2020届虹口区高考数学一模.

合集下载

上海市虹口区2020年高三第一学期期末(高考一模)学科质量检测数学试卷(word解析版)

上海市虹口区2020年高三第一学期期末(高考一模)学科质量检测数学试卷(word解析版)
【详解】f﹣1(x)为函数f(x)=log2(4x﹣1)的反函数,
设y=f(x)=2f﹣1(x),函数过(x,y),反函数过(x, ),
所以f(x)同时过(x,y),( ,x),
代入 ,得 ,所以x=1
故答案为:1
【点睛】本题考查反函数的应用,考查对数的运算,考查运算能力
9.已知m、n是平面α外的两条不同直线,给出三个论断:①m⊥n;②n∥α;③m⊥α;以其中两个论断作为条件,写出一个正确的命题(论断用序号表示):_____.
所以 ,整理得 ,解得x>1或x<0,
所以∁UA={x|0≤x≤1}
故答案为:{x|0≤x≤1}
【点睛】本题考查解分式不等式,考查补集的定义
2.设复数 (i为虚数单位),则 =_______
【答案】
【解析】
【分析】
利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数 ,进而可得结果.
【详解】因为 ,
【答案】
【解析】
【分析】
整理x ,再利用均值不等式求解即可
【详解】设x∈R+,则x 1 ,
当且仅当(x+1)2=2,即x= 时,等号成立
故答案为:
【点睛】本题考查利用均值不等式求最值,属于基础题
4.若 0,则锐角x=_____.
【答案】
【解析】
【分析】
由题可得2cos2x﹣sin2x=0,即2cos2x﹣2sinxcosx=0,则sinx=cosx,可求出
A.﹣4B.﹣2C. 0D. 2
【答案】A
【解析】
【分析】
利用 可得 关于 对称,因为 关于 对称,则推测 关于 对称,再将 代回 检验即可
【详解】由 可得 关于 对称,

上海市虹口区2019-2020学年高考第一次大联考数学试卷含解析

上海市虹口区2019-2020学年高考第一次大联考数学试卷含解析

上海市虹口区2019-2020学年高考第一次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC 的面积是( )A 3B .2C 3D 3【答案】A【解析】【分析】先根据已知求出原△ABC 的高为AO 3△ABC 的面积.【详解】由题图可知原△ABC 的高为AO 3∴S △ABC =12×BC×OA =12×2×33 A 【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力. 2.在空间直角坐标系O xyz -中,四面体OABC 各顶点坐标分别为:22(0,0,0),(0,0,2),3,0,0,3,033O A B C ⎫⎛⎫⎪ ⎪⎭⎝⎭.假设蚂蚁窝在O 点,一只蚂蚁从O 点出发,需要在AB ,AC 上分别任意选择一点留下信息,然后再返回O 点.那么完成这个工作所需要走的最短路径长度是( )A .2B .1121-C 521+D .23【答案】C【解析】【分析】将四面体OABC 沿着OA 劈开,展开后最短路径就是AOO '△的边OO ',在AOO '△中,利用余弦定理即可求解.【详解】将四面体OABC 沿着OA 劈开,展开后如下图所示:最短路径就是AOO '△的边OO '.易求得30OAB O AC '∠=∠=︒,由2AO =,233OB =433AB = 433AC =,22263BC OB OC =+=222cos 2AB AC BC BAC AB AC+-⇒∠=⋅ 161683333444233+-== 由余弦定理知2222cos OO AO AO AO AO OAO ''''=+-⋅⋅∠其中2AO AO '==,()321cos cos 608OAO BAC -'∠=︒+∠=∴2521,521OO OO ''=⇒=+故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题. 3.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( )A .5ln 2+B .5ln 2-C .3ln 2+D .3ln 2-【答案】A【解析】【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值.【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴= 那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增,所以minmin 42()25ln 22AB f a f ⎛⎫===+ ⎪ ⎪⎝⎭ 故选:A .【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.4.()()()()()*121311x x x nx n N+++⋅⋅⋅+∈的展开式中x 的一次项系数为( ) A .3n CB .21nC + C .1n n C -D .3112n C + 【答案】B【解析】【分析】根据多项式乘法法则得出x 的一次项系数,然后由等差数列的前n 项和公式和组合数公式得出结论.【详解】由题意展开式中x 的一次项系数为21(1)122n n n n C +++++==L . 故选:B .【点睛】本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.5.若复数21z m mi =-+(m R ∈)在复平面内的对应点在直线y x =-上,则z 等于( )A .1+iB .1i -C .1133i --D .1133i -+ 【答案】C【解析】【分析】由题意得210m m -+=,可求得13m =,再根据共轭复数的定义可得选项. 【详解】 由题意得210m m -+=,解得13m =,所以1133z i =-+,所以1133z i =--, 故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.6.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( ) A .25 B .2 C .72D .3 【答案】B【解析】【分析】过点A 作准线的垂线,垂足为M ,与y 轴交于点N ,由2FA AS =和抛物线的定义可求得TS ,利用抛物线的性质1122AF BF p+=可构造方程求得BF ,进而求得结果. 【详解】 过点A 作准线的垂线,垂足为M ,AM 与y 轴交于点N ,由抛物线解析式知:(),0F p ,准线方程为x p =-.2FA AS =Q ,13SA SF ∴=,133p AN OF ∴==,43AM p ∴=, 由抛物线定义知:43AF AM p ==,1223AS AF p ∴==,2SF p ∴=, 2TS SF p ∴==.由抛物线性质11212AF BF p p +==得:3114p BF p+=,解得:4BF p =, 422FB p TS p∴==. 故选:B .【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式. 7.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】求得()51x ax +的二项展开式的通项为15C k k k a x +⨯⋅,令2k =时,可得3x 项的系数为90,即25290C =a ⨯,求得a ,即可得出结果.【详解】若3a =则()()55=113x ax x x ++二项展开式的通项为+15C 3k k k x ⨯⋅,令13k +=,即2k =,则3x 项的系数为252C 3=90⨯,充分性成立;当()51x ax +的展开式中3x 项的系数为90,则有25290C =a ⨯,从而3a =±,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.8.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( )A .21B .42C .63D .84【答案】B【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.9.在平面直角坐标系中,经过点P ,渐近线方程为y =的双曲线的标准方程为( )A .22142-=x y B .221714x y -= C .22136x y -= D .221147y x -=【答案】B【解析】【分析】 根据所求双曲线的渐近线方程为y 2x =±,可设所求双曲线的标准方程为222x y-=k .再把点()22,2-代入,求得 k 的值,可得要求的双曲线的方程. 【详解】∵双曲线的渐近线方程为y 2x,=±∴设所求双曲线的标准方程为222x y -=k .又()22,2-在双曲线上,则k=16-2=14,即双曲线的方程为222x y 14-=,∴双曲线的标准方程为22x y 1714-= 故选:B【点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.10.若x 、y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为( )A .5B .9C .6D .12【答案】C【解析】【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出直线在y 轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】 作出满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩的可行域如图阴影部分(包括边界)所示.由32z x y =+,得322z y x =-+,平移直线322z y x =-+,当直线322z y x =-+经过点()2,0时,该直线在y 轴上的截距最大,此时z 取最大值,即max 32206z =⨯+⨯=.故选:C.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.11.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如sin a bx 的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数0.06sin180000y t =构成乐音的是( ) A .0.02sin 360000y t =B .0.03sin180000y t =C .0.02sin181800y t =D .0.05sin 540000y t = 【答案】C【解析】【分析】由基本音的谐波的定义可得12()f nf n *=∈N ,利用12f T ωπ==可得12()n n ωω*=∈N ,即可判断选项. 【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波, 由12f T ωπ==,可知若12()f nf n *=∈N ,则必有12()n n ωω*=∈N , 故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.12.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( )A .12-B .15-C .16-D .18-【答案】C【解析】【分析】根据已知条件求得等差数列{}n a 的通项公式,判断出n S 最小时n 的值,由此求得n S 的最小值.【详解】依题意11237217a d a d +=-⎧⎨+=-⎩,解得17,2a d =-=,所以29n a n =-.由290n a n =-≤解得92n ≤,所以前n 项和中,前4项的和最小,且4146281216S a d =+=-+=-.故选:C【点睛】本小题主要考查等差数列通项公式和前n 项和公式的基本量计算,考查等差数列前n 项和最值的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

