}{2}$。
答案:B5.已知复数 $z=\frac{3-2i}{5}$,则 $z$ 的虚部是()解析:$z$ 的虚部为$\operatorname{Im}(z)=\frac{-2}{5}$。
答案:C6.已知复数 $z$ 满足 $z(1+i)=1-i$,则复数 $z$ 对应的点在直线 $y=-\frac{1}{2}x$ 上。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=\frac{-1}{2}+\frac{1}{2}i$,对应的点在直线 $y=-\frac{1}{2}x$ 上。
答案:A7.已知复数 $z$ 满足 $z^2=2i$,则 $z\cdot\bar{z}$ 的值为$4$。
解析:$z\cdot\bar{z}=|z|^2=2$,$z^2\cdot\bar{z}^2=(2i)(-2i)=-4$,因此 $z\cdot\bar{z}=\sqrt{-4}=2i$,$|z\cdot\bar{z}|=2$,所以 $z\cdot\bar{z}=4$。
答案:B8.已知复数 $z$ 满足 $z(1-i)=2i$,则在复平面内 $z$ 对应的点位于第二象限。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=-\frac{2}{2i}-i=-1-i$,对应的点在第二象限。
答案:B9.满足 $i^3\cdot z=1-3i$ 的复数 $z$ 的共轭复数是 $3+i$。
(完整版)复数基础练习题附答案
(完整版)复数基础练习题附答案一、单选题1.已知复数z 满足(1i)32i +=+z ,则z 的虚部为( ) A .12 B .1i 2-C .12-D .1i 22.已知复数113i z =+的实部与复数21i z a =--的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1D .13.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160°4.已知 i 是虚数单位,复数412⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1B .2C .3D .46.复数z 满足()12i z =,i 为虚数单位,则复数z 的虚部为( )A .BC .D 7.2243i 4i a a a a --=+,则实数a 的值为( ) A .1 B .1或4- C .4- D .0或4- 8.设复数z 满足i 4i 0z ++=,则||z =( )A B .4C D 9.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.若复数z 对应的点在直线y =2x 上,且|z |z =( ) A .1+2i B .-1-2i C .±1±2i D .1+2i 或-1-2i12.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( )A .22i --B .22i +C .22i -+D .22i +或22i -+13.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75B .-115C .-185D .514.已知复数23i z =-,则()1i z +=( ) A .3i - B .3+3i - C .3i + D .3i -+ 15.复数z 满足(2)i z z =+,则z =( ) A .1i + B .1i - C .1i -+ D .1i -- 16.已知12z i =-,则(i)z z -的模长为( )A .4BC .2D .1017.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 518.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-19.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件20.3i3i-+=+( ) A .43i 55+ B .43i 55-+C .43i 55D .43i 55--二、填空题21.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.22.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________23.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.24.若复数z 满足i 2022i z ⋅=-(i 是虚数单位),则z 的虚部是___________. 25.已知i34i z =+,求|z |=___________26.若复数2iiz -=-,则z =_______.27.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 28.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________.29.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.30.设i 是虚数单位,且12w =-,则21w w ++=______. 31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________. 32.设z C ∈,且1i 0z z +--=,则i z +的最小值为________. 33.已知复数z 满足1z =,则22z i +-的最大值为______. 34.复数121i,22i z z =+=-,则12_________.z z -=35.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.36.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 37.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 38.若a ∈R ,且i2ia ++是纯虚数,则a =____. 39.已知复数2i4i ia b +=-,,R a b ∈,则a b +=______. 40.若()1i 1i z +=-,则z =_______ 三、解答题41.根据要求完成下列问题:(1)已知复数1z 在复平面内对应的点在第四象限,1||1z =,且111z z +=,求1z ;(2)已知复数225(15i)3(2i)12im z m =-+-+-为纯虚数,求实数m 的值. 42.(1)在复数集C 中解下列方程:2490x +=; (2)已知()12i 43i z +=+,求z .43.(1)已知设方程α,β是方程220x x a ++=的两根,其中a R ∈,则||||αβ+的值;(2)关于x 的方程243i 0x ax +++=有实根,其中a C ∈,求||a 的最小值,并求取得最小值时方程的根.44.设复数11i z =-,2cos isin z θθ=+,其中[]0,θπ∈. (1)若复数12z z z =⋅为实数,求θ的值; (2)求12z z +的取值范围. 45.求数列{}n a :112n n na a a ++=-的周期.【参考答案】一、单选题 1.A 2.C 3.B 4.C 5.B 6.D 7.C 8.A 9.D 10.A 11.D 12.D 13.B 14.B 15.C 16.B 17.A 18.B 19.A 20.B 二、填空题 21.922.12或12##12-或12 23.四24.2022- 25.15##0.2 26.12i -2728.1 2930.0 3132.33.13435.[]4,6 36.237.22i +##2i 2+ 38.12-##0.5- 39.6 40.i 三、解答题41.(1)112z = (2)2m =- 【解析】 【分析】(1)设1i z a b =+,由题设可得关于,a b 的方程组,求出其解后可得1z . (2)根据复数的四则运算可求2z ,根据其为纯虚数可求实数m 的值. (1)设1i z a b =+(a b R ∈、),由题意得22121a b a ⎧+=⎨=⎩,解得12a =,b =∵复数1z在复平面内对应的点在第四象限,∴b =112z =; (2)()()()()2222515i 32i 6253i 12im z m m m m m =-+-+=--+---,依题意得260m m --=,解得3m =或2m =-, 又∵22530m m --≠,∴3m ≠且12m ≠-, ∴2m =-.42.(1)3i 2x =±;(2)2i z =+. 【解析】 【分析】(1)利用直接开平方法求解即可,(2)先由已知式子求出复数z ,从而可求出其共轭复数 【详解】(1)∵2490x +=,∴294x =-,3i 2x =±.(2)()()()()243i 12i 43i 43i 8i 6i 105i2i 12i 12i 12i 55z +-++---=====-+-+, ∴2i z =+.43.(1)()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩;(2)min ||a =3i)+或3i)+.【解析】 【分析】(1)求出判别式4(1)a ∆=-,对a 分类讨论:当01a 时,当0a <时,当1a >时三种情况,分别求出||||αβ+;(2)设0x 为方程的实根,代入原方程,表示出a ,利用基本不等式求出||a 的最小值,并求取得最小值时方程的根. 【详解】(1)判别式444(1)a a ∆=-=-, ①若0∆,即1a ,则α,β是实根,则2αβ+=-,a αβ=,则2222(||||)2||()22||422||a a αβαβαβαβαβαβ+=++=+-+=-+,故||||αβ+,当01a 时,||||2αβ+=, 当0a <时,||||αβ+=②若∆<0,即1a >,则α,β是虚根,1α=-,1β=-,故||||αβ+==综上:()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩.(2)设0x 为方程的实根,则20043i 0x ax +++=, 所以00043i a x x x =---, 则20020004325||2()2()2818a x x xx x =++=++, 当202025x x =即0x =||min a =当0x =3i)+,当0x =3i)+. 44.(1)34π(2) 【解析】 【分析】(1)利用复数的乘法运算法则计算可得(cos sin )(cos sin )i z θθθθ=-++,再列出等量关系cos sin 0θθ+=,求解即可;(2)先计算12z z+=[]0,θπ∈和余弦函数的性质,分析即得解 (1)由题意,12cos isin )(cos sin )(cos sin )i (1i)(z z z θθθθθθ=+++⋅=⋅+=- 若复数12z z z =⋅为实数,则cos sin 0θθ+= 故tan 1θ=-,[]0,θπ∈ 解得:34πθ=(2)由题意,11i z =-,2cos isin z θθ=+12|(1)cos sin |||(1cos )(1i s )i i in z z θθθθ=-++=+-+++==由于[]0,θπ∈,故5,444πππθ⎡⎤+∈⎢⎥⎣⎦故1cos()4πθ-≤+≤121z z =+≤故12z z +的取值范围是 45.周期为6. 【解析】 【分析】根据通项公式,写出特征方程为210x x -+=,由方程根的情况求出数列{}n a 的周期. 【详解】因为112n n na a a ++=-,所以特征方程为210x x -+=,因为Δ14130=-⨯=-<,解得:m k == 所以2arg 36a mc a kc ππ-⎛⎫==⎪-⎝⎭, 所以函数()f x 的迭代周期为6T =. 所以数列{}n a 有周期6T =,。
复数练习题含答案
