高一物理《牛顿第二定律》知识点讲解
高中物理必修一:牛顿第二定律知识点、公式总结
高中物理必修一:牛顿第二定律知识点、公式总结
F合= ma (是矢量式)或者∑F x = m a x∑F y = m a y
理解:(1)矢量性(2)瞬时性(3)独立性(4)同体性(5)同系性(6)同单位制
●力和运动的关系
①物体受合外力为零时,物体处于静止或匀速直线运动状态;
②物体所受合外力不为零时,产生加速度,物体做变速运动.
③若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,
也可以是曲线.
④物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.
⑤根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动;
⑥若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.
⑦物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力
仅改变速度的方向,不改变速度的大小.
⑧物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动.
表1给出了几种典型的运动形式的力学和运动学特征.
综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系.力与运动的关系是基础,在此基础上,还要从功和能、冲量和动量的角度,进一步讨论运动规律.。
高一物理必修一第四章牛顿第二定律
牛顿第二定律一、牛顿第二定律1. 定律内容:物体的加速度a 跟物体所受的合外力F成正比,跟物体的质量m 成反比,加速度的方向跟合外力的方向相同.2. 公式:F 合=ma3. 关于牛顿第二定律的理解:3.1 因果性:力是物体产生加速度的原因,加速度是力作用在物体上所产生的一种效果;3.2 瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。
合外力变化时加速度也随之变化。
合外力为零时,加速度也为零;3.3 矢量性:牛顿第二定律公式是矢量式。
公式mF a 只表示加速度与合外力的大小关系.矢量式的含义在于加速度的方向与合外力的方向始终一致;3.4 同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言。
即 F与a 均是对同一个研究对象而言;3.5 相对性:牛顿第二定律只适用于惯性参照系(匀速或静止的参考系);3.6 独立性,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在正交的方向上分别应用牛顿第二定律的分量形式:F x =ma x ,F y =ma y 列方程;3.7 局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子;4. 牛顿第二定律确立了力和运动的关系【例1】下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ).A .由F =ma 可知,物体受到的合外力与物体的质量成正比,与物体的加速度成反比.B .由m =F/a 可知,物体的质量与其受到的合外力成正比,与其运动的加速度成反比.C .由a =F/m 可知,物体的加速度与其受到的合外力成正比,与其质量成反比.D .由m =F/a 可知,物体的质量可以通过测出它的加速度和它所受的合外力而求得.【例2】静止在光滑水平面上的物体,受到一个水平拉力的作用,当力刚开始作用的瞬间,下列说法正确的是 ( )A.物体同时获得速度和加速度B.物体立即获得加速度,但速度仍为零C.物体立即获得速度,但加速度仍为零D.物体的速度和加速度都仍为零【例3】由牛顿第二定律可知,无论多么小的力都可以使物体产生加速度,但用较小的力去推地面上很重的物体时,物体仍静止,这是因为:A 推力小于摩擦力B 物体有加速度,但太小,不易被察觉C 推力小于物体的重力D 物体所受合外力为零2【例4】已知甲物体受到2N 的力作用时,产生的加速度为4m/s 2,乙物体受到3N 的力作用时,产生的加速度为6m/s 2,则甲、乙物体的质量之比m 甲 ,m 乙等于A .1:3B .2:3C .1:1D .3:2二、动力学的两类基本问题1. 已知受力情况求运动情况;2. 已知运动情况求受力情况3. 在这两类问题中,加速度是联系力和运动的桥梁,受力分析是解决问题的关键.【例5】一物体初速度 v 0=5 m/s ,沿着倾角 37°的斜面匀加速向下运动,若物体和斜面间的动摩擦因数为 0.25,求 3 秒末的速度(斜面足够长)( )A .12 m/sB .15 m/sC .17 m/sD .20 m/s【例6】用一水平恒力将质量为 250 kg 的木箱由静止开始沿水平地面推行 50 m ,历时 10s ,若物体受到阻力是物重的 0.1 倍,则外加的推力多大?(g 取 10 m/s2)【例7】水平桌面上质量为1kg 的物体受到2N 的水平拉力,产生1.5m/s 2的加速度。
高一物理下册《牛顿第二定律》知识点
高一物理下册《牛顿第二定律》知识点牛顿第二运动定律全部内容物体的力矩跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
表达式ΣF=ma或F合=ma 第二定律 (1)牛顿第二定律是力的瞬时作用规律。
力和加速度同时产生、同时变化、同时消逝。
(2)F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。
(3)根据力的独立作用原理,用第二定律处理物体在一个平面内运动的问题时,可将物体所受各力共轭正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。
牛顿第二定律的四个性质(1)同体性:F合、m、a对应于同一物体。
(2)矢量性:力和压强都是矢量,物体离心力方向由物体所受合外力的方向决定。
麦克斯韦第二定律数学表达式∑F = ma中,等号一侧不仅表示左右两边数值相等,也表示方向一致,即加速度方向与所受合外力方向相同。
(3)瞬时性:当物体(质量一定)所受外力发生立马变化时,作为由力遭遇决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,关系重力与合外力保持一一对应关系。
牛顿第二定律是一个瞬时对应的规律,表明了强力的瞬间效应。
(4)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将质点保持匀速直线运动或静止状态,这样的坐标系叫惯性参照物。
地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只仅仅在惯性参照系中才成立。
(5)独立性:巨大作用在物体上的各个力,都能各自分立肋毛产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。
适用范围(1)只适用于低速运动的物体(与光速比速度相对较低)。
(2)只适用于经济基本面物体,开普勒第二定律不适牛顿用于微观原子。
(3)参照系应为惯性系。
牛顿第二定律详解
牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。
2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。
(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。
(2) 瞬时性a与F同时产生、同时变化、同时消失。
作用力突变,a的大小方向随着改变,是瞬时的对应关系。
(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。
因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。
(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。
牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。
牛顿第二定律知识点
牛顿第二定律知识点一、牛顿第二定律内容1. 表述- 物体加速度的大小跟作用力成正比,跟物体的质量成反比,且加速度的方向跟作用力的方向相同。
- 用公式表示为F = ma,其中F是合外力(单位为N),m是物体的质量(单位为kg),a是加速度(单位为m/s^2)。
二、对牛顿第二定律的理解1. 因果性- 力是产生加速度的原因,加速度是力作用在物体上的结果。
只要物体所受合外力不为零,物体就具有加速度。
2. 矢量性- 加速度a与合外力F都是矢量,加速度的方向由合外力的方向决定。
公式F = ma是矢量式,在应用时,要选定正方向,将矢量运算转化为代数运算。
3. 瞬时性- 加速度与合外力是瞬时对应关系。
当物体所受合外力发生变化时,加速度随即发生变化;合外力为零时,加速度也为零。
例如,弹簧弹力随形变量变化而变化,弹力变化时,物体的加速度也随之瞬间改变。
4. 同体性- F = ma中F、m、a是对同一物体而言的。
在分析问题时,要明确研究对象,不能张冠李戴。
5. 独立性- 当物体受到多个力作用时,每个力都独立地产生一个加速度,就像其他力不存在一样。
物体的实际加速度等于各个力单独作用时产生加速度的矢量和。
例如,一个物体在水平方向受拉力F_1和摩擦力F_2,那么在水平方向根据牛顿第二定律F = ma,有F_1 - F_2=ma,这里拉力F_1独立产生加速度a_1=(F_1)/(m),摩擦力F_2独立产生加速度a_2 =-(F_2)/(m)(负号表示方向与拉力产生加速度方向相反),物体实际加速度a = a_1 + a_2=(F_1 - F_2)/(m)。
三、牛顿第二定律的应用1. 已知受力情况求运动情况- 步骤:- 确定研究对象。
- 对研究对象进行受力分析,求出合外力F。
- 根据牛顿第二定律F = ma求出加速度a。
- 再根据运动学公式(如v = v_0+at、x=v_0t+(1)/(2)at^2等)求解物体的运动情况(速度、位移、时间等)。
人教版必修1-4.3牛顿第二定律(共28张PPT)
1、根据牛顿第二定律,即使再小的力也 可以产生加速度,那么我们用一个较小的 力来水平推桌子,为什么没有推动呢?这 和牛顿第二定律是不是矛盾?