上海市2020届高三数学各区(16区已全)一模考试汇编:解析几何(解析版)

上海市2020届高三数学各区(16区已全)一模考试汇编:解析几何(解析版)

2020年一模汇编——解析几何一、填空题【普陀1】若抛物线2y mx =的焦点坐标为1(,0)2,则实数m 为___________.【答案】2【解析】抛物线的性质:p=1,所以m=2【黄浦3】抛物线28x y =的焦点到准线的距离为___________. 【答案】4【解析】由题抛物线的焦点为(0,2),准线为直线2x =-,易得焦点到准线的距离为4【青浦3】直线1:10l x -=和直线20l y -=的夹角大小是【答案】6π 【解析】设夹角为θ,则23213cos =⨯=θ,故夹角6πθ=【静安3】若直线1l 和直线2l 的倾斜角分别为32和152则1l 与2l 的夹角为_____.【答案】60【解析】1801523260-+=【静安4】若直线l 的一个法向量为(2,1)n =,则若直线l 的斜率k =_____. 【答案】2-【解析】(2,1)n =,则单位向量(1,2)d =-,221k ==-【宝山5】以抛物线x y 62-=的焦点为圆心,且与抛物线的准线相切的圆的方程是 .【答案】9)23(22=++y x【解析】焦点)0,23(-,半径3==p r 【松江5】已知椭圆22194x y +=的左、右焦点分别为1F 、2F ,若椭圆上的点P 满足122PF PF =,则1=PF【答案】4【解析】由椭圆定义得:1226PF PF a +==,又122PF PF =,联立得:1=PF 4【虹口6】抛物线26x y =的焦点到直线3410x y +-=的距离为_________. 【答案】1【解析】抛物线26x y =的焦点为)23,0(,焦点到直线3410x y +-=的距离33041215d ⨯+⨯-==【杨浦7】椭圆22194x y +=焦点为1F ,2F ,P 为椭圆上一点,若15PF =,则12cos F PF ∠= 【答案】35【解析】因为3a ==,2b ==,所以c ==,所以1(F,2F ,225651PF a =-=-=,所以22212513cos 2155F PF +-∠==⋅⋅【奉贤7】若双曲线的渐近线方程为3y x =±,它的焦距为则该双曲线的标准方程为____________.【答案】2219y x -=±【解析】根据双曲线的渐近线方程为3y x =±,可知3b a =或3ab=;由焦距为得出c =222c a b =+,求得,,a b c 的值【普陀8】设椭圆222:1(1)x y a aΓ+=>,直线l 过Γ的左顶点A 交y 轴于点P ,交Γ于点Q ,若AOP △是等腰三角形(O 为坐标原点),且2PQ QA →→=,则Γ的长轴长等于_________.【答案】【解析】由题知(),0A a -、()0,P a ,设(),Q x x a +,有(),PQ x x =、(),QA a x x a =----, 所以()2x a x =⋅--,解得23x a =-,将(),Q x x a +代入2221x y a +=得22211210x ax a a ⎛⎫+++-= ⎪⎝⎭,整理得Γ的长轴长2a = 【崇明8】若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程是__________.【答案】116922=-y x 【解析】由题意得3=a ,5210=÷=c ,16222=-=a c b ,标准方程为116922=-y x【杨浦9】在直角坐标平面xOy 中,(2,0)A -,(0,1)B ,动点P 在圆22:+2C x y =上,则PA PB ⋅的取值范围为___________.【答案】(22+【解析】因为22+2x y =,设)P θθ,则(2,)PA θθ=--,(,1)PB θθ=-,22222cos 2sin PA PB θθθθ⋅=++,22)PA PB θθθϕ⋅=+=++,【崇明9】已知,a b R +∈,若直线230x y ++=与(1)2a x by -+=互相垂直,则ab 的最大值等于___________.【答案】81 【解析】两直线互相垂直得1121-=-⋅-ba ,b a 21-=,代入得b b ab )21(-=, 0,0a b >>,最小值为81【宝山9】已知直线l 过点)0,1(-且与直线02=-y x 垂直,则圆08422=+-+y x y x 与直线l 相交所得的弦长为___________.【答案】152【解析】直线方程为012=++y x ,圆心到直线的距离5=d ⇒222||d r AB -=【奉贤9】设平面直角坐标系中,O 为原点,N 为动点,6ON =,5ON OM =,过点M 作1MM x ⊥轴于1M ,过N 作1NN x ⊥轴于点1N ,M 与1M 不重合,N 与1N 不重合,设11OT M M N N =+,则点T 的轨迹方程是______________.【答案】22536x y +=05x x ⎛≠≠ ⎝⎭且【解析】设(),T x y ,点()11,N x y ,则()11,0N x ,又1111,OM y M y ⎫⎛⎫==⎪ ⎪⎭⎝⎭11,0M M ⎫=⎪⎭,()110,N N y =,于是1111,OT M M N N x y ⎫=+=⎪⎭,由此能求出曲线C的方程。