复数练习题含答案一、单选题1.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.若0a <,则a 的三角形式为( )A .()cos0isin0a +B .()cos isin a ππ+C .()cos isin a ππ-+D .()cos isin a ππ--3.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .2 4.设||(12i)34i z -=+,则z 的共轭复数对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个8.在复平面中,复数z 对应的点的坐标为(1,2),则复数iz 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-110.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i +11.已知z 1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .12.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .213.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75B .-115C .-185D .514.已知12z i =-,则(i)z z -的模长为( ) A .4BC .2D .1015.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 516.复数z 满足:23i 3=+-z z ,则z =( ) A .5BC .10D17.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 18.若复数4i1iz =-,则复数z 的模等于( ) AB .2 C.D .419.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限20.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .筹四象限二、填空题21.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.22.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________24.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.25.若复数z 满足i 2022i z ⋅=-(i 是虚数单位),则z 的虚部是___________. 26.若复数z 满足i 3i=iz -+,则z =________. 27.已知复数ππsin i cos 33z =+,则z =________. 28.计算:()()12i 34i 2i-+=+_________.29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 30.化简:i 是虚数单位,复数()2021i 34i z =+=_________.31.已知i 为虚数单位,复数21iz =-的虚部为___________. 32.复数121i,22i z z =+=-,则12_________.z z -=33.已知复数z 满足()()1i 2i z t t +=∈R,若z =,则t 的值为___________.34.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.35i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.36.设复数()21(1)i m m -++为纯虚数,则实数m 的值为________.37.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 38.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 39.计算:112i2i-=+___________. 40.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________.三、解答题41.设实部为正数的复数z ,满足z =(12i)z +在复平面上对应的点在第一、三象限的角平分线上. (1)求复数z ; (2)若i()1im z m R ⋅+∈+为纯虚数,求实数m 的值. 42.若复平面内单位圆上三点所对应的复数123,,z z z ,满足22z 13z z =且23i i 0z z +-=,求复数123,,z z z .43.已知复数()()()121i z m m m R =++-∈ (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第四象限,求实数m 的取值范围及z 的最小值. 44.已知复数()()()2i 1i 24i z a a a R =--+++∈.(1)若z 在复平面中所对应的点在直线0x y -=上,求a 的值; (2)求2i 7iz --的取值范围.45.已知复数()()222343i z m m m m =--+-+(m R ∈)在复平面上对应的点为Z ,求实数m 取什么值时,点Z : (1)在实轴上; (2)在虚轴上; (3)在第一象限.【参考答案】一、单选题 1.A 2.C 3.B 4.D 5.C 6.D 7.B 8.B10.B 11.D 12.A 13.B 14.B 15.A 16.D 17.D 18.C 19.C 20.C 二、填空题 21.35 2223.12或12##12-或12 24.四 25.2022-2627.128.43i -##3i 4-+ 29.12i -##2i+1- 30.-4+3i##3i-4 31.13233.2或2- 34.[)2,+∞35.1-1- 36.1 37.()0,3 38.③39.43i -##3i 4-+三、解答题41.(1)3i z =-; (2)6m =-. 【解析】 【分析】(1)根据复数的模公式,结合复数乘法的运算法则、第一、三象限的角平分线的性质进行求解即可;(2)根据纯虚数的定义,结合共轭复数的定义、复数除法的运算法则进行求解即可. (1)设i(0,),10,(12i)2(2)i z a b a b R z z a b b a =+>∈∴=+=-++, 由题意得,22223,101a b b a a a b b -=+=⎧⎧∴⎨⎨+==-⎩⎩, 即3i z =-; (2)i i 3i 3(1)i 1i 222m m m m mz ⋅++=++=++++为纯虚数, 30,62mm ∴+=∴=-. 42.答案见解析. 【解析】 【分析】根据复数的几何意义,结合复数的运算求得3z 和2z ,再结合复数的乘除运算,即可求得1z . 【详解】因为单位圆上三点所对应的复数为123,,z z z ,故可设z 1=cos α+isin α,z 2=cos β+isin β,z 3=cos γ+isin γ, 则由23i i 0z z +-=,可得cos sin 0sin cos 10βγβγ-=⎧⎨+-=⎩,利用cos 2β+sin 2β=1,解得1cos 2sin γγ⎧=⎪⎪⎨⎪=⎪⎩z 3故当z3时,z2=-i(z3-1),z1=223zz=1;当z3时,z2=-i(z3-1)z1=223zz==1.43.(1)1-;(2)11,2⎛⎫-⎪⎝⎭.【解析】【分析】(1)利用纯虚数的定义,实部为零,虚部不等于零即可得出.(2)利用复数模的计算公式、几何意义即可得出.(1)()()()121iz m m m R=++-∈为纯虚数,10m∴+=且210m-≠1m∴=-(2)z在复平面内的对应点为(1,21)m m+-由题意:10210mm+>⎧⎨-<⎩,∴112m-<<.即实数m的取值范围是11,2⎛⎫- ⎪⎝⎭.而||z当11(1,)52m=∈-时,||minz44.(1)4a=(2)⎫+∞⎪⎪⎣⎭【解析】【分析】(1)首先根据复数代数形式的乘法运算化简复数z,即可得到复数在复平面内所对应的点的坐标,最后代入直线方程,即可求出a;(2)根据复数代数形式的除法运算化简2i7iz--,再根据复数模的计算公式及二次函数的性质计算可得;(1)解:因为复数()()()2i 1i 24i z a a a R =--+++∈,所以()222i i i 24i 326i z a a a a a =-+-+++=-++,所以z 在复平面内对应的点为()32,6a a -+,因为在复平面内对应的点在直线0x y -=上,即为()3260a a --+=,解得4a =;(2) 解:由[]()232(6)i i 32(6)i2i 72i 72i 7(6)32i 2i 713i i i i a a z a a a a a a -++-++--=--=--=+----=--所以2i 713i iza a --=--==所以当且仅当110a =2i 7i z --的取值范围是⎫+∞⎪⎪⎣⎭45.(1)1m =或3m = (2)1m =-或3m = (3)1m <-或3m > 【解析】 【分析】(1)由题意可得2430m m -+=,从而可求出m 的值, (2)由题意可得2230m m --=,从而可求出m 的值,(3)由题意可得22230430m m m m ⎧-->⎨-+>⎩,解不等式组可求得结果(1)点Z 在实轴上,即复数z 为实数,由2430m m -+=得1m =或3m =, ∴当1m =或3m =时,点Z 在实轴上; (2)点Z 在虚轴上,即复数z 为纯虚数或0,由2230m m --=得1m =-或3m =, ∴当1m =-或3m =时,点Z 在虚轴上; (3)点Z 在第一象限,即复数z 的实部虚部均大于0,由22230430m m m m ⎧-->⎨-+>⎩,即1313m m m m ⎧-⎪⎨⎪⎩或或,解得1m <-或3m >,∴当1m <-或3m >时,点Z 在第一象限.。
复数练习题(有答案)
复数练习题(有答案)一、单选题1.已知12z i =-,则(i)z z -的模长为( )A .4BC .2D .10 2.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--3.已知复数z 满足()2i 32i +=+z 则||z =( )AB C D 4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆. 5.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC6.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .2 7.2243i 4i a a a a --=+,则实数a 的值为( )A .1B .1或4-C .4-D .0或4-8.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .4 9.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一 B .二 C .三 D .四 10.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1-11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i -12.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A.10B .5CD .13.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞14.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.若复数z 满足1i 1i 2z +=+,则z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限16.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件17.已知复数z 满足(2i)43i z +=-(i 为虚数单位),则z =( )A .2+iB .2-iC .1+2iD .1-2i18.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .919.若复数z 对应的点在直线y =2x 上,且|z |z =( )A .1+2iB .-1-2iC .±1±2iD .1+2i 或-1-2i20.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .16 二、填空题21.若复数2(1i)34iz +=+,则z =__________.22.已知复数z 满足24(1i)(12i)z --=-,则||z =________.23.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.24.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 25.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 26.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.27.已知复数2z =+i ,其中i 为虚数单位,那么复数()2z ·z 所对应的复平面内的点在第________象限28.