不矛盾,因为牛顿第二定律中的力是合力.
2、牛顿第一定律是牛顿第二定律的特例吗?
牛顿牛第顿一第定一律定律说明维持物体的速度不需要力, 1改、变定物性定体义的了速力度的才概需念要2力、定。义牛了顿惯第性一的定概律念 定义 3了建、力 立定, 的义了而 ,惯牛如性顿果系第 我的二 们概定 不念律 知4是 道、定在 物性力 体力的 在和定不运义受动的力的基情关系础况上下 牛是顿怎第样二的定运律动状态,要研究物体在力的作用下 是是在怎力么的运定动义的的基,础显上然建是立不的可。能的,所以牛顿第 牛第一二顿二定定第定律律一 律代是定 代替研律 替的究是 的研 ,,力究也也学力即即的学不不出的是是发出牛牛点发顿顿,点第,二第是是定二不不律定能能 的律用用 特的牛牛 例特顿顿。例第。
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 ,表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑 封存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所 决定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不 ,而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。 ,让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能 志,并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有 ,人类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而 意志的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动 幸的灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若 如何,它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一 和艰难的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出 硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。
高考物理 第三章 第二课时牛顿第二定律解析
第二课时牛顿第二定律第一关:基础关展望高考基础知识一、对牛顿第二定律的理解知识讲解说明:①物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性.②F=ma对运动过程中的每一瞬间都成立,即有力作用就有加速度产生.外力停止作用,加速度随即消失,在持续不断的恒定外力作用下,物体具有持续不断的恒定加速度.外力随着时间而改变,加速度就随着时间而改变.③作用力F和加速度a都是矢量,所以牛顿第二定律的表达式F=ma是一个矢量表达式,它反映了加速度的方向始终跟合力的方向相同,而速度的方向与合力的方向无必然联系.活学活用1.如图所示,在光滑的水平桌面上放着质量为3 kg的小车A,在小车上又放着2 kg的物体B.现对物体B施加一水平力F,当F逐渐增加到4 N时,B物体恰好在小车上相对于A滑动.如果将水平推力作用在A上,为了不使B在A上有相对滑动,所施加的最大推力是多少?(设最大静摩擦力等于滑动摩擦力)解析:当作用于B上的推力F小于4 N时,由于静摩擦力的作用,小车A和物体B一起做加速运动,当推力F增加到4 N以后,因最大静摩擦力不足以提供A的加速度,所以B 和A之间将产生相对滑动.设A、B间的最大静摩擦力为f max.当F作用于B时,用整体法求加速度,隔离法求内力f max.即由牛顿第二定律可列出F=(m A+m B)a①f max=m A a②当F作用在小车A上时,则用隔离法求加速度,用整体法求最大推力F max,故由牛顿第二定理得f max=m B a2③F max=(m A+m B)a2④联立四个方程得f max=2.4N F max=6 N答案:6 N二、单位制知识讲解1.定义:基本单位和导出单位一起组成了单位制.2.组成:①基本单位在物理学中,选定几个物理量的单位,就能够利用物理量之间的关系推导出其他物理量的单位,这些被选定的物理量叫做基本量,它们的单位叫做基本单位.以下是国际单位制中的7个基本物理量和相应的国际单位制中的基本单位.其中力学范围内有三个基本单位,分别是米、千克、秒.②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.例如速度\,加速度的单位3.单位制在物理计算中的应用在物理计算中,如果所有已知量都用同一单位制中的单位表示,在计算过程中就不必一一写出各个量的单位,直接在结果中写出所求物理量的单位即可.计算前注意先要把各已知量的单位统一为同一单位制中的单位.在物理计算中,一般都要采用国际单位制.说明:有时由于计算中的疏忽,没有将各物理量的单位统一到同一种单位制时,可以通过单位运算,即考察等式两边单位是否平衡,发现不平衡,说明计算有错误,要予以纠正,这也是对解题结果进行检验的一种方法.活学活用2.一物体在2 N的外力作用下,产生0 cm/s2的加速度,求该物体的质量.下面几种不同的求法,其中单位运算正确的\,简洁而又规范的是()A.m=Fa=210kg=0.2 kgB.m=Fa=22 N0.1 m/s=2022kg\5m/sm/s=20 kgC.m=Fa=20.1=20 kgD.m=Fa=20.1kg=20 kg解析:在进行数据运算的同时,也要把单位带入一起进行运算,每一个数据均要带上单位.也可以将各物理量统一到同一单位制下进行数据运算,这样各物理的单位就不必一一写出,只在数字后面写出单位即可,则既正确\,简洁而又规范的是选项D.答案:D第二关:技法关解读高考解题技法一、力\,加速度、速度的关系技法讲解弄清楚力、加速度、速度的关系,是分析物体运动过程(加速或减速)、建立清晰运动图景的理论基础,也是我们必须掌握分析运动过程的方法,是找出不同过程的转折点或对复杂问题分段分析的基础.1.物体受到的合力与加速度的关系式是F=ma,只要有合力,不管物体速度如何,一定有加速度,只有合力为零时,加速度才为零.物体所受合外力的方向决定了其加速度的方向,即加速度的方向与合外力的方向总是一致的.但是合外力与速度没有直接联系,比如,不能说物体受到的合外力大,速度一定大;合外力小,物体的速度一定小.2.合力与物体速度方向相同时,物体做加速运动,合力与物体的速度方向相反时,物体做减速运动.3.力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因.力产生加速度.物体有加速度,物体的速度就变化,运动状态就改变.合外力大小决定了加速度大小,加速度大小决定了单位时间内速度变化量的大小,加速度与速度无关,加速度也与速度变化量无直接关系.4.区别加速度的定义式和决定式.加速度的定义式为:a=vt∆∆,即加速度定义为速度变化量与所用时间的比值;加速度的决定式为:a=Fm,即加速度决定于物体所受的合外力与物体的质量.典例剖析例如图所示,一轻质弹簧一端固定在墙上的O点,另一端连接一小物体,弹簧处于自然长度时,物体在B点.现用力使小物体m压缩弹簧到A点,然后释放,小物体能运动到C点静止.物体与水平地面间的动摩擦因数恒定.以下说法正确的是()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B到C一直减速D.物体在B点受的合外力为零解析:物体在A点受两个力:向右的弹力F=kx和向左的摩擦力F′,合力为F=kx-F′.物体从A到B的过程,弹力F由最大值减小到零,而摩擦力F′不变,所以在A、B之间有一个位置,弹力与摩擦力相等,合力为零,之后,合力方向由原来的向右改为向左,而速度方向一直向右,故物体从A到B先做加速度减小的加速运动,然后再做加速度增大的减速运动.从B到C的过程,物体受向左的弹力和摩擦力,且弹力越来越大,向左的合力越来越大,故物体从B到C的运动是加速度增大的减速运动,C正确.物体在B点时受摩擦力作用,合外力不为零,D错误.答案:C二、力和加速度矢量关系的运用技法讲解1.由牛顿第二定律F=ma知,合外力的方向和加速度的方向总是相同的,解题时,只要知道其中一个的方向,就等于知道了另一个的方向.2.熟练、灵活地求出合外力,是应用牛顿第二定律解题的基础.