上海市虹口区2019-2020学年高三第一学期数学一模考试卷

上海市虹口区2019-2020学年高三第一学期数学一模考试卷

虹口区2019学年度第一学期期终学生学习能力诊断测试高三数学 试卷 2019年12月考生注意:1.本试卷共4页,21道试题,满分150分,考试时间120分钟.2.本考试分设试卷和答题纸. 作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.一、填空题(本大题满分54分)本大题共12题,第1-6题,每空填对得4分;第7-12题,每空填对得5分. 请直接将结果填写在答题纸相应题号的空格内.1. 设全集21,1,x U R A x x -⎧⎫==>⎨⎬⎩⎭若则U A =ð_______. 2.若复数31iz i-=+(i 为虚数单位),则z =_________. 3. 设,x R +∈则21x x ++的最小值为________. 4.若sin2cos 0,2cos 1x x x= 则锐角x =_________.5. 设等差数列{}n a 的前n 项和为274,12,8,n S a a S +==若则n a =_______.6. 抛物线26x y =的焦点到直线3410x y +-=的距离为________.7. 设6270127(21)(1),x x a a x a x a x --=++++L 则5________.a =8. 设1()f x -为函数2()log (41)x f x =-的反函数,则当1()2()f x f x -=时,x 的值为_______. 9. 已知,m n α是平面外的两条不同直线. 给出三个论断:①;m n ⊥②//;n α③.m α⊥以其中两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题(论断用序号表示):________________.10. 的直角三角板拼在一起,则OD AB ⋅=u u u r u u u r _________.(第16题图)B11.如图,12,F F 分别是双曲线222:1x C y a-=的左、右焦点,过2F 的直线与双曲线C 的两条渐近线分别交于,A B 两点,若212,0,F A AB FB F B =⋅=u u u r u u u r u u u r u u u r则双曲线C 的焦距12F F 为________. 12. 已知函数()f x 的定义域为(],0,2,()(2),R x f x x x ∈=-当时且对任意的,x R ∈均有 (2)2().f x f x += 若不等式15()2f x ≤在(],x a ∈-∞上恒成立,则实数a 的最大值为________.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应题号上,将所选答案的代号涂黑,选对得 5分,否则一律零分.13.设,x R ∈则“11x -<”是“24x <”的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件14.已知函数())cos(2)f x x x θθ=+++为偶函数,且在0,2π⎡⎤⎢⎥⎣⎦上为增函数,则θ的一个值可以是 ( )(A )6π (B )3π (C )23π (D )23π- 15.已知函数()2,(),f x x g x x t =+=+定义函数(),()g(),()g(),()g().f x f x x F x x f x x ≤⎧=⎨>⎩当当若对任意的,x R ∈都有()(2)F x F x =-成立,则t 的取值为 ( )(A )4- (B )2- (C )0 (D )216.正四面体ABCD 的体积为1,O 为其中心, 正四面体EFGH 与正四面体ABCD 关于点O 对称, 则这两个正四面体的公共部分的体积为 ( ) (A )13(B )12(C )23 (D )341(第18题图)三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的规定区域内写出必要的步骤.17.(本题满分14分) 本题共2小题,每小题7分. 在ABC ∆中,18,6,cos .3a b A ===- 求 (1)角B ; (2)BC 边上的高.18.(本题满分14分) 本题共3小题,第1小题4分,第2小题5分,第3小题5分. 如图,在圆柱1OO 中,它的轴截面11ABB A 是一个边长为2的正方形,点C 为棱1BB 的中点,点111C A B 为弧的中点. 求(1)异面直线11OC AC 与所成角的大小; (2)直线1CC 与圆柱1OO 底面所成角的大小; (3)三棱锥11C OAC -的体积.19.(本题满分14分)本题共2小题,第1小题6分,第2小题8分.某企业接到生产3000台某产品的甲、乙、丙3种部件的订单,每台产品需要这3种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产甲部件6件,或乙部件3件,或丙部件2件.该企业计划安排200名工人分成三组分别生产这3种部件,生产乙部件的人数与生产甲部件的人数成正比例,比例系数为k (k 2≥为正整数).(1)设生产甲部件的人数为x ,分别写出完成甲、乙、丙3种部件生产需要的时间; (2)假设这3种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.20.(本题满分16分)本题共3小题,第1小题5分,第2小题5分,第3小题6分. 已知两点12(0),0),F F 设圆O :224x y +=与x 轴交于,A B 两点,且动点P 满足:以线段2F P 为直径的圆与圆O 相内切,如图所示.记动点P 的轨迹为Γ,过点2F 与x 轴不重合 的直线l 与轨迹Γ交于,M N 两点.(1) 求轨迹Γ的方程;(2) 设线段MN 的中点为Q ,直线OQ 与直线x =,R 求证:2F R l ⊥u u u u r ; (3)记,ABM ABN ∆∆的面积分别为12,,S S 求12S S -的最大值及此时直线l 的方程.21.(本题满分18分) 本题共3小题,第1小题4分,第2小题6分,第3小题8分.在数列{}n a 中,1212210,,,,2m m m a m N a a a m *-+=∈且对任意的构成以为公差的等差数列.(1)求证:456,,a a a 成等比数列; (2)求数列{}n a 的通项公式;(3)设2222323,2n n nn S S n a a a =+++-L 试问是否存在极限?若存在,求出其值;若不存在,请说明理由.A虹口区2019学年度第一学期期终学生学习能力诊断测试高三数学 参考答案和评分标准 2019年12月一、填空题(本大题满分54分)本大题共12题,第1-6题,每题填对得4分;第7-12题,每题填对得5分.1.[]0,1 21 4.4π 5.23()n n N *-∈ 6.17. 36 8. 1 9.若①③,则② (或:若②③,则①) 10.1- 11 12.274二、选择题(本大题共 4题,每题5分,满分20分)13. A 14. D 15.A 16. B 三、解答题(本大题共5题,满分76分)17.(本题满分14分)本题共2小题,每小题7分. 解:(1)在ABC ∆中,由1cos ,sin 3A A =-=得…… 2分 由正弦定理,得6sin 3sin 8b AB a=== …… 5分 于是由角A 为钝角,知.4B π=…… 7分sinC sin()cosA)2A B =+=+=() 因…… 10分设ABC ∆的BC 边上的高为h,则由11sin ,22ABC S ah ab C ∆==得sin 64h b C === 即ABC ∆的BC 边上的高等于4 …… 14分 18.(本题满分14分) 本题共3小题,第1小题4分,第2小题5分,第3小题5分.解:(1)以点O 为原点,直线1,OB OO 分别为,y z轴,建立空间直角坐标系,如图所示.