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 29.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.30.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.31.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________.32.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.33.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.34.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 35.若2z =,arg 3z π=,则复数z =________.36.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________.37i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.38.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 39.i 是虚数单位,则1i1i+-的值为__________. 40.写出一个在复平面内对应的点在第二象限的复数z =__________. 三、解答题41.在复平面内,复数()2(1)2i z m m m =-+--表示的点Z ,求出满足下列条件的复数z .(1)若点Z 在虚轴上,求复数z 的共轭复数z ; (2)若点Z 在直线2y x =上,求复数z 的模z .42.已知复平面内的点A ,B 对应的复数分别是21sin i z θ=+,22cos icos2z θθ=-+,其中()0,θπ∈.设AB 对应的复数是z .(1)求复数z ;(2)若复数z 对应的点P 在直线12y x =,求θ的值. 43.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.44.已知复数()()222343i z m m m m =--+-+(m R ∈)在复平面上对应的点为Z ,求实数m 取什么值时,点Z : (1)在实轴上; (2)在虚轴上; (3)在第一象限. 45.求数列{}n a :112n n na a a ++=-的周期.【参考答案】一、单选题 1.B 2.D 3.A 4.D 5.D 6.B 7.C 8.B 9.B 10.D 11.B 12.B13.A 14.D 15.D 16.A 17.B 18.C 19.D 20.B 二、填空题 21.825i 625- 22.223 24.25.1 26.四 27.四 2829.()34-,30.9 31.2i -+ 32.7 33.[]4,634.-1+2i##2i -1 35.11+ 3637.1-+1- 38.()0,3 39.140.1i -+(答案不唯一) 三、解答题41.(1)2i ;【解析】 【分析】(1)求出m 的值即得解;(2)根据点Z 在直线2y x =上,求出m 的值即得解. (1)解:因为点Z 在虚轴上,所以10,1m m -=∴=. 所以2i z =-,所以复数z 的共轭复数2i z =. (2)解:因为点Z 在直线2y x =上,所以222(1)m m m --=-, 解之得0m =或3m =. 所以12i z =--或24z i =+,所以复数z 的模z 42.(1)()2112sin i z θ=-+-(2)6πθ=或56πθ=【解析】 【分析】根据复数的几何意义即可求解. (1)因为点A ,B 对应的复数分别是21sin i z θ=+,22cos icos2z θθ=-+,所以点A ,B 的坐标分别是()2sin ,1A θ,()2cos ,cos2B θθ-,所以()()()()22222cos ,cos 2sin ,1cos sin cos 211,2sin AB θθθθθ,θθ=--=---=--所以()2112sin i z θ=-+-.(2)由(1)知点P 的坐标是()21,2sin θ--,代入12y x =,得212sin 2θ-=-,即21sin 4θ=,所以1sin 2θ=±,又因为()0,θπ∈,所以1sin 2θ=, 所以6πθ=或56πθ=. 43.(1)2;(2)21i 3z =-;(3)25m -<<.【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限. 44.(1)1m =或3m = (2)1m =-或3m = (3)1m <-或3m > 【解析】 【分析】(1)由题意可得2430m m -+=,从而可求出m 的值, (2)由题意可得2230m m --=,从而可求出m 的值,(3)由题意可得22230430m m m m ⎧-->⎨-+>⎩,解不等式组可求得结果(1)点Z 在实轴上,即复数z 为实数,由2430m m -+=得1m =或3m =, ∴当1m =或3m =时,点Z 在实轴上; (2)点Z 在虚轴上,即复数z 为纯虚数或0,由2230m m --=得1m =-或3m =,∴当1m =-或3m =时,点Z 在虚轴上; (3)点Z 在第一象限,即复数z 的实部虚部均大于0,由22230430m m m m ⎧-->⎨-+>⎩,即1313m m m m ⎧-⎪⎨⎪⎩或或,解得1m <-或3m >,∴当1m <-或3m >时,点Z 在第一象限. 45.周期为6. 【解析】 【分析】根据通项公式,写出特征方程为210x x -+=,由方程根的情况求出数列{}n a 的周期. 【详解】 因为112n n na a a ++=-,所以特征方程为210x x -+=, 因为Δ14130=-⨯=-<,解得:m k == 所以2arg 36a mc a kc ππ-⎛⎫==⎪-⎝⎭, 所以函数()f x 的迭代周期为6T =. 所以数列{}n a 有周期6T =,。
复数练习题(有答案)
复数练习题(有答案)1.复数选择题1.若复数 $z=\frac{1}{1-i}$,则 $z$ 的共轭复数为()。
A。
$\frac{1+i}{2}$ B。
$\frac{1-i}{2}$ C。
$\frac{-1+i}{2}$ D。
$\frac{-1-i}{2}$2.已知复数 $z=\frac{11+22i}{1-i(m-m^2i)}$ 为纯虚数,则实数 $m=$()。
A。
$1$ B。
$-1$ C。
$i$ D。
$-i$3.若复数 $z=(2+i)i$(其中 $i$ 为虚数单位),则复数$z$ 的模为()。
A。
$5$4.复数 $z=\frac{3i}{5-2i}$ 的虚部是()。
A。
$\frac{15}{29}$ B。
$\frac{3}{29}$ C。
$-\frac{3}{29}$ D。
$-\frac{15}{29}$5.已知 $2i+1=z\cdot5\left(5-\frac{1}{z}\right)$,则$z=$()。
A。
$1$ B。
$3$ C。
$2$ D。
$-2$6.复数 $z$ 满足 $i\cdot z=1-2i$,$z$ 是 $z$ 的共轭复数,则 $z\cdot z=$()。
A。
$5$ B。
$-5$ C。
$5i$ D。
$-5i$7.已知 $i$ 是虚数单位,则复数 $\frac{4i}{1+i}$ 在复平面内对应的点在()。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限8.已知 $i$ 为虚数单位,若复数 $z=5+3i$,则$\frac{z}{i}=$()。
A。
$-3+5i$ B。
$5-3i$ C。
$-5+3i$ D。
$3+5i$9.若复数 $z=\frac{a+i}{1-i}$,$a\in R$,为纯虚数,则$z+a=$()。
A。
$1+2i$ B。
$2i-1$ C。
$2+2i$ D。
$-2i+1$10.已知复数 $z$ 满足 $\frac{z}{2+i}=2-i$,则复数 $z$ 在复平面内对应的点在()。
复数练习题(有答案)
复数练习题(有答案)一、单选题1.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( )A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--3.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC4.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i + B .24i - C .33i + D .24i + 5.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1 B .2 C .3 D .4 6.复数3i(43i )-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限7.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③8.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( )A .2-B .2C .i -D .1-10.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .411.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .912.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .213.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+14.已知复数z 满足()1i 2i z -=(其中i 为虚数单位),则z =( ) AB.2C .12D .215.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+ D .11i 22-16.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限17.已知34i z =+,则()i z z -=( ) A .1117i + B .1917i + C .1117i - D .1923i +18.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 19.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( )A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=020.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+ C .2i - D .2i +二、填空题21.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.22.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.23.已知复数zi =,i 为虚数单位,则z =______ 24.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________ 25.复数2i z a =+,a ∈R ,若13i i+-z 为实数,则=a ________.26.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.27.已知复数()()211i z a a =-+-()a R ∈是纯虚数,则=a ___________.28.已知复数z 为纯虚数且满足1-3z =|z |+3i ,则z =________29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12zz=_______. 30.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.已知23iz-=-i ,则复数z =________. 33.若2z =,arg 3z π=,则复数z =________.34.已知4cosisin1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 35.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.36.已知复数21ii z +=,则z =______. 37.设复数20211i 1iz -=-(i 为虚数单位),则z 的虚部是_______.38.