(1)若物体受两个互成角度的共点力作用产生加速度,可直接应用平行四边形定则,画出受力图,然后应用三角形的边角关系(或勾股定理)等数学知识求出合力.(2)若物体受多个力的作用,通常采用正交分解法求合力.为了减少矢量的分解,在建立直角坐标系时,有两种方法:①分解力不分解加速度.此时,一般选取加速度方向为x轴,垂直于加速度方向为y轴.因为加速度沿x 轴方向,故合力方向就沿x轴方向,则垂直于加速度方向即y 轴方向上分力的合力为零.可见,通过正交分解,能够使求较为复杂的合力,变成求较为简单的同一直线上力的合力.方程式为:F y=0,F合=F x=ma.②分解加速度不分解力.此方法是以某个力的方向为x轴建立直角坐标系,把加速度分解到x轴和y轴上.这种分解法一般用于物体受到的几个力互相垂直的情况,在这种情况下,分解加速度比分解力可能更方便、更简单.典例剖析例2如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为θ.求人受到的支持力和摩擦力.解析:解法一:以人为研究对象,受力分析如图所示,因摩擦力F f为待求量,且必沿水平方向,设水平向右.为了不分解加速度a,建立图示坐标.并规定正方向.根据牛顿第二定律得:沿x方向:mgsinθ-FNsi nθ-F f cosθ=ma沿y方向:mgcosθ+F f sinθ-F N cosθ=0由以上两式可解得:F N=m(g-asinθ),F f=-macosθF f为负值,说明摩擦力的实际方向与假设相反,为水平向左.解法二:将加速度a沿水平、竖直方向分解,如图所示,a x=acosθ,a y=asinθ.根据牛顿第二定律有:水平方向:F f=max=macosθ竖直方向:mg-F N=may=masinθ由此得人受的摩擦力F f=macosθ,方向水平向左;受的支持力F N=m(g-asinθ),方向竖直向上.三、瞬时加速度的分析方法技法讲解做变加速运动的物体,加速度时刻在变化(大小变化或方向变化或大小、方向都变化),某时刻的加速度叫瞬时加速度.由牛顿第二定律知,加速度是由合外力决定的,即有什么样的合外力就有什么样的加速度与之相对应.当合外力恒定时,加速度也恒定,合外力随时间变化时,加速度也随时间改变,并且瞬时力决定瞬时加速度.可见,确定瞬时加速度的关键是正确确定瞬时作用力,尤其是对瞬时前的受力情况进行正确的分析.另外,要顺利解决此类问题还应该注意下列两种物理模型的建立.1.轻绳或轻线:中学物理中的“绳”和“线”是理想化模型,具有如下几个特性:①轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等.②软:即绳(或线)只能承受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳且背离受力物体的方向.③不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变.2.轻弹簧和橡皮绳:中学物理中的“轻弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:①轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零.由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等.②弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力,不能承受压力.③由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变.但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失.典例剖析例3如图所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止.当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.此类问题应注意两种基本模型的建立.先作出两个物体的受力图,据平衡条件求出绳或弹簧上的弹力,可知T′=mg,T=2mg.剪断细线后再作出两个物体的受力示意图,如图所示,刚剪断时绳中的弹力T立即消失,而弹簧的弹力不变.找出合外力据牛顿第二定律求出瞬时加速度,图中m的加速度为向下的2g,而m2的加速度为零.第三关:训练关笑对高考随堂训练1.在牛顿第二定律F=kma中,有关比例系数k的说法正确的是()A.在任何情况下k都等于B.k 的数值是由质量、加速度和力的大小决定的C.k 的数值是由质量、加速度和力的单位决定的D.在国际单位制中,k 等于 答案:CD2.如图光滑水平面上物块A 和B 以轻弹簧相连接.在水平拉力F 作用下以加速度a 做直线运动,设A 和B 的质量分别为mA 和mB ,当突然撤去外力F 时,A 和B 的加速度分别为()A.0、0B.a 、0C.A AB m a m m +、- A A B m a m m + D.a 、- A Bmm a解析:撤去F 的瞬间,A 的受力无变化,故a A =a,B 受向左弹力产生加速度aB=-BTm =-ABm m a 答案:D3.放在光滑水平面上的物体受三个水平的恒力作用而平衡.如图所示,已知F 2与F 3垂直,且三个力中若撤去F 物体产生2.5 m/s 2的加速度,若撤去F 2物体产生.5 m/s 2的加速度,若撤去F 3物体产生的加速度为()A.1.5m/s 2B.2.0 m/s 2C.2.5 m/s 2D.不能确定解析:本题是共点力作用下物体平衡和动力学相结合的题目,解题的关键是:()正确理解三力作用在物体上时物体平衡的含义:任意两个力的合力都跟第三个力大小相等、方向相反,即F 大小为(2)当撤去任意一个力时,物体受到的合力大小都等于所撤去的力的大小,即F 1=ma ,F 2=ma 2,F 3=ma 3,故a 32=2 m/s 2. 答案:B4.如图所示,质量为m 2的物体放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体,与物体相连接的绳与竖直方向成θ角,则()A. 车厢的加速度为gsin θB. 绳对物体的拉力为1m gcos θC. 底板对物体2的支持力为(m 2-m 1)gD. 物体2所受底板的摩擦力为m 2gtan θ解析: 对m 1受力分析如图(a),由牛顿第二定律知:F 合=m 1gtan θ=m 1a,∴a=gtan θ,A 错,F=m 1g/cos θ,B 正确.对m 2受力分析如图(b),由平衡条件得:F+F N =m 2g,F N =m 2g-F=m 2g – m 1g/cos θ,C 错. 由牛顿第二定律:F f =m 2a=m 2g\5tan θ,D 正确. 答案:BD5. 惯性制导系统已广泛应用于弹道式导弹工程中,这个系统的重要元件之一 是加速度计,加速度计构造原理的示意图如图所示:沿导弹长度方向安装 的固定光滑杆上套一质量为m的滑块,滑块两侧分别与劲度系数均为k的弹簧相连;两弹簧的另一端与固定壁相连.滑块原来静止.弹簧处于自然长度.滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导.设某段时间内导弹沿水平方向运动,指针向左偏离O点的距离为s,则这段时间内导弹的加速度()A.方向向左,大小为 ks/mB.方向向右,大小为 ks/mC.方向向左,大小为2 ks/mD.方向向右,大小为2 ks/m解析:滑块随导弹一起做加速运动,向左偏离O点距离为s,使左侧弹簧被压缩,右侧弹簧被拉长,则滑块所受合力为2 ks,方向向右.由牛顿第二定律得2 ks=ma,滑块的加速度大小为:a=2 ks/m.答案:D课时作业十二牛顿第二定律1.在某地欢乐谷主题公园内有许多惊险刺激的游乐项目,双塔太空梭“天地双雄”就是其中之一(如图),双塔并立,一个塔的座椅由上而下做极速竖直降落运动,另一个塔的座椅由下而上做高速竖直弹射运动.有一位质量为50 kg的游客坐在高速弹射塔内的座椅上,若弹射塔的座椅在2 s内由静止开始匀加速冲到56 m高处,则在此过程中,游客对座椅的压力大小约为(g取0 m/s2)()A.500 NB.400 NC.900 ND.750 N解析:由运动学公式x=12at2得:a=22xt=22562m/s2=28 m/s2,再由牛顿第二定律可得:F-mg=ma,所以F=ma+mg=50×(28+0) N=900 N,所以选C.答案:C2.