则相关点的坐标为(0,0,0),(0,1,0),O B 1(0,1,2),B(0,1,1),C 111(0,1,2),(0,0,2),(1,0,2).A O C - 于是11(0,1,1),(1,1,0).OC AC ==u u u r u u u u r ……2分从而1111111cos ,,2OC A C OC A C OC A C ⋅<>===⋅u u u r u u u u ru u u r u u u u r u u u r u u u u r 因此,异面直线11OC AC 与所成角的大小为.3π……4分 (2)由于1(0,0,2)OO =u u u u r是圆柱1OO 底面的一个法向量,又1(1,1,1)CC =-u u u u r,……6分 设直线1CC 与圆柱1OO 底面所成角的大小为,θ 则111111sin cos ,=CC OO CC OO CC OO θ⋅=<>==⋅u u u u r u u u u ru u u u r u u u u r u u u u r u u u u r于是,直线1CC 与圆柱1OO底面所成角的大小为 …… 9分 (3)由于三棱锥11C OAC -的顶点11111,C OA C C O =到面的距离为 …… 11分 而 111111111322121121.2222OA C OAA OBC A B C ABB A S S S S S ∆∆∆∆=---=⨯-⨯⨯-⨯⨯-⨯⨯=正方形故 1111111311.3322C OA C OA C V S O C -∆=⋅=⨯⨯= …… 14分 19.(本题满分14分) 本题共2小题,第1小题6分,第2小题8分.解:(1)设完成甲、乙、丙3种部件生产需要的时间(单位:天)分别为123(),(),(),T x T x T x 则由题意,得[]12323000100023000200030001500(),(),(),63()2200(1)200(1)T x T x T x x x k x kx k x k x⨯⨯======-+-+即123100020001500(),(),(),200(1)T x T x T x x kx k x===-+ ……4分 其中,,200(1)x kx k x -+均为1到200的正整数,且.k N *∈ ……6分(2)完成订单所用的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2001,,,2.1x x x k N k k *⎧⎫≤<∈≥⎨⎬+⎩⎭且 由于1210002000(),()T x T x x kx ==均为减函数,31500()200(1)T x k x=-+为增函数,并注意到212()().T x T x k=……8分 (i )当2k =时,12()(),T x T x =此时{}12310001500()max (),(),()max ,,2003f x T x T x T x x x ⎧⎫==⎨⎬-⎩⎭其中{}166,.x x x N *≤≤∈且由13(),()T x T x 的单调性知,当100015002003x x =-时,()f x 取得最小值,解得400.9x =由于134002503004445,(44)T (44),(45)T (45),(44)(45).91113f f f f <<====<而故 当44x =时,完成订单任务所用的时间最短,最短时间为25011天. ……11分(ii )当2k >时,12()(),T x T x > 由于,3,k N k *∈≥故此时3375()(),()50T x T x T x x≥=-且为增函数.于是 {}{}1311000375()max (),()max (),() = g()max ,.50f x T x T x T x T x x x x ⎧⎫=≥=⎨⎬-⎩⎭由1(),()T x T x 的单调性知,当100037550x x=-时,()g x 取得最小值,解得400.11x =由于134002502503752503637,(36)T (36),(37)T (37),119111311g g <<==>==>而此时完成订单任务的最短时间大于25011天.综上所述,当2k =时,完成订单任务所用时间最短,最短时间为25011天;此时生产甲、乙、丙3种部件的人数分别为44,88,68人. ……14分20.(本题满分16分)本题共3小题,第1小题5分,第2小题5分,第3小题6分. 解:(1)连结1,PF 设2PF 的中点为,C 则12.PF CO = 由圆C 与圆O 相内切,得 22,CO CF +=于是 1222()4,PF PF CO CF +=+= ……3分 因此,动点P 的轨迹是:以12,F F 为焦点,4为长轴长的椭圆;其方程为 22 1.4x y +=……5分证:(2)设直线l的方程为x my =并设1122(,),(,),M x yN x y 则由2244,x my x y ⎧=⎪⎨+=⎪⎩ 22(m 4)10,y ++-=得 故121221.4y y y y m +==-+从而1212()x x m y y+=++=于是Q……7分所以),OQ m=-u u u r于是直线40.OQ mx y+=的方程为由40,mx yx+=⎧⎪⎨=⎪⎩解得),R从而2)).F R m==-u u u u r由于直线l的法向量2(1,m)//,F R-u u u u r故2.F R l⊥u u u u r……10分解:(3)由(2)知121221.4y y y ym+==-+故111222112,2,22S AB y y S AB y y=⋅==⋅=……12分而120,y y<故12121222S S y y y y-=+=-=……14分由于12S S-最大时0,m≠故12mmS S-=≤=+当且仅当2m=时,等号成立.因此12maxS S-=此时直线l的方程为20,20.x y x y+=-或……16分21. (本题满分18分)本题共3小题,第1小题4分,第2小题6分,第3小题8分.证:(1)因为1212210,,,,2m m ma m N a a a m*-+=∈且对任意的构成以为公差的等差数列.所以,当121321,0,22,24;m a a a a a===+==+=时当343542,4,48,412;m a a a a a===+==+=时……2分当565763,12,618,624.m a a a a a===+==+=时于是65543,2a aa a==故456,,a a a成等比数列. ……4分解:(2)由题意,对2121,4,m mm N a a m*+-∈-=任意的有于是2121212123311()()()(1)44(1)41042(1),2m m m m m a a a a a a a a m m m m m m ++---=-+-++-++=+-++⨯+=⋅=+L L结合10,a =得212(1)().m a m m m N +=+∈令121,,2n m n m -+==则得21112().222n n n n a n -+-=⋅⋅=为奇数 ……7分由题意,对2221,22(1)22,m m m N a a m m m m m *+∈=-=+-=任意的有 故对正偶数,n 有 222().22n n n a ==因此,数列{}n a 的通项公式为2221,(1)12().24,2n n n n n n a a n N n n *⎧-⎪--⎪==+∈⎨⎪⎪⎩为奇数,或为偶数,……10分 解:(3)对于任意的,k N *∈有22222221(2)4(21)44111112,22().22(1)2(1)21k k k k k k k a k a k k k k k k ++++====+=+-+++ ……12分下面分n 为偶数与奇数两种情况讨论:(i )当n 为偶数时,设2(),n k k N *=∈22222,S a ==则当2k ≥时,222222242352124(2)35(21)111111()()22(1)(1)()()22231113142(1)2.22n k k k k S k k a a a a a a k k k n k n--⎡⎤=+++++++=+-+-+-++-⎢⎥-⎣⎦=-+-=--L L L 于是312.2nS n n-=-- ……15分(ii )当n 为奇数时,设21(),n k k N *=+∈则当2k ≥时,222222242352124(2)35(21)111111()()22(1)()()2223111314(1)2.2121n k k k k S k k a a a a a a k k k n k n ++⎡⎤=+++++++=++-+-++-⎢⎥+⎣⎦=+-=--++L L L 于是312.21nS n n -=--+综上,得31,3,21231.2n n n S n n n ⎧--≥⎪⎪+-=⎨⎪--⎪⎩为奇数,为正偶数于是2n S n -存在极限,且3lim (2).2nn S n →+∞-=-……18分。