计算:112i2i-=+___________. 39.设i是虚数单位,复数z =,则z =___________. 40.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________. 三、解答题41.已知复数z满足||z =z 2的虚部为2. (1)求复数z ;(2)设22,,z z z z -在复平面上的对应点分别为A 、B 、C ,求△ABC 的面积.42.在复平面内,若复数()()22232i z m m m m -+-=-+对应的点满足下列条件.分别求实数m 的取值范围. (1)在虚轴上; (2)在第二象限; (3)在直线y =x 上.43.如图,向量OZ 与复数1i -+对应,把OZ 按逆时针方向旋转120°,得到OZ .求向量OZ '对应的复数(用代数形式表示).44.已知1z ,2z ∈C ,13z 22z 1222z z +=12z z -. 45.计算:(1)8cos isin 2cos isin 6644ππππ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭;))32cos 240isin 240cos 60isin 60⎡⎤︒-︒÷︒+︒⎢⎥⎣⎦.【参考答案】一、单选题 1.D 2.D 3.D 4.A 5.B 6.B 7.B 8.B 9.D10.B 11.C 12.A 13.D 14.A 15.C 16.D 17.B 18.A 19.D 20.B 二、填空题 21.832223.124.12或12##12-或12 25.3- 26.9 27.1- 28.i29.12i -##2i+1- 30.[]4,6 31.i - 32.3+2i33.11+ 34.2312π35 3637.038.43i -##3i 4-+39.40.1##1+三、解答题41.(1)1i z =+或1i z =-- (2)1 【解析】 【分析】(1)设()i ,R z x y x y =+∈,根据已知条件列方程求得,x y ,由此求得z . (2)求得,,A B C 的坐标,从而求得三角形ABC 的面积. (1)设()i ,R z x y x y =+∈,222x y +=①,2222i z x y xy =-+的虚部为2,所以22,1xy xy ==②,由①②解得11x y =⎧⎨=⎩或11y x =-⎧⎨=-⎩. 所以1i z =+或1i z =--. (2)当1i z =+时,22i z =,21i z z -=-, 所以()()()1,1,0,2,1,1A B C -,2AC =,所以三角形ABC 的面积为11212⨯⨯=. 当1i z =--时,22i z =,213i z z -=--, 所以()()()1,1,0,2,1,3A B C ----,2AC =,所以三角形ABC 的面积为12112⨯⨯=.42.(1)m =2或m =-1; (2)-1<m <1; (3)m =2. 【解析】 【分析】(1)由题可得220m m --=,即求;(2)由题可知2220320m m m m ⎧--<⎨-+>⎩,进而即得;(3)由题可得222=32m m m m --+-,即得.(1)∵复数()()22232i z m m m m -+-=-+对应的点为()222,32m m m m ---+,由题意得220m m --=, 解得m =2或m =-1. (2)由题意得2220320m m m m ⎧--<⎨-+>⎩∴1212m m m -<<⎧⎨⎩或,∴-1<m <1. (3)由题得222=32m m m m --+-, ∴m =2. 43.1313i 22-+- 【解析】 【分析】复数的旋转用相应的三角函数公式即可. 【详解】如上图,将Z 逆时针旋转到'Z ,即是向量'OZ 对应的复数:()()()1313131i cos120isin1201i 2︒︒⎛⎫-+-++=-+-= ⎪ ⎪⎝⎭, 1313-+. 442 【解析】 【分析】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,利用余弦定理可得6cos 4OAC ∠=-,再利用余弦定理即可得出答案. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=, 则222(22)(2)(3)23OAC =+-∠, 解得6cos OAC ∠= ∴6cos AOB ∠=2212(2)(3)223cos 2z z BA AOB ∴-==+-⨯⨯∠.45.(1)(462462i +; 62i 【解析】 【分析】利用三角函数诱导公式以及特殊角的三角函数值代入化简两式,然后利用复数乘除法运算法则计算即可. (1)31228cos isin 2cos isin 16i 462462i 66442ππππ⎫⎛⎫⎛⎫+⋅+==+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭(2))))3332cos 240isin 240cos 60isin 602cos 60isin 60i 4⎡⎤⎫︒-︒÷︒+︒=-︒+︒÷⎪⎢⎥⎪⎣⎦⎝⎭()()26i 33i 26332226i 6i 2i 2433i 33i 33i -⎛⎫⎫-+=÷== ⎪⎪ ⎪⎪++-⎝⎭⎝⎭。
《复数》练习题
《复数》练习题一、单选题1.在复平面内,复数(12)i i 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知复数131iz i+=-,i 为虚数单位,则z 为( )A B C D .3.已知复数z 满足2z z i -=,则z 的虚部是( )A .1-B .1C .i -D .i 4.若21xyi i=-+(,x y R ∈,i 为虚数单位),则x yi +=( )A B .5 C .D .205.设复数12,z z 在复平面内的对应点关于实轴对称,134,z i +=则12z z =( )A .25B .25-C .724i -D .724i -- 6.复数z 满足()3,z i i i i +=-+为虚数单位,则z 等于( )A .12i +B .12i -C .12i -+D .12i --7.已知复数312a ii -+在复平面内对应的点位于第二象限,则实数a 的取值范围为( ) A .3,2⎛⎫-∞- ⎪⎝⎭ B .(),6-∞ C .3,2⎛⎫-+∞ ⎪⎝⎭D .()6,+∞8.已知复数z 满足21z -=,则z 的最大值为( )A .1B .2C .3D .49.若在复平面内,复数23zi+所对应的点为()3,4-,则z 的共轭复数为( ) A .18i -- B .18i -+C .18i -D .18i +10.复数1ai i-在复平面上对应的点位于第一象限,则实数a 的取值范围是( ) A .(,1)-∞- B .(,0)-∞ C .(0,)+∞ D .(1,)+∞11.设(1+i )a =1+bi (i 是虚数单位),其中a ,b 是实数,则|a +bi |=( )A .1BCD .212.在复平面内,复数12,z z 对应的点的关于实轴对称,若12z i =+,则12z z ⋅=( )A .2i -B .5C D .313.若复数z 满足()345z i i +=,则z =( )A .15B .12 C .1 D .514.复数13i1i+-(i 是虛数单位)的模等于( )A .B .CD 15.若复数22iz i+=-,则z z ⋅=( )A .1B .2CD .5 16.若复数z 满足(2)(1)1z i z i ⋅+=⋅-+,则复数z 的实部为( )A .32- B .1- C .12- D .117.已知复数z 满足(2)13z i i -=-,则z =( )A .i -B .iC .1i -D .1i + 18.若复数z 满足23i +=-z z ,则||z =( )A .1BCD .219.已知1i1i z-=+(其中i 为虚数单位),则复数z =( ) A .i B .i -C .1D .220.已知12i z z +=(i 为虚数单位),则1z -=( )A .23BC .2D .21.复数12iz i -=+(i 为虚数单位)的虚部为( )A .15B .35C .-35D .35i22.如果复数2()bib i+∈R 的实部与虚部相等,那么b =( ) A .2-B .1C .2D .423.已知i 为虚数单位,复数()21a iz a R i-=∈-ai =( ).A B .4 C .3 D .224.若复数z 满足235z i --=,则复数z 的共轭复数不可能为( )A .57i -B .26i --C .52i +D .28i -25.已知1z =-4a +1+(2a 2+3a )i ,2z =2a +(a 2+a )i ,其中a R ∈,12z z >,则a 的值为( )A .0B .-1C .32-D .1626.已知复数z =a 2+(2a +3)i ()a R ∈的实部大于虚部,则实数a 的取值范围是( )A .-1或3B .{3a a >或}1a <- C .{3a a >-或}1a < D .{3a a >或}1a =- 27.若复数z 的共轭复数为z 且满足(2)(1)1z i z i ⋅+=⋅-+,则复数z 的实部为( )A .32- B .-1 C .12- D .1 28.设复数1z ,2z 在复平面内的对应点关于虚轴对称,且11z i =-(i 为虚数单位),则212z z +=( )AB C .10D .229.复数2341i i i i ++-=( )A . 1122i --B . 1122+i -C .1122i - D .1122+i30.已知复数z 满足|z |=2,则|z +3-4i |的最小值是( )A .5B .2C .7D .331.若复数z 满足()12i z -=,则22z z -=( )A .0B .1C D .232.如图,若向量OZ 对应的复数为z ,且5z =,则1z=( ) A .1255i + B .1255i -- C .1255i - D .1255i -+ 33.已知cos (1sin )()z i θθθ=++∈R ,则||z 的取值范围为( )A .[0,1]B .[0,2]C .[0,4]D .[2,4]34.已知复数cos sin z i θθ=+(i 为虚部单位),则1z -的最大值为( )A .1B .2C .2D .435.若复数21iz i-=+,复数z 在复平面对应的点为Z ,则向量OZ (O 为原点)的模OZ =( ) A .2B .2C .102D .5236.若202112z i i =-+,则||z =( )A .0B .1C .2D .237.满足条件134z i -=+的复数z 在复平面上对应点的轨迹是( )A .直线B .圆C .椭圆D .抛物线38.若复数z 满足112z i i -+=-,其中i 为虚数单位,则z 对应的点(),x y 满足方程( )A .()()22115x y -+-= B .()()22115x y -++=C .()()22115x y ++-= D .()()22115x y +++=39.若i 为虚数单位,复数z 满足33z i ++≤,则2z i -的最大值为( )A .2B .3C .23D .33二、多选题40.在复平面内,一个平行四边形的3个顶点对应的复数分别是12i +,2i -+,0,则第四个顶点对应的复数可以是( ) A .3i - B .13i -+ C .3i + D .3i --41.设()11,11n ni i f n n N i i +-⎛⎫⎛⎫=+∈ ⎪ ⎪-+⎝⎭⎝⎭,则集合{x |x =f (n )}的元素有( ) A .2 B .0 C .-2 D .142.已知a R ∈,i 是虚数单位,若3z a i =+,4z z ⋅=,则a 的值可以是( ) A .1- B .1 C .-3 D .343.在复平面内,复数a -2i 对应的点位于第四象限,则实数a 的可能取值为( )A .2B .1C .-1D .无法确定44.设123,,z z z 为复数,10z ≠.下列命题中正确的是( )A .若23z z =,则23z z =±B .若1213z z z z =,则23z z =C .若23z z =,则1213z z z z =D .若2121z z z =,则12z z =三、填空题45.已知i 为虚数单位,复数z 满足()20212z i i -=,则z =___________.46.若a ∈R ,i 为虚数单位,24ai+=,则a =______________________.47.若复数()()222483z m m m m i =+-+-+,()m R ∈的共轭复数z 对应的点在第一象限,则实数m的取值范围为___________.48.i 是虚数单位,则复数312ii-=+___________.49.i 是虚数单位,复数212ii-+的共轭复数为______.50.已知i 是虚数单位,复数1iz i-=,则z 的虚部为__________.51.