小孩从滑梯上滑下的运动 可看做匀加速直线运动,质量为M 的小孩单独从滑梯上滑下,加速度为a ;该小孩抱着一只质量为m 的小狗再从滑梯上滑下(小狗不与滑梯接触),加速度为a 2,则a 1和a 2的关系为()A.a 1=M ma 2 B.a 1=m Ma 2 C.a=M M m+ a 2 D.a 1=a 2解析:设滑梯倾角为θ,小孩与滑梯之间的动摩擦因数为μ,由牛顿第二定律得mgsin θ-μmgcos θ=ma ,即下滑的加速度为a=gsin θ-υ gcos θ,则可知加速度a 与质量m 无关,所以选项D 正确.答案:D3.某建筑工地的工人为了运送瓦片,用两根截面为正方形的木料AB 、CD ,支在水平地面上形成斜面,AB 与CD 平行且与地面有相同的倾角α,如图所示.从斜面上端将几块瓦片叠放在一起无初速释放,让瓦片沿木料下滑到地面(瓦片截面可视为一段圆弧),现发现因滑到地面时速度过大而造成瓦片破裂.为了不使瓦片破裂,在不改变斜面倾角α的前提下,可以采取的措施是()A.适当减少每次运送瓦片的块数B.适应增加每次运送瓦片的块数C.把两根木料往中间靠拢一些D.把两根木料往两侧分开一些解析:①先画出装置的正视图,如图甲所示,F 为平行于AB 、CD 方向的分力,F 2为垂直于AB 、CD 方向的分力.②再画出过F 2且垂直于瓦面的平面图(注:此平面不是竖直平面),如图乙所示,将F 2沿图示方向分解,两分力 N 1= N 2=2F 2cos θ两木料对瓦片的滑动摩擦力大小相等,有f 1=f 2=mgcos 2cos μαθ方向相同,平行于AB 、CD 向上.瓦片沿BA 、DC 方向加速下滑,由牛顿第二定律得mgsinα-f1-f2=ma,mgsinα-mgcoscosμαθ=ma.则下滑加速度a=gsinα-gcoscosμαθ.若要减小落地速度,根据题意可减小下滑加速度,上式表明a与质量无关,故A、B错;在不改变斜面倾角α的前提下,可把两根木料往两侧分开一些,以增加θ角度,使a减小,故D对.答案:D4.如图甲所示,在粗糙的水平面上,质量分别为m和M(m:MP:=: 2)的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数相同.当用水平力F作用于B上且两物块共同向右加速运动时,弹簧的伸长量为x1;当用同样大小的力F竖直加速提升两物块时(如图乙所示),弹簧的伸长量为x2,则x1:x2等于()A.1:1B.1:2C.2:1D.2:3解析:当用水平力拉物体B在水平面上加速运动时,对AB整体由牛顿第二定律得F-μ(m+M)g=(m+M)a1,对物体A由牛顿第二定律得kx1-μmg=ma1,当用竖直向上的力拉物体B加速向上运动时,对AB整体由牛顿第二定律得F-(m+M)g=(m+M)a2,对物体A由牛顿第二定律得k 1x2-mg=ma2,联立解得x1:x2=1:1A正确.答案:A5.如图所示,有两个物体质量分别为m1、m2,m1原来静止,m2以速度v0向右运动,如果对它们施加完全相同的作用力F,可满足它们的速度在某一时刻能够相同的条件是()A.F 方向向右,m 1<m 2B.F 方向向右,m 1>m 2C.F 方向任意,m 1=m 2D.F 方向向左,m 1>m 2解析:当F 方向向右时,均加速运动,满足条件必须有a 1>a 2,即m <m 2,A 对B 错;当F 方向向左时,要满足条件必须有a 1<a 2,即m 1>m 2,D 对C 错.答案:AD6.如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面做匀加速运动,这时弹簧长度为L ,若将A 、B 置于粗糙水平面上,且A 、B 与粗糙水平面之间的动摩擦因数相同,用相同的水平恒力F 拉A ,使A 、B 一起做匀加速运动,此时弹簧的长度为L 2,则()A.L 2=L 1B.L 2>L 1C.L 2<L 1D.由于A 、B 的质量关系未知,故无法确定L 1、L 2的大小关系解析:设A 质量m 1,B 质量m 2,第一种情况:加速度a 1=12F m m +,弹簧弹力 F 1=212m F m m +,第二种情况:加速度a 2=12F m m + -μg ,弹簧弹力F 2=m 2(12F m m +-μg)+μm 2g=212m Fm m +,根据胡克定律L=F k 得:L 1=L 2,选A. 答案:A7.如图所示,一根轻质弹簧竖直立在水平地面上,下端固定.一小球从高处自由落下,落到弹簧上端,将弹簧压缩至最低点.小球从开始压缩弹簧至最低点过程中,小球的加速度和速度的变化情况是()A.加速度先变大后变小,速度先变大后变小B.加速度先变大后变小,速度先变小后变大C.加速度先变小后变大,速度先变大后变小D.加速度先变小后变大,速度先变小后变大解析:小球在压缩弹簧的过程中,弹簧对小球的弹力逐渐变大,由牛顿第二定律可知:小球先加速后减速,其加速度先变小后变大,速度先变大后变小,故C 正确.答案:C8.一质量为M 的探空气球在匀速下降,若气球所受浮力F 始终保持不变,气球在运动过程中所受阻力仅与速率有关,重力加速度为g.现欲使该气球以同样速率匀速上升,则需从气球吊篮中减少的质量为()A.2(M-F g) B.M-2F gC.2M-F gD.0解析:对探空气球匀速下降和匀速上升的两个过程进行受力分析如图所示.列出平衡方程式F+f=MgF=f+xg ,联立解得x=2F g -M ,所以Δm=M-x=2(M-F g).注意题目要求的是减少的质量是多少.答案:A9.如图所示,将一根绳子跨过定滑轮,一质量50 kg 的人将绳的一端系在身上,另一端握在手中,使他自己以2 m/s 2的加速度加速下降.若不计绳的质量及摩擦,则人拉绳子的力为 _______N.(g=0 m/s 2)解析:设人拉绳子的力大小为T ,根据牛顿第三定律,则绳子向上拉人的力大小也为T. 对人进行受力分析,应用牛顿第二定律,得Mg - 2T=ma ,解得T=mg ma 2 =200 N 答案:200 N10.质量为0 kg 的物体A 原来静止在水平面上,当受到水平拉力F 作用后,开始沿直线做匀加速运动.设物体在时刻t 的位移为x ,且x=2t 2,求:(1)物体所受的合外力;(2)第4秒末物体的瞬时速度;(3)若第4秒末撤去力F ,物体再经过10 s 停止运动,物体与水平面间的动摩擦因数μ.解析:(1)由x=12at 2,x=2t 2可推出a=4 m/s 2.F 合=ma=10×4=40 N. (2)v t =at=4×4=6 m/s.(3)撤去F 后,物体仅在摩擦力作用下做匀减速运动,其加速度大小为a ′=0v t=1610=1.6 m/s 2. 11.如图所示,质量为80 kg 的物体放在安装在小车上的水平磅秤上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600 N ,则斜面的倾角θ为多少?物体对磅秤的静摩擦力为多少?(g 取10 m/s 2)解析:取小车、物块、磅秤这个整体为研究对象,受总重力M 、斜面的支持力F N ,由牛顿第二定律得,Mgsin θ=Ma ,所以a=gsin θ,取物体为研究对象,受力情况如图所示:将加速度a 沿水平方向和竖直方向分解,则有:F 静=macos θ=mgsin θcos θ①mg-F N =masin θ=mgsin 2θ②由式②得:F N =mg-mgsin 2θ=mgcos 2θ,则cos θ代入数据得,θ=30°由式①得,F 静=mgsin θcos θ代入数据得F 静=346 N.根据牛顿第三定律,物体对磅秤的静摩擦力为346 N.答案:30°346 N2.如图所示,一辆汽车A 拉着装有集装箱的拖车B ,以速度v 1=30 m/s 进入向下倾斜的直车道,车道每00 m 下降2 m.为使汽车速度在s=200 m 的距离内减到v 2=0 m/s ,驾驶员必须刹车.假定刹车时地面的摩擦阻力是恒力,且该力的70%作用于拖车B ,30%作用于汽车A.已知A 的质量m 1=2000 kg,B 的质量m 2=6000 kg.求汽车与拖车的连接处沿运动方向的相互作用力,取重力加速度g=10 m/s 2.解析:汽车沿倾斜车道做匀减速运动,用a 表示加速度的大小,有v 22-v 21=-2as ①用F 表示刹车时的阻力,根据牛顿第二定律有F-(m 1+m 2)gsin α=(m 1+m 2)a ②式中sin α=2100=2×10-2③ 设刹车过程中地面作用于汽车的阻力为f ,根据题意f=30100F ④方向与汽车前进方向相反:用f N表示拖车作用于汽车的力,设其方向与汽车前进方向相同.以汽车为研究对象,由牛顿第二定律有f-f N-m1gsinα=m1a⑤由②④⑤式得f N=3 1000(m1+m2)(a+gsinα)-m1(a+gsinα)⑥由①③⑥式,代入有关数据得f N=880 N⑦答案:880 N。