2020年上海市虹口区高三一模数学试卷(含答案)(精校Word版)

2020年上海市虹口区高三一模数学试卷(含答案)(精校Word版)

(第10题图)2020年上海市虹口区高三一模数学试卷(含答案)(精校Word 版)考生注意:1.本试卷共4页,21道试题,满分150分,考试时间120分钟.2.本考试分设试卷和答题纸. 作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.一、填空题(本大题满分54分)本大题共12题,第1-6题,每空填对得4分;第7-12题,每空填对得5分. 请直接将结果填写在答题纸相应题号的空格内.1. 设全集21,1,x U R A x x -⎧⎫==>⎨⎬⎩⎭若则U A =ð_______. 2.若复数31iz i-=+(i 为虚数单位),则z =_________. 3. 设,x R +∈则21x x ++的最小值为________. 4.若sin2cos 0,2cos 1x x x= 则锐角x =_________.5. 设等差数列{}n a 的前n 项和为274,12,8,n S a a S +==若则n a =_______.6. 抛物线26x y =的焦点到直线3410x y +-=的距离为________.7. 设6270127(21)(1),x x a a x a x a x --=++++则5________.a =8. 设1()fx -为函数2()log (41)x f x =-的反函数,则当1()2()f x f x -=时,x 的值为_______. 9. 已知,m n α是平面外的两条不同直线. 给出三个论断:①;m n ⊥②//;n α③.m α⊥以其中两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题(论断用序号表示):________________.10. 的直角三角 板拼在一起,则OD AB ⋅=_________.(第16题图)B11.如图,12,F F 分别是双曲线222:1x C y a-=的左、右焦点,过2F 的直线与双曲线C 的两条渐近线分别交于,A B 两点,若212,0,F A AB FB F B =⋅=则双曲线C 的焦距12F F 为________. 12. 已知函数()f x 的定义域为(],0,2,()(2),R x f x x x ∈=-当时且对任意的,x R ∈均有 (2)2().f x f x += 若不等式15()2f x ≤在(],x a ∈-∞上恒成立,则实数a 的最大值为________.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应题号上,将所选答案的代号涂黑,选对得 5分,否则一律零分.13.设,x R ∈则“11x -<”是“24x <”的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件14.已知函数())cos(2)f x x x θθ=+++为偶函数,且在0,2π⎡⎤⎢⎥⎣⎦上为增函数,则θ的一个值可以是 ( )(A )6π (B )3π (C )23π (D )23π- 15.已知函数()2,(),f x x g x x t =+=+定义函数(),()g(),()g(),()g().f x f x x F x x f x x ≤⎧=⎨>⎩当当若对任意的,x R ∈都有()(2)F x F x =-成立,则t 的取值为 ( )(A )4- (B )2- (C )0 (D )216.正四面体ABCD 的体积为1,O 为其中心, 正四面体EFGH 与正四面体ABCD 关于点O 对称, 则这两个正四面体的公共部分的体积为 ( ) (A )13(B )12(C )23 (D )341(第18题图)三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的规定区域内写出必要的步骤.17.(本题满分14分) 本题共2小题,每小题7分. 在ABC ∆中,18,6,cos .3a b A ===- 求 (1)角B ; (2)BC 边上的高.18.(本题满分14分) 本题共3小题,第1小题4分,第2小题5分,第3小题5分. 如图,在圆柱1OO 中,它的轴截面11ABB A 是一个边长为2的正方形,点C 为棱1BB 的中点,点111C A B 为弧的中点. 求(1)异面直线11OC AC 与所成角的大小; (2)直线1CC 与圆柱1OO 底面所成角的大小; (3)三棱锥11C OAC -的体积.19.(本题满分14分)本题共2小题,第1小题6分,第2小题8分.某企业接到生产3000台某产品的甲、乙、丙3种部件的订单,每台产品需要这3种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产甲部件6件,或乙部件3件,或丙部件2件.该企业计划安排200名工人分成三组分别生产这3种部件,生产乙部件的人数与生产甲部件的人数成正比例,比例系数为k (k 2≥为正整数).(1)设生产甲部件的人数为x ,分别写出完成甲、乙、丙3种部件生产需要的时间; (2)假设这3种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.20.(本题满分16分)本题共3小题,第1小题5分,第2小题5分,第3小题6分. 已知两点12(0),0),F F 设圆O :224x y +=与x 轴交于,A B 两点,且动点P 满足:以线段2F P 为直径的圆与圆O 相内切,如图所示.记动点P 的轨迹为Γ,过点2F 与x 轴不重合 的直线l与轨迹Γ交于,M N 两点.(1) 求轨迹Γ的方程;(2) 设线段MN 的中点为Q ,直线OQ 与直线x =,R 求证:2F R l ⊥; (3)记,ABM ABN ∆∆的面积分别为12,,S S 求12S S -的最大值及此时直线l 的方程.21.(本题满分18分) 本题共3小题,第1小题4分,第2小题6分,第3小题8分.在数列{}n a 中,1212210,,,,2m m m a m N a a a m *-+=∈且对任意的构成以为公差的等差数列.(1)求证:456,,a a a 成等比数列; (2)求数列{}n a 的通项公式;(3)设2222323,2n n nn S S n a a a =+++-试问是否存在极限?若存在,求出其值;若不存在,请说明理由.AA参考答案和评分标准 2019年12月一、填空题(本大题满分54分)本大题共12题,第1-6题,每题填对得4分;第7-12题,每题填对得5分.1.[]0,1 21 4.4π 5.23()n n N *-∈ 6.17. 36 8. 1 9.若①③,则② (或:若②③,则①) 10.1- 11 12.274二、选择题(本大题共 4题,每题5分,满分20分)13. A 14. D 15.A 16. B 三、解答题(本大题共5题,满分76分)17.(本题满分14分)本题共2小题,每小题7分. 解:(1)在ABC ∆中,由1cos ,sin 33AA =-=得…… 2分 由正弦定理,得6sin 3sin 8b AB a=== …… 5分 于是由角A 为钝角,知.4B π=…… 7分sinC sin()cosA)2A B =+=+=() 因 (10)分设ABC ∆的BC 边上的高为h,则由11sin ,22ABC S ah ab C ∆==得sin 64h b C === 即ABC ∆的BC 边上的高等于4 …… 14分 18.(本题满分14分) 本题共3小题,第1小题4分,第2小题5分,第3小题5分.解:(1)以点O 为原点,直线1,OB OO 分别为,y z轴,建立空间直角坐标系,如图所示.