设131iz i i-=++,则||z =___________________.52.若x 是实数,y 是纯虚数,且(2x -1)+2i =y ,则x ,y 的值为____________.53.若复数z 对应的点在直线y =2x 上,且|z |=z =____________54.已知i 为虚数单位,x ∈R ,复数z 满足1i z =+,则|(5)|xz x i +-的最小值为________.55.已知复数z 满足||1z i -=,则|22|z i --的最小值为________ .56.已知复数z 满足条件1z =,那么z i +的最大值为______.57.已知复数1z ,2z 满足221z z =,121z z =,则对于任意的t ∈R ,12tz z +的最小值是________.58.设复数z ,满足11z =,22z =,12z z i +,则12z z -=____________.59.若复数1z ,2z 满足123z z ==,12z z +=122z z -的值是______.60.已知复数(2)z x yi =-+(x y ∈R 、)yx的最大值为_______.《复数》练习题]]参考答案1.B 【解析】因为(12)i i 2i =-+,所以2i -+对应的点为(2,1)-,它位于第二象限.故选:B 2.B 【解析】()()()()1312412112i i i z ii i ++-+===-+-+,z==.故选B3.A 设(),z a bi a b R =+∈,因为2z z i -=,可得()22z z a bi a bi bi i -=--+=-=,则22b -=,可得1b =-,所以复数z 的虚部是1-.故选A 4.C 【解析】21xyi i =-+,()()()12112x i x xi yi i i --∴==-+-,42x xi yi ∴-=-,4,2x y ∴==,42x yi i ∴+=+==故选C.5.A 【解析】复数12,z z 在复平面内的对应点关于实轴对称,134,z i +=则234z i -=,所以()()12343491625z z i i +-=+==.故选:A6.A 【解析】()3z i i i +=-+,()(3)i i z i i i ∴-+=--+,化为31z i i +=+,21z i ∴=+,故选:A .7.A 【解析】()()()()23122366231212555a i i a ai i i a a z i i i ----+---===++-,因为复数z 在复平面内对应的点位于第二象限,则6052305a a -⎧<⎪⎪⎨--⎪>⎪⎩,解得32a <-.故选:A.8.C 【解析】因为21z -=,所以复数z 在复平面内所对应的点Z 到点()2,0的距离为1,则点Z 的轨迹为以()2,0为圆心、以1为半径的圆,故z 的取值范围为[]1,3,z 的最大值为3,故选:C. 9.C 【解析】依题意,3423zi i=-+,则()()34236981218z i i i i i =-+=+-+=+,则18z i =-,故选:C . 10.C 【解析】()2111ai i ai a ia i i i ----===+-.因为对应的点位于第一象限,所以0a >,故选:C. 11.B 【解析】由(1+i )a =1+bi ,得a +ai =1+bi ,∴1a ab =⎧⎨=⎩,则a =b =1.∴|a +bi |=|1+i |故选:B.12.B 【解析】因为复数12,z z 对应的点的关于实轴对称,所以12,z z 互为共轭复数,所以222121||215z z z ⋅==+=,故选:B13.C 【解析】方法一:两边取模可得:551z z ⇒=.方法二:由题知()53454334255i i ii z i -+===+,1z =.故选:C14.C 【解析】()()13i 1i 13i 12i 1i 2+++==-+- C.15.A 【解析】22(2)342(2)(2)5i i iz i i i +++===--+,则3434155i i z z +-⋅=⋅=,故选A. 16.D 【解析】设z a bi =+(a b R ∈、),则()(2)()(1)1a bi i a bi i +⋅+=-⋅-+,化简得(2)(2)(1)()a b a b i a b a b i -++=-+-+,根据对应相等得:()212a b a b a b a b -=-+⎧⎨+=-+⎩,解得1a =,23b =-,故选D.17.C 【解析】∵(2)13z i i -=-,∴13(13)(2)5512(2)(2)5i i i iz i i i i --+-====---+,故选:C 18.B 【解析】设(,)z a bi a b R =+∈,则z a bi =-,所以2()3a bi a bi i ++-=-,即33a bi i -=-,所以1,1a b ==,1z i =+,所以||z =故选:B19.C 【解析】因为1i1iz-=+,所以11i z i ,故111i z i -===+.故选:C . 20.B 【解析】由12i z z+=可得12i z z +=⋅,令复数i z a b =+(,a b ∈R ),则()1222a bi a bi i b ai ++=-⋅=+∴12a b +=,2b a =,解得13a =,23b =,即复数12i 33z =+,∴221i 33z -=-+,∴13z -==故选:B. 21.C 【解析】()()222121221313225555i i i i i i i z i i i -----+-=====-+-,所以复数z 的虚部为35.故选:C. 22.A 【解析】2(2)2bi i b i b i i i+-==-,所以实部为b ,虚部为2-,所以2b =-.故选A . 23.C 【解析】由(2)(1)2(2)22a i i a a iz -+++-==为纯虚数,∴2020a a +=⎧⎨-≠⎩,解得:2a =-,则23i ==,故选:C .24.C 【解析】设复数z 的共轭复数为(),z a bi a b R =+∈,则z a bi =-,所以由235z i --=可得()()222325a b -++=.当5,2a b ==时,显然不满足上式,其它选项检验可知都符合.故选C .25.A 【解析】由12z z >,可知两个复数均为实数,即其虚部为零,故222300412a a a a a a ⎧+=⎪+=⎨⎪-+>⎩,即()()2301016a a a a a ⎧⎪+=⎪+=⎨⎪⎪<⎩,解得a =0.故选:A.26.B 由已知实部大于虚部,可得a 2>2a +3,即a 2-2a -3>0,即()()130a a +->,解得3a >或1a <-,故实数a 的取值范围是{3a a >或}1a <-.故选:B.27.D 【解析】设,,z a bi a R b R =+∈∈,则,,z a bi a R b R =-∈∈.(2)(1)1z i z i ⋅+=⋅-+,()(2)()(1)1a bi i a bi i ∴++=--+,整理得:222(2)()1a a b i bi a a b i bi ∴+++=-+++,即2(2)(1)()a a b i a a b i ++=+-+,212()a a a b a b =+⎧∴⎨+=-+⎩,解得:123a b =⎧⎪⎨=-⎪⎩,所以复数z 的实部为1,故选:D28.A 【解析】21z i =--,()()2212112113z z i i i i i +=-+--=---=--,所以21213z z i +=--==故选:A29.C 【解析】因为i 2=-1,i 3=-i ,i 4=1,所以234(1)1111222i i i i i i i i i ++--+===---.故选:C30.D 【解析】|z |=2表示复数z 在圆224x y +=上,而|z +3-4i |表示圆上的点到(-3,4)的距离,∴当且仅当复数z 所在的点在原点与(-3,4)构成的线段上,|z +3-4i |的最小.故|z +3-4i |的最小值为23d ==.故选D31.D 【解析】由题得22(1)2(1)11(1)(1)2i i z i i i i ++====+--+,所以222|(1)2(1)||222||2|2z z i i i i -=+-+=--=-=.故选:D32.D 【解析】由题意,设1(0)z bi b =-+>,则z ==2b =,即12z i =-+,所以1112121212(12)(12)555i i i i i i z -+-+====-+-----+.故选D .33.B 【解析】由题意22cos (1sin )22sin z θθθ=++=+,∵1sin 1θ-≤≤,所以02z ≤≤.故选B .34.C 【解析】由题意知:221|cos 1sin |(cos 1)sin 22cos z i θθθθθ-=-+=-+=-,∴当cos 1θ=-时,1z -的最大值为2.故选:C35.C 【解析】由题意,复数()()()()211311122i i i z i i i i --2-===-++-,又由22131310||||()()22222OZ z i ==-=+-=.故选C . 36.C 【解析】由复数的运算性质,可得202120201222111z i i i i i i i i =-=⋅+=++-=--,则221(1)2z =+-=.故选:C.37.B 【解析】设(),z x yi x y R =+∈,由134z i -=+可得:()2215x y -+=,两边平方得:()22125x y -+=,∴复数z 在复平面上对应点的轨迹是圆.故选B38.B 【解析】设(,)z x yi x y R =+∈,代入112z i i -+=-得:()()22115x y -++=. 故选:B. 39.D 【解析】因为33z i ++≤表示以点()3,1M --为圆心,半径3R =的圆及其内部,又2z i-表示复平面内的点到()0,2N 的距离,据此作出如下示意图:所以()()()()22max 20321333z i MN R -=+=--+--+=,故选:D.40.BCD 【解析】第四个点对应复数为z ,则1220z i i ++=-++或2120z i i -+=++或0122z i i +=+-+,所以3z i =--或3i z =+或13z i =-+.故选:BCD .41.ABC 【解析】f (n )=i n +(-i )n ,当n =4k (k ∈N )时,f (n )=2;当n =4k +1(k ∈N )时,f (n )=0;当n =4k+2(k ∈N )时,f (n )=-2;当n =4k +3(k ∈N )时,f (n )=0.所以集合中共有-2,0,2这3个元素.故选:ABC42.AB 【解析】z a =+,则z a =,所以,()()2434z z a a a ⋅==+=+=,解得1a =±.故选:AB.43.AB 【解析】在复平面内,复数a -2i 对应的点的坐标为(a ,-2),因为复数对应的点位于第四象限,所以0a > 所以满足条件的有选项A , B ,故选:A B44.BC 【解析】由复数模的概念可知,23z z =不能得到23z z =±,例如23,11i i z z =+=-,A 错误;由1213z z z z =可得123()0z z z -=,因为10z ≠,所以230z z -=,即23z z =,B 正确;因为2121||||z z z z =,1313||||z z z z =,而23z z =,所以232||||||z z z ==,所以1213z z z z =,C 正确;取121,1z i z i =+=-,显然满足2121z z z =,但12z z ≠,D 错误.故选:BC45.1255i -+【解析】由()20212z i i -=,得()450512z i i i ⨯+==-,所以22(2)212122(2)(2)4555i i i i i i z i i i i i ++-+=====-+--+-46.±222|2|4a aiai i i+=+=-=a =±.47.31,2⎛⎫⎪⎝⎭【解析】因为z 对应的点在第一象限,所以z 的对应点在第四象限,所以22204830m m m m ⎧+->⎨-+<⎩,解得312m <<,即31,2m ⎛⎫∈ ⎪⎝⎭, 48.1755i -【解析】()()()()3123171212125i i i i i i i ----==++-1755i =- 49.i 【解析】()()()()212251212125i i i i i i i i ----===-++-,因此,复数212i i-+的共轭复数为i . 50.1-【解析】因为1i =,所以11iz i i-==-,故z 的虚部为1-.51.2【解析】22112333211--+=+=+=-+=+-i i i z i i i i i i i,所以||2z = 52.1,22x y i ==【解析】依题意x 是实数,y 是纯虚数且()212x i y -+=,得2102x i y-=⎧⎨=⎩∴12x =,2y i =.53.1+2i 或-1-2i 【解析】依题意可设复数z =a +2ai (a ∈R ),由|z |=5,得224a a +=5,解得a =±1,故z =1+2i 或z =-1-2i . 