高中物理必修一 牛顿第二定律 (含练习解析)
牛顿第二定律【学习目标】1.深刻理解牛顿第二定律,把握Fam=的含义.2.清楚力的单位“牛顿”是怎样确定的.3.灵活运用F=ma解题.【要点梳理】要点一、牛顿第二定律(1)内容:物体的加速度跟作用力成正比,跟物体的质量成反比.(2)公式:Fam∝或者F ma∝,写成等式就是F=kma.(3)力的单位——牛顿的含义.①在国际单位制中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 m/s2加速度的力,叫做1N.即1N=1kg·m/s2.②比例系数k的含义.根据F=kma知k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小,k的大小由F、m、a三者的单位共同决定,三者取不同的单位,k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位.要点二、对牛顿第二定律的理解(1)同一性【例】质量为m的物体置于光滑水平面上,同时受到水平力F的作用,如图所示,试讨论:①物体此时受哪些力的作用?②每一个力是否都产生加速度?③物体的实际运动情况如何?④物体为什么会呈现这种运动状态?【解析】①物体此时受三个力作用,分别是重力、支持力、水平力F.②由“力是产生加速度的原因”知,每一个力都应产生加速度.③物体的实际运动是沿力F的方向以a=F/m加速运动.④因为重力和支持力是一对平衡力,其作用效果相互抵消,此时作用于物体的合力相当于F.从上面的分析可知,物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性.因此,牛顿第二定律F=ma中,F为物体受到的合外力,加速度的方向与合外力方向相同.(2)瞬时性前面问题中再思考这样几个问题:①物体受到拉力F作用前做什么运动?②物体受到拉力F作用后做什么运动?③撤去拉力F后物体做什么运动?分析:物体在受到拉力F前保持静止.当物体受到拉力F后,原来的运动状态被改变.并以a=F/m加速运动.撤去拉力F后,物体所受合力为零,所以保持原来(加速时)的运动状态,并以此时的速度做匀速直线运动.从以上分析知,物体运动的加速度随合力的变化而变化,存在着瞬时对应的关系.F =ma 对运动过程中的每一瞬间成立,某一时刻的加速度大小总跟那一时刻的合外力大小成正比,即有力的作用就有加速度产生.外力停止作用,加速度随即消失,在持续不断的恒定外力作用下,物体具有持续不断的恒定加速度.外力随着时间而改变,加速度就随着时间而改变.(3)矢量性从前面问题中,我们也得知加速度的方向与物体所受合外力的方向始终相同,合外力的方向即为加速度的方向.作用力F 和加速度a 都是矢量,所以牛顿第二定律的表达式F =ma 是一个矢量表达式,它反映了加速度的方向始终跟合外力的方向相同,而速度的方向与合外力的方向无必然联系.(4)独立性——力的独立作用原理①什么是力的独立作用原理,如何理解它的含义?物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就像其他力不存在一样,这个性质叫做力的独立作用原理.②对力的独立作用原理的认识a .作用在物体上的一个力,总是独立地使物体产生一个加速度,与物体是否受到其他力的作用无关.如落体运动和抛体运动中,不论物体是否受到空气阻力,重力产生的加速度总是g .b .作用在物体上的一个力产生的加速度,与物体所受到的其他力是同时作用还是先后作用无关.例如,跳伞运动员开伞前,只受重力作用(忽略空气阻力),开伞后既受重力作用又受阻力作用,但重力产生的加速度总是g .c .物体在某一方向受到一个力,就会在这个方向上产生加速度.这一加速度不仅与其他方向的受力情况无关,还和物体的初始运动状态无关.例如,在抛体运动中,不论物体的初速度方向如何,重力使物体产生的加速度总是g ,方向总是竖直向下的.d .如果物体受到两个互成角度的力F 1和F 2的作用,那么F 1只使物体产生沿F 1方向的加速度11F a m =,F 2只使物体产生沿F 2方向的加速度22F a m=. 在以后的学习过程中,我们一般是先求出物体所受到的合外力,然后再求出物体实际运动的合加速度.(5)牛顿第一定律是牛顿第二定律的特例吗?牛顿第一定律说明维持物体的速度不需要力,改变物体的速度才需要力.牛顿第一定律定义了力,而牛顿第二定律是在力的定义的基础上建立的,如果我们不知道物体在不受外力情况下处于怎样的运动状态,要研究物体在力的作用下将怎样运动,显然是不可能的,所以牛顿第一定律是研究力学的出发点,是不能用牛顿第二定律代替的,也不是牛顿第二定律的特例.要点三、利用牛顿第二定律解题的一般方法和步骤(1)明确研究对象.(2)进行受力分析和运动状态分析,画出示意图.(3)求出合力F 合.(4)由F ma =合列式求解.用牛顿第二定律解题,就要对物体进行正确的受力分析,求合力.物体的加速度既和物体的受力相联系,又和物体的运动情况相联系,加速度是联系力和运动的纽带.故用牛顿第二定律解题,离不开对物体的受力情况和运动情况的分析.【说明】①在选取研究对象时,有时整体分析、有时隔离分析,这要根据实际情况灵活选取. ②求出合力F 合时,要灵活选用力的合成或正交分解等手段处理.一般受两个力时,用合成的方法求合力,当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上有:x F ma =(沿加速度方向).0y F =(垂直于加速度方向).特殊情况下分解加速度比分解力更简单.应用步骤一般为:①确定研究对象;②分析研究对象的受力情况并画出受力图;③建立直角坐标系,把力或加速度分解在x 轴或y 轴上;④分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程;⑤统一单位,计算数值.【注意】在建立直角坐标系时,不管选取哪个方向为x 轴正方向,所得的最后结果都应是一样的,在选取坐标轴时,应以解题方便为原则来选取.【典型例题】类型一、对牛顿第二定律的理解例1、物体在外力作用下做变速直线运动时( )A .当合外力增大时,加速度增大B .当合外力减小时,物体的速度也减小C .当合外力减小时,物体的速度方向与外力方向相反D .当合外力不变时,物体的速度也一定不变【思路点拨】对同一物体,合外力的大小决定了加速度大小,但是,加速度与速度没有必然的联系。
高一物理牛顿第二定律及应用知识点
高一物理牛顿第二定律及应用知识点高一物理牛顿第二定律及应用知识点学习目标:1.记住和理解牛顿第二定律的内容。
2.掌握用牛顿第二定律解题的一般方法和基本物理模型,并会熟练应用。
3.强化规范化解题。
考点说明:考点测试内容测试要求2007200820092010201120牛顿第一定律A21探究、实验:加速度与力、质量的关系a22牛顿第二定律(及其应用)C23牛顿第三定律A24力学单位制A说明:1.不要求求解加速度大小不同的连接体问题,不要求求解三个及以上连接体问题。
学习过程:一.基本问题例题1:(2008年考题26)如图所示,一个质量为2kg的物体静止在光滑水平面上,现沿水平方向对物体施加10N的拉力,g取10m/s2,求:(1)物体运动时加速度的大小;(2)物体运动3s时速度的大小;(3)物体从开始运动到位移为10m时经历的时间。
知识点:⑴受力分析图⑵牛顿第二定律:F合=ma⑶理解:①有力就有加速度(力和加速度是瞬时对应的关系)。
②加速度的大小与合外力成正比,与质量成反比。
③加速度的方向与合外力的方向相同。
⑷运动学公式:例题2:(2007年考题26)在平直的高速公路上,一辆汽车正以32m/s的速度行驶。
因前方出现事故,司机立即刹车,直到汽车停下。
已知汽车的质量为1.5103kg,刹车时汽车所受的阻力为1.2104N,求:(1)刹车时汽车的加速度的大小;(2)从开始刹车到最终停下,汽车运动的时间;(3)从开始刹车到最终停下,汽车前进的距离。
诊断训练:1.下面说法中正确的是( )A.力是物体产生加速度的原因B.物体运动状态发生变化,不一定需要力的作用C.物体运动速度的方向与它受到的合外力的方向总是一致的D.物体受外力恒定,它的速度也恒定2.物体在合外力F作用下,产生加速度a,下面说法中正确的是( )A.在匀减速直线运动中,a与F反向B.在匀加速直线运动中,a与F反向C.不论在什么运动中,a与F的方向总是一致的D.以上说法都不对3.物体在与其初速度始终共线的`合外力F的作用下运动。