则相关点的坐标为(0,0,0),(0,1,0),O B 1(0,1,2),B(0,1,1),C 111(0,1,2),(0,0,2),(1,0,2).A O C - 于是11(0,1,1),(1,1,0).OC AC == ……2分从而1111111cos ,,2OC A C OC A C OC A C ⋅<>===⋅因此,异面直线11OC AC 与所成角的大小为.3π......4分 (2)由于1(0,0,2)OO =是圆柱1OO 底面的一个法向量,又1(1,1,1)CC =-, (6)分 设直线1CC 与圆柱1OO 底面所成角的大小为,θ 则111111(1,sin cos ,=CC OO CC OO CC OO θ⋅=<>==⋅ 于是,直线1CC 与圆柱1OO 底面所成角的大小为arcsin…… 9分 (3)由于三棱锥11C OAC -的顶点11111,C OA C C O =到面的距离为 …… 11分 而 111111111322121121.2222OA C OAA OBC A B C ABB A S S S S S ∆∆∆∆=---=⨯-⨯⨯-⨯⨯-⨯⨯=正方形故 1111111311.3322C OA C OA C V S O C -∆=⋅=⨯⨯= …… 14分 19.(本题满分14分) 本题共2小题,第1小题6分,第2小题8分.解:(1)设完成甲、乙、丙3种部件生产需要的时间(单位:天)分别为123(),(),(),T x T x T x 则由题意,得[]12323000100023000200030001500(),(),(),63()2200(1)200(1)T x T x T x x x k x kx k x k x⨯⨯======-+-+即123100020001500(),(),(),200(1)T x T x T x x kx k x===-+ ……4分 其中,,200(1)x kx k x -+均为1到200的正整数,且.k N *∈ ……6分(2)完成订单所用的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2001,,,2.1x x x k N k k *⎧⎫≤<∈≥⎨⎬+⎩⎭且 由于1210002000(),()T x T x x kx ==均为减函数,31500()200(1)T x k x=-+为增函数,并注意到212()().T x T x k=……8分 (i )当2k =时,12()(),T x T x =此时{}12310001500()max (),(),()max ,,2003f x T x T x T x x x ⎧⎫==⎨⎬-⎩⎭其中{}166,.x x x N *≤≤∈且由13(),()T x T x 的单调性知,当100015002003x x =-时,()f x 取得最小值,解得400.9x =由于134002503004445,(44)T (44),(45)T (45),(44)(45).91113f f f f <<====<而故 当44x =时,完成订单任务所用的时间最短,最短时间为25011天. ……11分(ii )当2k >时,12()(),T x T x > 由于,3,k N k *∈≥故此时3375()(),()50T x T x T x x≥=-且为增函数.于是 {}{}1311000375()max (),()max (),() = g()max ,.50f x T x T x T x T x x x x ⎧⎫=≥=⎨⎬-⎩⎭由1(),()T x T x 的单调性知,当100037550x x=-时,()g x 取得最小值,解得400.11x =由于134002502503752503637,(36)T (36),(37)T (37),119111311g g <<==>==>而此时完成订单任务的最短时间大于25011天.综上所述,当2k =时,完成订单任务所用时间最短,最短时间为25011天;此时生产甲、乙、丙3种部件的人数分别为44,88,68人. ……14分20.(本题满分16分)本题共3小题,第1小题5分,第2小题5分,第3小题6分. 解:(1)连结1,PF 设2PF 的中点为,C 则12.PF CO = 由圆C 与圆O 相内切,得 22,CO CF +=于是 1222()4,PF PF CO CF +=+= ……3分 因此,动点P 的轨迹是:以12,F F 为焦点,4为长轴长的椭圆;其方程为 22 1.4x y +=……5分证:(2)设直线l的方程为x my =并设1122(,),(,),M x yN x y 则由2244,x my x y ⎧=⎪⎨+=⎪⎩ 22(m 4)10,y ++-=得 故1212221,.44y y y y m m +=-=-++从而1212()x x m y y+=++=于是Q……7分所以3),OQ m=-于是直线40.OQ mx y+=的方程为由40,mx yx+=⎧⎪⎨=⎪⎩解得),R从而23()).F R m==-由于直线l的法向量2(1,m)//,F R-故2.F R l⊥……10分解:(3)由(2)知121221.4y y y ym+==-+故111222112,2,22S AB y y S AB y y=⋅==⋅= (12)分而120,y y<故12121222S S y y y y-=+=-=……14分由于12S S-最大时0,m≠故12mmS S-=≤=+当且仅当2m=时,等号成立.因此12maxS S-=此时直线l的方程为20,20.x y x y+=-=或……16分21. (本题满分18分)本题共3小题,第1小题4分,第2小题6分,第3小题8分.证:(1)因为1212210,,,,2m m ma m N a a a m*-+=∈且对任意的构成以为公差的等差数列.所以,当121321,0,22,24;m a a a a a===+==+=时当343542,4,48,412;m a a a a a===+==+=时……2分当565763,12,618,624.m a a a a a===+==+=时于是65543,2a aa a==故456,,a a a成等比数列. ……4分解:(2)由题意,对2121,4,m mm N a a m*+-∈-=任意的有于是2121212123311()()()(1)44(1)41042(1),2m m m m m a a a a a a a a m m m m m m ++---=-+-++-++=+-++⨯+=⋅=+结合10,a =得212(1)().m a m m m N +=+∈令121,,2n m n m -+==则得21112().222n n n n a n -+-=⋅⋅=为奇数 ……7分由题意,对2221,22(1)22,m m m N a a m m m m m *+∈=-=+-=任意的有 故对正偶数,n 有 222().22n n n a ==因此,数列{}n a 的通项公式为2221,(1)12().24,2n n n n n n a a n N n n *⎧-⎪--⎪==+∈⎨⎪⎪⎩为奇数,或为偶数,……10分 解:(3)对于任意的,k N *∈有22222221(2)4(21)44111112,22().22(1)2(1)21k k k k k k k a k a k k k k k k ++++====+=+-+++ ……12分下面分n 为偶数与奇数两种情况讨论:(i )当n 为偶数时,设2(),n k k N *=∈22222,S a ==则当2k ≥时,222222242352124(2)35(21)111111()()22(1)(1)()()22231113142(1)2.22n k k k k S k k a a a a a a k k k n k n--⎡⎤=+++++++=+-+-+-++-⎢⎥-⎣⎦=-+-=-- 于是312.2nS n n-=-- ……15分(ii )当n 为奇数时,设21(),n k k N *=+∈则当2k ≥时,222222242352124(2)35(21)111111()()22(1)()()2223111314(1)2.2121n k k k k S k k a a a a a a k k k n k n ++⎡⎤=+++++++=++-+-++-⎢⎥+⎣⎦=+-=--++ 于是312.21nS n n -=--+综上,得31,3,21231.2n n n S n n n ⎧--≥⎪⎪+-=⎨⎪--⎪⎩为奇数,为正偶数于是2n S n -存在极限,且3lim (2).2nn S n →+∞-=-……18分。