54.5【解析】因为1i z =+,x ∈R ,所以()()(5)1(5)25xz x i x i x i x x i +-=++-=+-()2225x x =++()25255x =++≥当2x =-时取等号,55.51-【解析】设(,)z x yi x y R =+∈,由|1|z i -=得(1)1x y i +-=,所以()2211x y +-=,即点(),x y 是圆心为()0,1,半径为1的圆上的动点,()()22|2 2 |22z i x y --=-+-,表示的是点(),x y 与点()2,2的距离,所以其最小值为点()2,2到圆心()0,1的距离减去半径,即()22221151+--=-,56.4【解析】因为1z =,所以复数z 对应的点在单位圆上,22z i ++表示复数z 对应的点与复数22i --对应的点()221M --,之间的距离,而813OM =+=.所以22z i ++的最大值为14OM r OM +=+=.57.32【解析】设2z a bi =+,则2z a bi =-,又()()22221z z a bi a bi a b =+⋅-=+=,2221z a b ∴=+=,1213i z z =+,()1213z i z ∴=+⋅,12tz z ∴+()2213t i z z =+⋅+ ()2131t i z =++⋅ ()131t i =++()()2213t t =++2421t t =++ 213444t ⎛⎫=⨯++ ⎪⎝⎭t R ∈,∴当14t =-时,1min22113444324tz z ⎛⎫=⨯-++ ⎪⎭=⎝+. 58.6【解析】设12,z z 在复平面中对应的向量为12,OZ OZ ,12z z +对应的向量为3OZ ,如下图所示:因为123z z i +=-,所以12312z z =+=+,所以222131221cos 1224OZ Z +-∠==⨯⨯,又因为1312180OZ Z Z OZ ∠+∠=︒,所以12131cos cos 4Z OZ OZ Z ∠=-∠=-,所以222211212122cos 1416Z Z OZ OZ OZ OZ Z OZ =+-⋅⋅∠=++=,所以216Z Z =,又12216z z Z Z -==,59.35【解析】设复数所对应的向量分别为a ,b ,因为复数1z ,2z 满足123z z ==,1232z z +=,所以3a =,3b =,32a b +=,所以222218a a b b a b+⋅+=+=,即0a b ⋅=,所以a b ⊥,所以22244524b ba a ab -=⋅-+=,解得352a b -=,所以122z z -的值是35.故答案为:35 60.3【解析】因为|2|3x yi -+=,所以22(2)3x y -+=,故()x y ,在以0(2)C ,为圆心,3为半径的圆上,y x表示圆上的点(,)x y 与原点所在直线:l y kx =的斜率,如图,由平面几何知识,易知当直线:l y kx =与圆相切时取得最值,在OAC 中,2,3OC AC ==,所以1OA =,此时tan 3AC k OAα===.。
复数练习题及答案
复数练习题及答案一、选择题1. The _______ on the trees turn red in autumn.A) leafs B) leaves C) leafies D) leafesAnswer: B2. Can you pass me two _______ of milk from the fridge?A) bottls B) bottle C) bottels D) bottlesAnswer: D3. My parents have two _______.A) child B) childs C) children D) childes Answer: C4. There are many _______ on the farm.A) sheeps B) sheep C) sheepes D) sheepies Answer: B5. We need to buy three _______ for the party.A) cakies B) cakes C) cakees D) cakeAnswer: B二、变成复数形式1. Cat2. BrushAnswer: Brushes3. WolfAnswer: Wolves4. BabyAnswer: Babies5. KnifeAnswer: Knives三、填空题1. My mom bought two _______ for the living room.Answer: sofas2. The teacher picked up the _______ and put them in his bag. Answer: textbooks3. We ate delicious _______ at the restaurant.Answer: pizzas4. The _______ in the zoo came close to the visitors.Answer: tigers5. I have three _______ living in a pond near my house.四、将下列名词的复数形式改为单数形式1. DogsAnswer: Dog2. CatsAnswer: Cat3. BalloonsAnswer: Balloon4. ChairsAnswer: Chair5. GlassesAnswer: Glass总结:复数形式是英语中常见的形式之一,准确掌握名词的复数形式对于正确表达是非常重要的。
复数练习题(有答案)
复数练习题(有答案)一、单选题1.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3-B .2-C .2D .32.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.3.复数(2i 的虚部为( )A .2B .C .2-D .04.已知 i 是虚数单位,复数412⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.若复数(32)(1)i ai +-在复平面内对应的点位于第一象限,则实数a 的取值范围为( )A .32,23⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .23,32⎛⎫- ⎪⎝⎭D .2,3⎛⎫-∞- ⎪⎝⎭6.复数z 满足()12i z =,i 为虚数单位,则复数z 的虚部为( )A .BC .D 7.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .筹四象限8.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2- B .2 C .i - D .1- 10.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1-11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i -12.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-13.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.若复数z 满足1i 1i 2z +=+,则z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.已知复数z 满足()43i 5i z +=,则z =( )A .1BC .15D .516.若复数4i1iz =-,则复数z 的模等于( ) AB .2C .D .4 17.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( )A .3B .4C D 18.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限19.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i20.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32-D .3i 2-二、填空题21.若()i 1)(,x y x x y R +=-∈,则2x y +的值为__________.22.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 23.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 24.已知i34i z =+,求|z |=___________ 25.计算:()()12i 34i 2i-+=+_________.26.设12z i =-,则z =___________ .27.写出一个在复平面内对应的点在第二象限的复数z =__________. 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________.30.若复数()2i m m m -+为纯虚数,则实数m 的值为________.31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.若复数2(1i)34iz +=+,则z =__________.33.已知复数z 满足1z =,则22z i +-的最大值为______. 34.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 35.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________. 36.计算cos 40isin 40cos10isin10________.37.i 是虚数单位,则1i1i+-的值为__________.38.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 39.已知i 为虚数单位,复数21iz =-的虚部为___________.40.已知复数z =,则复数z 的虚部为__________. 三、解答题41.设实部为正数的复数z ,满足z =(12i)z +在复平面上对应的点在第一、三象限的角平分线上. (1)求复数z ; (2)若i()1im z m R ⋅+∈+为纯虚数,求实数m 的值.42.已知复数z满足||z =z 2的虚部为2. (1)求复数z ;(2)设22,,z z z z -在复平面上的对应点分别为A 、B 、C ,求△ABC 的面积.43.实数k 为何值时,复数()()223456i z k k k k =--+--是:(1)实数? (2)虚数? (3)纯虚数? (4)0?44.(1)解方程()20x x x C +=∈;(2)已知32i -+是方程()220,x px q p q R ++=∈的一个根,求实数,p q 的值.45.求数列{}n a :112n n na a a ++=-的周期.【参考答案】一、单选题 1.B 2.D 3.C 4.C 5.A 6.D 7.C 8.D 9.D 10.D 11.B 12.C 13.D 14.D 15.A 16.C17.C 18.C 19.D 20.C二、填空题21.1 22.1 23.四24.15##0.225.43i-##3i4-+2627.1i-+(答案不唯一)28.29.30.13132.825i 6 25 -33.134.-1+2i##2i-1 353612i37.138.2i-+39.140.三、解答题41.(1)3iz=-;(2)6m=-.【解析】【分析】(1)根据复数的模公式,结合复数乘法的运算法则、第一、三象限的角平分线的性质进行求解即可;(2)根据纯虚数的定义,结合共轭复数的定义、复数除法的运算法则进行求解即可. (1)设i(0,),10,(12i)2(2)i z a b a b R z z a b b a =+>∈∴=+=-++,由题意得,22223,101a b b a a a b b -=+=⎧⎧∴⎨⎨+==-⎩⎩,即3i z =-; (2)i i 3i 3(1)i 1i 222m m m m m z ⋅++=++=++++为纯虚数, 30,62mm ∴+=∴=-. 42.(1)1i z =+或1i z =-- (2)1 【解析】 【分析】(1)设()i ,R z x y x y =+∈,根据已知条件列方程求得,x y ,由此求得z . (2)求得,,A B C 的坐标,从而求得三角形ABC 的面积. (1)设()i ,R z x y x y =+∈,222x y +=①,2222i z x y xy =-+的虚部为2,所以22,1xy xy ==②,由①②解得11x y =⎧⎨=⎩或11y x =-⎧⎨=-⎩. 