高一物理《牛顿第二定律》知识点讲解
高一物理《牛顿第二定律》知识点讲解ma2.例题:一辆质量为800kg的轿车在水平路面上行驶,发动机输出的动力为6000N,空气阻力和轮胎与路面的摩擦力合力为4000N,求车的加速度和行驶的加速度。
解析:选取研究对象为轿车,分析受力情况,发动机输出的动力为作用在车上的力,空气阻力和摩擦力为阻力,作用在车上的力和阻力为合外力。
建立直角坐标系,选择水平方向为x轴,竖直方向为y轴,根据力的平衡关系,将合外力分解为x轴方向和y轴方向的分力,得到Fx=6000N-4000N=2000N,Fy=0.根据牛顿第二定律F=ma,得到a=Fx/m=2000N/800kg=2.5m/s²。
由于是水平运动,行驶的加速度与车的加速度相同,即为2.5m/s²。
3.注意事项:在解题时,需要注意选取适当的参考系和坐标系,正确分解合外力,应用牛顿第二定律求解加速度,最后再根据题目所求的量得出答案。
同时,需要注意牛顿第二定律的适用范围和局限性,不能将其应用于微观、高速运动情况。
物理解题的步骤:1)审题:明确已知和待求,注意文中隐含的条件,理解物理现象和过程。
2)选取研究对象:可以是单个物体或多个物体组成的系统,分析其受力、运动、做功和能量转化情况,并画出草图。
3)选择适当的物理规律,如牛二定律、运动学公式、动量定理、动量守恒定律、动能定理和机械能守恒定律。
4)在运用规律前,设出题中没有的物理量,建立坐标系,规定正方向等。
5)确定所选规律运动用何种形式建立方程,有时要运用到几何关系式。
6)确定不同状态、过程下所选的规律,及它们之间的联系,统一写出方程,并给予序号标明。
在求解过程中,需要注意解题过程和最后结果的检验,必要时对结果进行讨论。
通过以上步骤,可以将物理问题转化为数学问题,从而求解出答案。
牛顿第二定律知识点
牛顿第二定律知识点牛顿第二定律是经典力学中的一个重要定律,它描述了物体受力作用下的加速度与力的关系。
牛顿第二定律的数学表达式为F=ma,其中F代表力,m代表物体的质量,a代表加速度。
本文将介绍牛顿第二定律的基本概念、数学表达式及其应用等知识点。
1. 牛顿第二定律的基本概念牛顿第二定律是指,当一个物体受到外力作用时,它的加速度与所受力成正比。
即物体受到的力越大,加速度也越大;质量越大,加速度越小。
而且,如果施加力的方向与物体的运动方向一致,则物体的速度将增加,如果施加力的方向与物体的运动方向相反,则物体的速度将减小。
2. 牛顿第二定律的数学表达式牛顿第二定律可以用一个简洁的数学表达式来表示,即F=ma。
这个表达式说明了力与加速度之间的关系,其中F代表力,m代表物体的质量,a代表物体的加速度。
根据这个式子可以推导出,同样的力作用在质量小的物体上,会导致更大的加速度;而同样的力作用在质量大的物体上,会导致更小的加速度。
3. 牛顿第二定律的应用牛顿第二定律在物理学中有广泛的应用,并且可以解释和预测物体的运动情况。
下面列举几个应用实例:3.1 加速度的计算通过牛顿第二定律,我们可以计算物体所受的力和加速度之间的关系。
如果已知物体的质量和受力的大小,就可以根据F=ma计算出物体的加速度。
这个公式在力学中经常被使用,用来研究物体在不同力的作用下的运动情况。
3.2 弹簧振子的运动利用牛顿第二定律,我们可以研究弹簧振子的运动情况。
当一个弹簧振子受到外力作用时,可以通过牛顿第二定律推导出它的加速度,并进一步得到振子的运动方程。
这个应用实例在力学和振动学中具有重要的意义,用来描述弹簧振子的运动规律。
3.3 车辆的运动牛顿第二定律也可以应用在车辆的运动中,特别是在车辆行驶中受到阻力的情况下。
根据牛顿第二定律,我们可以计算车辆所受到的阻力、加速度和力之间的关系。
这个应用实例在交通工程中被广泛应用,用来分析车辆行驶过程中的加速度、速度和能耗等变化情况。
高一物理牛顿第二定律的知识点
2、理解:
①瞬时性:力和加速度同时产生、同时变化、同时消失.
②矢量性:加速度的`方向与合外力的方向相同。
③同体性:合外力、质量和加速度是针对同一物体(同一研究对象)
④同一性:合外力、质量和加速度的单位统一用SI制主单位⑤相对性:加速度是相对于惯性参照系的。
当考察物体的运动线度可以和该物体的德布罗意波相比拟时由于粒子运动不确定性关系式即无法同时准确测定粒子运动的方向与速度物体的动量和位置已经是不能同时准确获知的量了因而牛顿动力学方程缺少准确的初始条件无法求解
高一物理牛顿第二定律的知识点
1、内容:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向
高一物理(人教版)必修第一册精品讲义—牛顿第二定律
高一物理(人教版)必修第一册精品讲义—牛顿第二定律课程标准课标解读1.能准确表述牛顿第二定律,并理解牛顿第二定律的概念及含义。
2.知道国际单位制中力的单位是怎样定义的。
3.能运用牛顿第二定律解释生产、生活中的有关现象,解决有关问题。
4.初步体会牛顿第二定律在认识自然过程中的有效性和价值。
1、通过分析探究实验的数据,能够得出牛顿第二定律的数学表达式,并准确表达牛顿第二定律的内容,培养学生分析数据、从数据获取规律的能力。
2、能根据1N的定义,理解牛顿第二定律的数学表达式是如何从F=kma变成F=ma的,体会单位的产生过程。
3、能够从合力与加速度的同时性、矢量性等方面理解牛顿第二定律,理解牛顿第二定律是连接运动与力之间关系的桥梁。
4、会运用牛顿第二定律分析和处理实际生活中的简单问题,体会物理的实用价值,培养学生关注生活、关注实际的态度。
知识点01牛顿第二定律的表达式1、内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。
加速度的方向跟作用力的方向相同。
2、表达式为F=kma。
知识点02力的单位由1N=1m/s2可得F=ma【即学即练1】竖直向上抛出一物块,物块在运动过程中受到的阻力大小与速度大小成正比,则物块从抛出到落回抛出点的过程中,加速度随时间变化的关系图像正确的是(设竖直向下为正方向)()解析:选C 物块在上升过程中加速度大小为a =mg +kv m,因此在上升过程中,速度不断减小,加速度不断减小,速度减小得越来越慢,加速度减小得越来越慢,到最高点加速度大小等于g 。
在下降的过程中加速度a =mg -kv m,随着速度增大,加速度越来越小,速度增大得越来越慢,加速度减小得越来越慢,加速度方向始终向下,因此C 正确。
知识点03对牛顿第二定律的理解1.牛顿第二定律的五个特性2.合力、加速度、速度之间的决定关系(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度。
(2)a =Δv Δt 是加速度的定义式,a 与Δv 、Δt 无必然联系;a =F m是加速度的决定式,a ∝F ,a ∝1m。
高一物理 牛二定律1
教学过程一、定律导出(1)由试验可得:ma F a 1,∝∝可得出加速度跟作用力成正比,跟物体的质量成反比,即牛顿第二定律的基本关系。
写成数学(2)上式可写为等式F=kma ,式中k 为比例常数。
如果公式中的物理量选择合适的单位,就可以使k=1,则公式更为简单。
在国际单位制中,力的单位是牛顿。
牛顿这个单位就是根据牛顿第二定律来定义的:使质量是1kg 的物体产生1m/s 2的加速度的力为1N ,即1N=1kg ·m/s 2。
可见,如果都用国际单位制中的单位,就可以使k=1,那么公式则简化为F=ma ,这就是牛顿第二定律的数学公式。
(3)当物体受到几个力的作用时,牛顿第二定律也是正确的,不过这时F 代表的是物体所受外力的合力。
牛顿第二定律更一般的表述是:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
数学公式是:F 合=ma 。
二、定律的理解牛顿第二定律是由物体在恒力作用下做匀加速直线运动的情形下导出的,但由力的独立作用原理可推广到几个力作用的情况,以及应用于变力作用的某一瞬时。
还应注意到定律表述的最后一句话,即加速度与合外力的方向关系,就是说,定律具有矢量性、瞬时性和独立性,所以掌握牛顿第二定律还要注意以下几点:(1)定律中各物理量的意义及关系F 合是物体(研究对象)所受的合外力,m 是研究对象的质量,如果研究对象是几个物体,则m 为几个物体的质量和。
a 为研究对象在合力F 合作用下产生的加速度;a 与F 合的方向一致。