2020年上海市虹口区高考数学一模试卷试题及答案

2020年上海市虹口区高考数学一模试卷试题及答案

2020年上海市虹口区高三高考数学一模试卷一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.设全集U R =,若21{|1}x A x x-=>,则U A =ð . 2.设复数3(1ii i-+为虚数单位),则||z = . 3.设x R +∈,则21x x ++最小值为 . 4.若sin 2cos 02cos 1x xx =,则锐角x = .5.设等差数列{}n a 的前n 项和n S ,若2712a a +=,48S =,则n a = . 6.抛物线26x y =的焦点到直线3410x y +-=的距离为 . 7.设6270127(21)(1)x x a a x a x a x --=+++⋯+,则5a = .8.设1()f x -为函数2()log (41)x f x =-的反函数,则当1()2()f x f x -=时,x 的值为 . 9.已知m 、n 是平面α外的两条不同直线,给出三个论断:①m n ⊥;②//n α;③m α⊥;以其中两个论断作为条件,写出一个正确的命题(论断用序号表示): .10的直角三角板拼在一起,则OD AB = .11.如图,1F 、2F 分别是双曲线222:1x C y a -=的左、右焦点,过2F 的直线与双曲线C 的两条渐近线分别交于A 、B 两点,若2F A AB =,120F B F B =,则双曲线C 的焦距12||F F 为 .12.已知函数()f x 的定义域为R ,当(0x ∈,2]时,()(2)f x x x =-,且对任意的x R ∈,均有(2)2()f x f x +=,若不等式15()2f x …在(x ∈-∞,]a 上恒成立,则实数a 的最大值为 . 二.选择题(本大题共4题,每题5分,共20分) 13.设x R ∈,则“|1|1x -<”是“24x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件14.已知函数())cos(2)f x x x θθ=+++为偶函数,且在[0,]2π上为增函数,则θ的一个值可以是( ) A .6πB .3πC .23π D .23π-15.已知函数()|2|f x x =+,()||g x x t =+,定义函数()()()()()()()f x f xg x F x g x f x g x ⎧=⎨>⎩…,若对任意的x R ∈,都有()(2)F x F x =-成立,则t 的取值为( ) A .4-B .2-C .0D .216.正四面体ABCD 的体积为1,O 为其中心,正四面体EFGH 与正四面体ABCD 关于点O 对称,则这两个正四面体的公共部分的体积为( )A .13B .12C .23D .34三、解答题(本大题共5题,共14+14+14+16+18=76分) 17.在ABC ∆中,8a =,6b =,1cos 3A =-,求:(1)角B ; (2)BC 边上的高.18.如图,在圆柱1OO 中,它的轴截面11ABB A 是一个边长为2的正方形,点C 为棱1BB 的中点,点1C 为弧11A B 的中点,求:(1)异面直线OC 与11A C 所成角的大小; (2)直线1CC 与圆柱1OO 底面所成角的大小; (3)三棱锥11C OA C -的体积.19.某企业接到生产3000台某产品的甲、乙、丙三种部件的订单,每台产品需要这3种部件的数量分别为2、2、1(单位:件),已知每个工人可生产甲部件6件,或乙部件3件,或丙部件2件,该企业计划安排200名工人分成三组分别生产这3种部件,生产乙部件的人数与生产甲部件的人数成正比例,比例系数为(2k k …为正整数). (1)设生产甲部件的人数为x ,分别写出完成甲、乙、丙3种部件生产需要的时间; (2)假设这3种部件的生产同时开工,试确定正整数的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.20.(16分)已知两点1(F ,0)、2F ,0),设圆22:4O x y +=与x 轴交于A 、B 两点,且动点P 满足:以线段2F P 为直径的圆与圆O 相内切,如图所示,记动点P 的轨迹为Γ,过点2F 与x 轴不重合的直线l 与轨迹Γ交于M 、N 两点. (1)求轨迹Γ的方程;(2)设线段MN 的中点为Q ,直线OQ 与直线x =相交于点R ,求证:2F R l ⊥; (3)记ABM ∆、ABN ∆面积分别为1S 、2S ,求12||S S -的最大值及此时直线l 的方程.21.(18分)在数列{}n a 中,10a =,且对任意的*m N ∈,21m a -、2m a 、21m a +构成以2m 为公差的等差数列.(1)求证:4a 、5a 、6a 成等比数列; (2)求数列{}n a 的通项公式;(3)设2222323n n n S a a a =++⋯⋯+,试问2n S n -是否存在极限?若存在,求出其值,若不存在,请说明理由.参考答案一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.设全集U R =,若21{|1}x A x x-=>,则U A =ð {|01}x x 剟. 解:全集U R =,若21{|1}x A x x-=>, 所以211x x ->,整理得10x x->,解得1x >或0x <, 所以{|01}U A x x =剟ð. 故答案为:{|01}x x 剟.2.设复数3(1ii i-+为虚数单位),则||z .解:复数3(1iz i i-=+为虚数单位),则|3||||1|i z i -===+..3.设x R +∈,则21x x ++最小值为 1- .解:设x R +∈,则22111)1111(1)x x x x x +=++--=-+++…,当且仅当2(1)2x +=,即1x =时,等号成立.故答案为:1. 4.若sin 2cos 02cos 1x x x =,则锐角x4. 解:由于sin 2cos 02cos 1x xx =,所以22cos sin 20x x -=,由于x 为锐角,所以sin cos x x =,解得4x π=.故答案为:4π5.设等差数列{}n a 的前n 项和n S ,若2712a a +=,48S =,则n a = 23n - . 解:设首项为1a ,公差为d 等差数列{}n a 的前n 项和n S , 若2712a a +=,48S =, 则27141271234482a a a d S a d +=+=⎧⎪⎨⨯=+=⎪⎩,解得112a d =-⎧⎨=⎩,所以12(1)23n a n n =-+-=-, 故答案为:23n -6.抛物线26x y =的焦点到直线3410x y +-=的距离为 1 .解:抛物线26x y =的焦点为3(0,)2,所以点3(0,)2到直线3410x y +-=的距离515d ===. 故答案为:1.7.设6270127(21)(1)x x a a x a x a x --=+++⋯+,则5a = 36 . 解:利用6(1)x -二项式的展开式:616(1)r r r r T C x -+=-, 令2r =时,得6(1)x -展开式中含4x 的系数,即2615C =,令1r =时,得6(1)x -展开式含5x 的系数,即16(1)6C -=-. 所以621)(1)x x --=展开式中5x 的系数为215(1(6)36⨯+-⨯-=. 故答案为:36.8.设1()f x -为函数2()log (41)x f x =-的反函数,则当1()2()f x f x -=时,x 的值为 1 . 解:1()f x -为函数2()log (41)x f x =-的反函数, 设1()2()y f x f x -==,函数过(,)x y ,反函数过(,)2yx ,所以()f x 同时过(,)x y ,(2y,)x ,代入2122(41)(4)x yy log x log -⎧=-⎪⎨⎪=⎩,得241221y x x y ⎧=-⎨=-⎩,所以1x =, 故答案为:19.已知m、n是平面α外的两条不同直线,给出三个论断:①m n⊥;②//nα;③mα⊥;以其中两个论断作为条件,写出一个正确的命题(论断用序号表示):若②③则①.解:已知m、n是平面α外的两条不同直线,给出三个论断:①m n⊥;②//nα;③mα⊥;当mα⊥时,m必垂直于平面α内的任意一条直线,由于//nα,所以m n⊥,如图所示故答案为:若②③则①.10的直角三角板拼在一起,则OD AB=1-.解:以O为原点,OA、OB分别为x、y轴,建立如图所示平面直角坐标系,则:(0,0)O,(1,0)A,(0,1)B,D点横坐标的求法:11Dx==,纵坐标:Dy==,∴33(1,)(1,1)1 OD AB=+-=-.故答案为:1-.11.如图,1F 、2F 分别是双曲线222:1x C y a -=的左、右焦点,过2F 的直线与双曲线C 的两条渐近线分别交于A 、B 两点,若2F A AB =,120F B F B =,则双曲线C 的焦距12||F F 为解:设(A m ,)(0)mm a>,2(,0)F c , 由中点坐标公式可得,2(2,)mB m c a-, 代入渐近线方程x y a =-,得21(2)m m c a a =--,得4c m =. 由120F B F B =,得22221(2,)(2,)(1)0m m m m c m mc a a a-=+-=, 将4c m =代入,得2221(1)0164c c a +-=,得213a =,∴212||221F F c a ==+=.12.已知函数()f x 的定义域为R ,当(0x ∈,2]时,()(2)f x x x =-,且对任意的x R ∈,均有(2)2()f x f x +=,若不等式15()2f x …在(x ∈-∞,]a 上恒成立,则实数a 的最大值为 4. 