所以1i z =+或1i z =--. (2)当1i z =+时,22i z =,21i z z -=-, 所以()()()1,1,0,2,1,1A B C -,2AC =,所以三角形ABC 的面积为11212⨯⨯=. 当1i z =--时,22i z =,213i z z -=--, 所以()()()1,1,0,2,1,3A B C ----,2AC =,所以三角形ABC 的面积为12112⨯⨯=.43.(1)6k =或1k =-; (2)6k ≠且1k ≠-; (3)4k =; (4)1k =-. 【解析】 【分析】(1)解方程2560k k --=即得解; (2)解不等式2560k k --≠即得解;(3)解不等式2560k k --≠,且2340k k --=即得解; (4)解方程2560k k --=,且2340k k --=即得解. (1)解:当2560k k --=,即6k =或1k =-时,z 是实数; (2)解:当2560k k --≠,即6k ≠且1k ≠-时,z 是虚数; (3)解:当2560k k --≠,且2340k k --=,z 是纯虚数,即4k =时为纯虚数; (4)解:当2560k k --=,且2340k k --=,即1k =-时,z 是0. 44.(1)0x =或i x =±;(2)12,26p q ==. 【解析】 【分析】(1)设出()i ,x a b a b =+∈R ,带入等式,再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案.(2)将32i -+带入()220,x px q p q R ++=∈,化简后再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案. 【详解】(1)设()i ,x a b a b =+∈R ,由20x x +=,得222i 0a b ab -+,所以220,0,a b ab ⎧⎪-=⎨=⎪⎩当0a =时,1,1,0b =-; 当0b =时,0a =. 所以0x =或i x =±.(2)因为32i -+是方程()220,x px q p q ++=∈R 的一个根, 所以()22(32i)32i 0p q -++-++=,整理,得()310212i 0q p p -++-=, 即()2120,3100p q p ⎧-=⎨-+=⎩解得12,26p q ==. 【点睛】本题考查复数的运算,属于基础题.解本类题型的关键在于利用两复数相等:实部等于实部,虚部等于虚部. 45.周期为6. 【解析】 【分析】根据通项公式,写出特征方程为210x x -+=,由方程根的情况求出数列{}n a 的周期. 【详解】 因为112n n na a a ++=-,所以特征方程为210x x -+=, 因为Δ14130=-⨯=-<,解得:m k == 所以2arg 36a mc a kc ππ-⎛⎫==⎪-⎝⎭, 所以函数()f x 的迭代周期为6T =. 所以数列{}n a 有周期6T =,。
复数练习题(有答案)百度文库
一、复数选择题1.复数21i=+( ) A .1i -- B .1i -+ C .1i - D .1i +2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若复数z 满足()322i z i i -+=+,则复数z 的虚部为( ) A .35 B .35i - C .35D .35i 4.若(1)2z i i -=,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.若1m i i+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D 6.设2i z i +=,则||z =( )A B C .2 D .57.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i8.在复平面内,复数z 对应的点是()1,1-,则1z z =+( ) A .1i -+ B .1i +C .1i --D .1i - 9.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( )A .恒在实轴上B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x =-上10.若()()324z ii =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.复数22(1)1i i -+=-( ) A .1+i B .-1+i C .1-i D .-1-i12.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .113.若复数11i z i ,i 是虚数单位,则z =( ) A .0 B .12C .1D .2 14.设复数满足(12)i z i +=,则||z =( )A .15BCD .515.题目文件丢失!二、多选题16.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 17.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .z =18.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 19.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件20.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i = 21.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限22.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根23.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=24.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数25.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数 26.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 27.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数B .若32a bi i -=+,则3,2a b ==C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z - 28.以下命题正确的是( ) A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 29.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限30.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z =C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C2.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D.3.A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A. 4.B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B【分析】先求解出复数z ,然后根据复数的几何意义判断.【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.故选:B.【点睛】 本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.5.C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】 由题1m i i+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.6.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .7.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 8.A【分析】由得出,再由复数的四则运算求解即可.【详解】由题意得,则.故选:A解析:A【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可.【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A 9.A【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.【详解】由复数在复平面内对应的点为得,则,,根据得,得,.所以复数在复平面内对应的点恒在实轴上,故解析:A【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+, 根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R . 所以复数z 在复平面内对应的点(),x y 恒在实轴上,故选:A .10.D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D .解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限.故选:D . 11.C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C12.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B13.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .14.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B15.无二、多选题16.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 17.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案.由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.18.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.19.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.20.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题21.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.22.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 23.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.24.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.25.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.26.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.27.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.。
高中复数经典练习题(含答案)