(2)定律的物理意义从定律可看到:一物体所受合外力恒定时,加速度也恒定不变,物体做匀变速直线运动;合外力随时间改变时,加速度也随时间改变;合外力为零时,加速度也为零,物体就处于静止或匀速直线运动状态。
F y F F N 牛顿第二定律以简单的数学形式表明了运动和力的关系。
三、巩固练习(1)从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度。
高一物理牛顿第二定律及其实验探究
牛顿第二定律及其实验探究【知识点与理论、规律、方法回顾】1.定律的表述:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同。
2.表达式:F=ma(式中F为物体所受的合外力)3.对定律的理解:①矢量性:牛顿第二定律F = ma是矢量式,加速度的方向与物体所受合外力的方向相同.②瞬时性:牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果--产生加速度.物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的.当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失.③同一性:牛顿第二定律公式中的三个物理量必须是针对同一物体而言的;物体受力运动时必然只有一种运动情形,其运动状态只能由物体所受的合力决定,而不能是其中的一个力或几个力.④独立性:当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果.那个方向的力就产生那个方向的加速度.⑤同时性:牛顿第二定律中F、a只有因果关系而没有先后之分,F发生变化时a同时变化,包括大小和方向.⑥局限性:牛顿第二定律只适用于惯性参考系;只适用于宏观物体的低速运动,而不适用微观粒子和高速运动.4.牛顿第二定律确立了力和运动的定量关系:联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
5.牛顿第二定律应用的一般思路①审题、明确题意,清楚物理过程;②选择研究对象,可以是一个物体,也可以是几个物体组成的物体组;③运用隔离法对研究对象进行受力分析,画出受力的示意图;④建立坐标系,一般情况下可选择物体的初速度方向或加速度方向为正方向;⑤根据牛顿定律、运动学公式、题目给定的条件列方程;⑥解方程,对结果进行分析、检验或讨论.典例剖析与针对训练1.(单选)关于运动和力的关系,对于质量一定的物体,下列说法中正确的是( ) A.物体运动速度越大,它所受的合外力一定越大B.物体某时刻的速度为零,它此时所受的合外力一定为零C.物体所受合外力越大,它的速度变化一定越大D.物体所受合外力越大,它的速度变化一定越快.2.(多选)关于牛顿第二定律F∝ma和变形公式a∝Fm,下列说法中正确的是( ) A.物体的加速度与物体受到的任何一个力成正比,与物体的质量成反比B.物体的加速度与物体受到的合力成正比,与物体的质量成反比.C.物体的质量与物体受到的合力成正比,与物体的加速度成反比D.物体的质量与物体受到的合力及物体的加速度无关.3.(多选)在牛顿第二定律的数学表达式F =kma中,有关比例系数k的说法,正确的是( )A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定. C.在国际单位制中,k=1.D.在任何情况下k都等于14.(多选)力F1单独作用于某物体时产生的加速度大小为3m/s2;力F2单独作用于该物体时产生的加速度大小为4m/s2,则两力同时作用于该物体时产生的加速度大小可能是( )A.1m/s2. B.4m/s2. C.5m/s2. D.8 m/s25.(单选)搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a2,则( )A .a l =a 2B .a 1<a 2<2a lC .a 2=2a 1D .a 2>2a l . 6.(单选)同样的力作用在质量为m 1的物体上时,产生的加速度是a 1;作用在质量是m 2的物体上时,产生的加速度是a 2。
高中物理专题牛顿第二定律的理解要点瞬时性
例 2. 如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别 用销钉 M、N 固定于杆上,小球处于静止状态,设拔去销钉 M 瞬间,小球加速度的大小为 12m/s2。若 不拔去销钉 M 而拔去销钉 N 瞬间,小球的加速度可能是( )
A. 22m/s2,竖直向上
B. 22m/s2,竖直向下
牛顿第二定律的理解要点——瞬时性
考点分析
瞬时性:F=ma 是对运动过程中每一瞬间成立的,某一时刻的加速度的大小总跟那一时刻的合外力 大小成正比,即有力的作用就有加速度产生,外力停止作用,加速度随即消失,在恒定外力的作用 下物体具有恒定加速度。外力随着时间而改变,加速度也随着时间改变。
两个重要模型: 1.钢性绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹 力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此 模型处理。 2.弹簧(或橡皮绳):此种物体的特点是受拉力或压力要发生明显的形变,形变量大,形变恢复需要 较长时间,当弹簧两端均与物体相连时,因物体的位移不能发生突变,所以弹簧的形变不能发生突 变,即弹力不能发生突变;若弹簧某端与物体突然断开连接,则轻弹簧的弹力可以突变。
B.A 的加速度等于 g
乙
C.B 的加速度为零
D.B 的加速度为 g
5:如图所示,两个质量分别为 m1=2 kg、m2=3 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接. 两个大小分别为 F1=30 N、F2=20 N 的水平拉力分别作用在 m1、m2 上,则( ) A.弹簧秤的示数是 10 N B.弹簧秤的示数是 26 N C.在突然撤去 F2 的瞬间,弹簧秤的示数不变 D.在突然撤去 F1 的瞬间,m1 的加速度不变
高一物理第三节 牛顿第二定律人教版知识精讲
高一物理第三节 牛顿第二定律人教版【同步教育信息】一. 本周教学内容: 第三节 牛顿第二定律二. 知识要点:理解加速度与力的关系,知道得出这种关系的实验,理解加速度与质量的关系,知道得出这种关系的实验,知道国际单位制中力的单位是怎样定义的。
理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义。
会用牛顿第二定律公式进行计算。
三. 学习中注意点:1. 通过演示实验定量研究加速度a 与力F 及质量m 的关系: (1)研究方法:① 控制变量法,是研究多个物理量之间关系的一种常用方法,即在多因素的实验中,可先控制一些量不变,依次研究某一因素的影响,因加速度与力、质量都有关,所以采用控制变量法,先固定一个量如质量,使力变化,测加速度与力之间的关系,再固定力不变测加速度与质量的关系。
② 对每个实验是用比较物体的位移大小来比较它们的加速度a 的:力和质量可以直接测量出来,而加速度大小不能直接测量出来,通过两小车位移S 来比较它们加速度大小,两车t 相同,S a ∝,即2121S S a a =。
(2)实验条件,小车放在光滑的水平板上,细绳对小车施力方向水平,定滑轮光滑,砝码跟小车相比质量较小(10%以下),这时小车所受合力大小就是细绳对小车的拉力等于砝码盘及砝码重力之和。
(3)研究质量一定的条件下,加速度与力的关系:取两个质量相等的小车,用天平测出质量,用弹簧秤测出砝码及盘的重力(和),另一车上加不同的砝码,同时释放同时制动,用刻度尺量出两车位移(见表一) (4)研究力一定的情况下,加速度跟质量的关系:仍用前面的装置取相同的砝码增加一个小车的质量。
同时从静止释放。
测出相同时间内两车位移(见表二)(5)归纳总结:① 由表一得:122121==S S a a 1221=F F ∴2121a a F F = ② 由表二得:12212121211221m m a a m m S S a a ==== ③ 由2121F F a a =,得k a F a F 12211== 11kF a = 22kF a = 即kF a =(1)由1221m m a a = 11/m k a '= 22/m k a '= 即m k a '=(2)综合(1)和(2)式得:mFk a =(3)ma kF 1= 取国际单位制,1=k ma F =上式即为牛顿第二定律的表达式。
牛顿第二定律(解析版)