高中复数经典练习题(含答案)一、单选题1.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32-D .3i 2-2.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .2 4.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1 B .2C .3D .45.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限6.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --7.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限8.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( )A .2-B .2C .i -D .1-10.已知复数23i z =-,则()1i z +=( ) A .3i -B .3+3i -C .3i +D .3i -+11.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件12.已知复数z 满足()1i 2i z -=(其中i 为虚数单位),则z =( )AB C .12D .213.已知i 为虚数单位,则复数1i -+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 14.复数z 满足:23i 3=+-z z ,则z =( )A .5B C .10D 15.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +16.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2B .1C .2-D .i17.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 18.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( ) A .z 1+z 2+z 3=0 B .z 1-z 2-z 3=0 C .z 1-z 2+z 3=0 D .z 1+z 2-z 3=019.已知z1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2D .20.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i -- B .22i + C .22i -+ D .22i +或22i -+二、填空题21.已知复数z 满足()1i 42i -=+z ,则z =_________. 22.若复数z 满足i 3i=iz -+,则z =________. 23.复数1i z =+(其中i 为虚数单位)的共轭复数z =______.24.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 25.若()1i 1i z +=-,则z =_______ 26.设12z i =-,则z =___________ .27.化简:i 是虚数单位,复数()2021i 34i z =+=_________. 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.30.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______. 31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________. 33.已知23iz-=-i ,则复数z =________. 34.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________35.i 是虚数单位,则1i1i+-的值为__________.36.设复数20211i 1iz -=-(i 为虚数单位),则z 的虚部是_______.37.计算:112i2i-=+___________. 38.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.39.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1,Z 2,这两点之间的距离为________.40.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.三、解答题41.已知复数z 满足:i 1i z +=-. (1)求z ; (2)求1iz+的模. 42.设复数z =log 2(m 2-3m -3)+ilog 2(m -2)(m ∈R ),对应的向量为OZ .(1)若OZ 的终点Z 在虚轴上,求实数m 的值及|OZ |; (2)若OZ 的终点Z 在第二象限内,求m 的取值范围.43.已知复数()()211i z a a a R =-++∈.(1)若复数z 是虚数,求实数a 的值; (2)若复数z 是纯虚数,求实数a 的值. 44.设z 是虚数,且1z zω=+满足12ω-<<. (1)求||z 的值及z 的实部的取值范围; (2)设11zu z-=+,求证:u 为纯虚数; (3)求2u ω-的最小值.45.若复数()()()22223i z m m m m m R =+-+--∈的共轭复数z 对应的点在第一象限,求实数m 的集合.【参考答案】一、单选题 1.C2.D3.C4.B5.D6.D7.A8.D9.D10.B11.B12.A13.B14.D15.B16.B17.D18.D19.D20.D二、填空题21.13i+2223.1i-##i+1-2425.i2627.-4+3i##3i-428.29.130.73132.233.3+2i34.()0,3 35.1 36.037.43i -##3i 4-+ 38.339 40.35 三、解答题41.(1)12i +【解析】 【分析】(1)先求出12z i =-,再求出z ;(2)先利用复数除法法则化简得1i 2i 321z --=+,从而求出模长. (1)12z i =-,12i z =+(2)()()()()2212i 1i 12i 13i 2i 13i 13i 1i 1i 1i 1i 222----+--====--++--,故1i 24z = ⎪+⎝⎭42.(1)m =4,|1OZ =(2)342m ⎛⎫∈ ⎪⎪⎝⎭. 【解析】 【分析】(1)显然是复数z 的实部为0,即可求解; (2)z 的实部为负数,虚部为正数即可. (1)因为OZ 的终点z 在虚轴上,所以复数z 的实部为0, 则有log 2(m 2-3m -3)=0,所以m 2-3m -3=1,所以m =4或m =-1; 因为20m -> ,所以m =4, 此时z =i ,()0,1OZ =,1OZ = ; (2)因为OZ 的终点Z 在第二象限内,则有()()2222log 330log 2033020m m m m m m ⎧--<⎪⎪->⎨-->⎪⎪->⎩4m << ,所以4m ⎫∈⎪⎪⎝⎭43.(1)1a ≠-; (2)1. 【解析】 【分析】(1)根据虚数的概念求解即可;(2)根据纯虚数的概念由虚部不为0,实部为0建立关系式求解即可. (1)因为()()211i z a a a R =-++∈是虚数,所以10a +≠,解得1a ≠-, (2)因为()()211i z a a a R =-++∈是纯虚数,所以21010a a ⎧-=⎨+≠⎩,解得1a =.44.(1)||1z =,112⎛⎫- ⎪⎝⎭,(2)证明见解析 (3)1 【解析】 【分析】(1)根据复数的除法可得ω,根据其为实数可得221a b +=,从而z 的实部的取值范围;(2)根据复数的除法可得i 1bu a =-+,从而可证u 为纯虚数; (3)根据基本不等式可求最小值.(1)设i z a b =+,a b R ∈、,0b ≠, 则22221i i i a b a b a b a b a b a b ω⎛⎫⎛⎫=++=++- ⎪ ⎪+++⎝⎭⎝⎭, ∵12ω-<<,∴ω是实数,又0b ≠,∴221a b +=,即||1z =,∴2a ω=,122a ω-<=<,112a -<<,∴z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,; (2)()222211i 12i i 11i 11z a b a b b b u z a b a a b ------====-++++++, ∵1,12a ⎛⎫∈- ⎪⎝⎭,0b ≠,∴u 为纯虚数;(3)()()22212122212131111b a u a a a a a a a a ω-⎡⎤-=+=-=-+=++-⎢⎥+++⎣⎦+,∵112a ⎛⎫∈- ⎪⎝⎭,,∴10a +>,故223431u ω-≥⨯=-=, 当111a a +=+,即0a =时,2u ω-取得最小值1. 45.312m m ⎧⎫<<⎨⎬⎩⎭【解析】 【分析】由共轭复数定义可得z ,根据对应点的象限可以构造不等式组求得结果. 【详解】由题意得:()()22223i z m m m m =+----,z 对应的点在第一象限,()2220230m m m m ⎧+->⎪∴⎨--->⎪⎩,解得:312m <<, ∴实数m 的取值集合为312m m ⎧⎫<<⎨⎬⎩⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数专项练习题
1.在复平面内,复数2(2)i -对应的点位于( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )
A.(-3,1)
B.(-1,3)
C.(1,+∞)
D.(-∞, -3)
3.复数22i i -=+( ) A.3455i - B.3455i + C.
415i - D. 315i + 4.i 为虚数单位,则=
+-2)11(i i ( )
A .1- B. 1 C. i - D. i
5.已知a ,b R ∈,复数21i a bi i +=+,则a b +=( )
A .2
B .1
C .0
D .-2
6.已知复数z 满足:i z i -=+1)2(,其中i 是虚数单位,则z 的共轭复数为( )
A .i 5351-
B .i 5351+
C .i -31
D .i
+31
7.若复数i i
a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为( )
A 、2
B 、2-
C 、6
D 、6-
8. 已知复数51i z i =
-(i 为虚数单位),则复数z 在复平面内对应的点位于( )
A .第四象限
B .第三象限
C .第二象限
D .第一象限 9.设有下面四个命题
p 1:若复数z 满足1z
∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ;
p 3:若复数z 1,z 2满足z 1z 2∈R ,则12z z =;
p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )
A .p 1 ,p 3
B .p 1 ,p 4
C . p 2 ,p 3
D .p 2 ,p 4 10.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )
A .3,2==c b
B .3,2=-=c b
C .1,2-=-=c b
D .1,2-==c b 11. z 是z 的共轭复数. 若2=+z z ,(2)(=-i z z (i 为虚数单位),则=z ( )
A. i +1
B. i --1
C. i +-1
D. i -1
12.设z 是复数z 的共轭复数,且()125i z i -=,则z =( )
A .3
B .5 C
D
13.复数
4
)11(i +的值是( ) A.-4 B.4 C.-4i D.4i
14. 设z =i i
+-11+2i ,则|z |=( )
A.0
B.21
C.1
D.2
15.设复数z 满足(1i)2i z +=,则z =( ) A .12 B .22 C .2 D .2
16.已知a ∈R ,i 是虚数单位,若z =a +3i ,4=⋅z z ,则a =( )
A.1或-1
B.7或7-
C.3-
D.
3
17设(1+i )x =1+yi ,其中x ,y 是实数,则|x +yi |= ( )
A.1
B.2
C.3
D. 2 18设复数5
2z i =-(其中i 为虚数单位),则复数z 的实部为 ,虚部为 .
19.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B 对应的复数分别,则 .
20. 复数z=i 12
-,(其中i 是虚数单位),则复数z 的共轭复数为 .
21. 已知i 为虚数单位,设z=1+i+i 2+i 3+…+i 9
,则|z|= . 22. 若复数i 1i
a -+是纯虚数,则实数a 的值为 .
23.设z 1、z 2是方程z 2+2z+3=0的两根,则|z 1﹣z 2|= .
24.. 已知i为虚数单位,复数z满足1+i=z(﹣1+i),则复数z 2017= .
25.. 设,(i 为虚数单位),则的值为 . a b ∈R ,117i i 12i
a b -+=-a b +。