牛顿第二定律1.解题步骤:(1)确定研究对象,进行受力分析,画受力图。
(2)建立XOY 坐标系,将各个力进行正交分解。
(3)根据牛顿第二定律和运动学公式列方程。
(4)统一单位,求解方程,对结果进行讨论。
力 加速度 运动∑F=ma a =t V V t 0- 2022t tV s a -= s V V a t 2202-= 2Tsa ∆=2.牛顿第二定律要点(1)牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
(2)牛顿第二定律是实验定律,实验采用“控制变量法”进行研究。
(3)对牛顿第二定律的理解①矢量性:牛顿第二定律是一个矢量方程,加速度与合外力方向一致.②瞬时性:力是产生加速度的原因,加速度与力同时存在、同时变化、同时消失.③独立性:当物体受几个力的作用时,每一个力分别产生的加速度只与此力有关,与其它力无关,这些加速度的矢量和即物体运动的加速度. ④同体性:公式中,质量、加速度和合外力均应对应同一个物体(系统).1.超重和失重:超重:加速度方向向上(加速向上或减速向下运动) 失重:加速度方向向下(加速向下或减速向上运动) 2.超重、失重和完全失重的比较maF =合超重现象失重现象完全失重现象概念物体对支持物的压力(或对悬挂物的拉力)□05大于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□06小于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□07等于零的现象产生条件物体的加速度方向□08竖直向上物体的加速度方向□09竖直向下物体的加速度方向□10竖直向下,大小□11a=g 原理方程F-mg=maF=m(g+a)mg-F=maF=m(g-a)mg-F=maa=gF=0运动状态□12加速上升或□13减速下降□14加速下降或□15减速上升以a=g□16加速下降或□17减速上升[典例1]如图A所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度?若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图B所示,其他条件不变,求求剪断轻弹簧瞬时物体的加速度?【解析】设l1线上拉力为T1,l2轻弹簧上拉力为T2,重力为mg,物体在三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mg tgθ,剪断线的瞬间,弹簧的长度末发生变化,力大小和方向都不变,物体即在T2反方向获得加速度.因为mg tgθ=ma,所以加速度a=gtgθ,方向在T2反方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理《牛顿第二定律》知识点讲解
实验:用控制变量法研究:a 与F 的关系,a 与m 的关系
一、牛顿第二定律
1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a 的方向与F 合的方
向总是相同。
2.表达式:F=ma 或 m F a 合
= 用动量表述:t
P F ∆=合 揭示了:① 力与a 的因果关系....
,力是产生a 的原因和改变物体运动状态的原因; ② 力与a 的定量关系....
3、对牛顿第二定律理解:
(1)F=ma 中的F 为物体所受到的合外力.
(2)F =ma 中的m ,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个
物体组成一个系统)做受力分析时,如果F 是系统受到的合外力,则m 是系统的合质量.
(3)F =ma 中的 F 与a 有瞬时对应关系, F 变a 则变,F 大小变,a 则大小变,F 方向变a 也方向变.
(4)F =ma 中的 F 与a 有矢量对应关系, a 的方向一定与F 的方向相同。
(5)F =ma 中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.
(6)F =ma 中,F 的单位是牛顿,m 的单位是kg ,a 的单位是米/秒2.
(7)F =ma 的适用范围:宏观、低速
4. 理解时应应掌握以下几个特性。
(1) 矢量性 F=ma 是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。
(2) 瞬时性 a 与F 同时产生、同时变化、同时消失。
作用力突变,a 的大小方向随着改变,是瞬时的对应关系。
(3) 独立性 (力的独立作用原理) F 合产生a 合;F x 合产生a x 合 ; F y 合产生a y 合
当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在
一样,这个性质叫力的独立作用原理。
因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。
(4) 同体性F=ma中F、m、a各量必须对应同一个物体
(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);
只适用于宏观、低速运动情况,不适用于微观、高速情况。
牛顿运动定律的应用
1.应用牛顿运动定律解题的一般步骤:
(1)选取研究对象
(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况
(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解
(4) 列出运动学方程或第二定律方程F合=a合;F x合=a x合;F y合=a y合
用a这个物理量把运动特点和受力特点联系起来
(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.
2.物理解题的一般步骤:
(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、
恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。
(2) 选取研究对象:可以是单个物体,也可以是几个物体组成的系统。
(用整体法或隔离法);
寻找所研究物理状态和过程。
(3) 分析所选对象在某状态(或某过程中)的受力情况、运动情况、做功情况及能量的转化情
况,画出受力或运动草图。
(4) 依对象所处状态或过程中的运动、受力、做功等特点;选择适当的物理规律。
(牛二、
及运动学公式;动量定理及动量守恒定律;动能定理及机械能守恒定律)在运用规律前:设出题中没有的物理量,建立坐标系,规定正方向等。
(5) 确定所选规律运动用何种形式建立方程(有时要运用到几何关系式)
(6) 确定不同状态、过程下所选的规律,及它们之间的联系,统一写出方程,并给予序号标明。
(7) 统一单位制,求解方程(组)代入数据求解结果。
(8) 检验结果,必要时要进行分析讨论,最后结果是矢量的还要说明其方向。
3.力、加速度、速度的关系
(1) F 合的方向决定了a 的方向。
F 合与a 的大小关系是F=ma ,不论速度是大、还是小、或
为零,都有a 。
只有F 合=0加速度才能为零, 一般情况下,合力与速度无必然的联系。
(2) 合力与加速度同向时,物体加速。
反向时,减速。
(3) 力与运动的关系:力是改变物体运动状态的原因,产生a 的原因。
即:力⇔加速度⇔速度变化(运动状态变化)
(4) 某时刻的受力决定了某时刻的a ,加速度大小决定了单位时间内速度..变化量...的大小,与速度大小无必然联系。
(5) a 的定义式和决定式的区别
定义式a=t
v ∆定义为速度的变化量与所用时间的比值; 决定式m F a 合=说明了a 与所受的F 合和m 有关。
4.动力学的两大基本问题求解: a 联系力和运动的桥梁是a 关键:分析清楚受力情况和运动情况。
弄清题给物理情境,a 是动力学和运动学公式的桥梁
⇔ a ⇔ 5.连接体处理方法:
连接体:由两个或几个物体组成的物体系统,称连接体。
特点:各个物体具有共同的加速度。
隔离体:把其中某个物体隔离出来,称为隔离体。
整体法:连接体各物体具有共同的加速度,求整体的加速度可把连接体视为一个整体。
隔离法:求连接体间的相互作用力,必须隔离出其中一个物体,对其用牛顿第二定律,此法称为隔离法。
注意辩明:每个隔离体运动方向及加速度方向。
两方法一般都以地面作为参考系,单用隔离法一般都能解决问题,但有时交叉使用,可使解题简捷方便。