解:利用转点法,设015(,)2A x ,在[6x ∈,8]上,则015(2,)4x -在[4x ∈,6]上, 015(4,)8x -在[2x ∈,4]上,015(6,)16x -在[0x ∈,2]上,即()(2)f x x x =-过015(6,)16x -, 所以0015(6)(8)16x x --=,解得0274x =. 故答案为:274. 二.选择题(本大题共4题,每题5分,共20分) 13.设x R ∈,则“|1|1x -<”是“24x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:|1|102x x -<⇔<<, 2422x x <⇔-<<, (0,2)(2-Ü,2),∴ “|1|1x -<”是“24x <”的充分不必要条件,故选:A .14.已知函数())cos(2)f x x x θθ=+++为偶函数,且在[0,]2π上为增函数,则θ的一个值可以是( ) A .6πB .3πC .23π D .23π-解:根据题意,())cos(2)f x x x ϕϕ=+++,1)cos(2)]2x x ϕϕ=+++, 2sin(2)6x πϕ=++,若()f x 为偶函数,则有162k πϕππ+=+,即13k ϕππ=+,k Z ∈, 结合选项可知,当1k =-时,23πϕ=-,1()2sin(2)2cos 22f x x x π=-=-满足偶函数且在[0,]2π上为增函数,满足题意.故选:D .15.已知函数()|2|f x x =+,()||g x x t =+,定义函数()()()()()()()f x f xg x F x g x f x g x ⎧=⎨>⎩…,若对任意的x R ∈,都有()(2)F x F x =-成立,则t 的取值为( ) A .4-B .2-C .0D .2解:若对任意的x R ∈,都有()(2)F x F x =-成立, 则函数()F x 关于1x =对称,作出函数()f x 的图象, 则()f x 关于2x =-对称,由()F x 的对应值则()g x 关于x t =-对称, 即212t--=,得22t --=, 得4t =-, 即t 的值为4-, 故选:A .16.正四面体ABCD 的体积为1,O 为其中心,正四面体EFGH 与正四面体ABCD 关于点O 对称,则这两个正四面体的公共部分的体积为( )A .13B .12C .23D .34解:正四面体ABCD 的体积为1,O 为其中心,正四面体EFGH 与正四面体ABCD 关于点O 对称,根据几何体的对称性,重叠部分的体积为,大正四面体的体积减去4个尖端的小棱锥的体积(4个体积相等), 其中每个小锥体积为18.所以公共部分的体积为11482⨯=.故选:B .三、解答题(本大题共5题,共14+14+14+16+18=76分) 17.在ABC ∆中,8a =,6b =,1cos 3A =-,求:(1)角B ; (2)BC 边上的高.解:(1)在ABC ∆中,8a =,6b =,1cos 3A =-,所以角A 为钝角,由22sin cos 1A A +=,解得sin A =利用正弦定理的应用sin sin a b A B =,解得sin B =,所以4B π=. (2)根据(1)的结论,1sin sin()sin cos cos sin ()3C A B A B A B =+=+=-=.所以11sin 861622ABC S ab C ∆==⨯⨯=-,由于1116822ah h =-=⨯⨯,解得4h =-,故BC 边上的高为4.18.如图,在圆柱1OO 中,它的轴截面11ABB A 是一个边长为2的正方形,点C 为棱1BB 的中点,点1C 为弧11A B 的中点,求: (1)异面直线OC 与11A C 所成角的大小; (2)直线1CC 与圆柱1OO 底面所成角的大小; (3)三棱锥11C OA C -的体积.解:(1)作11//OD O C ,以O 为原点,OD 为x 轴,OB 为y 轴,1OO 为z 轴, 如图所示:所以求出各点的坐标为(0O ,0,0),(0C ,1,1),1(0A ,1-,2),1(1C ,0,2). 则(0,1,1)OC =,11(1,1,0)A C =.异面直线OC 和11A C 的夹角为11111cos 2||||2OC A C OC A C θ===. 所以异面直线OC 与11A C 所成角的大小为3π.(2)根据图形1(1,1,1)CC =-,底面的法向量为(0,0,1)n =. 所以线面的夹角为111sin cos ,||||31CC nCC n CC n θ=<>===⨯. 所以直线1CC 与底面的夹角为 (3)锥体的体积11113COA C OA CV Sh -=⨯⨯,在△1OA C中,OC =,1OA =1A C = 所以等腰三角形的面积为11322OA CS==.棱锥的高即为1C 到底面1OA C 的距离1h =, 所以三棱锥11C OA C -的体积为1311322⨯⨯=.19.某企业接到生产3000台某产品的甲、乙、丙三种部件的订单,每台产品需要这3种部件的数量分别为2、2、1(单位:件),已知每个工人可生产甲部件6件,或乙部件3件,或丙部件2件,该企业计划安排200名工人分成三组分别生产这3种部件,生产乙部件的人数与生产甲部件的人数成正比例,比例系数为(2k k …为正整数). (1)设生产甲部件的人数为x ,分别写出完成甲、乙、丙3种部件生产需要的时间; (2)假设这3种部件的生产同时开工,试确定正整数的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.解:(1)依题意:生产乙部件的人数为kx ,生产丙部件的人数为(200)x kx ---,甲部件的数量为300026000⨯=.. 所以生产时间为6000010006x x=,同理生产乙部件的数量为300026000⨯=,生产时间为600020003kx kx=-, 丙部件数量为300013000⨯=,生产时间为300015002(200)200x kx x kx=-----.(2)依题意,在(1)的基础上同时开工,求最短时间,由于2k …,所以比较甲、乙的时间得:10002000x kx…(甲部件的生产时间长), 所以完成订单任务时间由甲和丙部件中较长的决定. ①当10001500200x x kx --…时,得到40025x k +…, 此时,完成订单时间为1000x ,当40025x k =+时,取最小值. ②当10001500200x x kx --…,得到40025x k +….此时,完成订单时间为1500200x kx --,当40025x k =+时,取最小值.当2k =时,4009x …,当45x =时,此时的订单时间为150030023.08200459013==--.由于22073230.8<,所以①中计算结果耗时最短. 综上所述,当2k =时,44x =时完成订单时间最短. 此时,生产甲、乙、丙部件的人数为44,88,68人.20.(16分)已知两点1(F ,0)、2F ,0),设圆22:4O x y +=与x 轴交于A 、B 两点,且动点P 满足:以线段2F P 为直径的圆与圆O 相内切,如图所示,记动点P 的轨迹为Γ,过点2F 与x 轴不重合的直线l 与轨迹Γ交于M 、N 两点. (1)求轨迹Γ的方程;(2)设线段MN 的中点为Q ,直线OQ与直线x =相交于点R ,求证:2F R l ⊥; (3)记ABM ∆、ABN ∆面积分别为1S 、2S ,求12||S S -的最大值及此时直线l 的方程.解:(1)依题意:设2||PF 的中点为C ,切点为T ,由图可知OC 为△12F PF 的中位线,所以122||||2||2||224PF PF OC CF +=+=⨯=>, 所以点P 的轨迹为椭圆,所以2a =,c =,1b =.所以方程为2214x y +=.证明:(2)设直线(0)y k x k =≠,1(M x ,1)y ,2(N x ,2)y .所以2214(x y y k x ⎧+=⎪⎨⎪=⎩,整理得2224(4x k x +-=,变形为2222(14)1240k x x k +-+-=,所以12x x +=212212414k x x k-=+.点Q 的横坐标1202x xx +==. 点Q的纵坐标00(y k x k ===. 直线OQ 为14y x k=-与直线x=R ,所以R. 由23(F R =,直线l 的方向向量(1,)k , 所以20F R l =,即:2F R l ⊥;(3)在(2)的基础上设点M 和N 在x 轴的上下两侧, 所以11||2M S AB y =,211||||||22N N S AB y AB y ==-. 121||||||2M N SS AB y y -=+. 由1122((y k x y k x ⎧=⎪⎨=-⎪⎩,所以1212(y y k x x +=+-,代入12x x +=所以122111||4||||||121444k S S k k k k-=⨯⨯-===++…当且仅当14k k =,即12k =±时,12||S S - 直线方程为1(2y x =±.21.(18分)在数列{}n a 中,10a =,且对任意的*m N ∈,21m a -、2m a 、21m a +构成以2m 为公差的等差数列.(1)求证:4a 、5a 、6a 成等比数列; (2)求数列{}n a 的通项公式;(3)设2222323n n n S a a a =++⋯⋯+,试问2n S n -是否存在极限?若存在,求出其值,若不存在,请说明理由.【解答】证明:(1)令1m =时,1a ,2a ,3a 构成以2为公差的等差数列,所以22a =,34a =. 令2m =时3a ,4a ,5a 构成以4为公差的等差数列,所以48a =,512a =.令3m =时5a ,6a ,7a 构成以6为公差的等差数列,所以618a =,724a =. 由2546144a a a ==,得到4a ,5a ,6a 成等比数列.解:(2)由(1)得数列{}n a 的前几项为:0,2,4,8,12,18,24. 所以22121222mm m m a a m a a m-+=+⎧⎨=+⎩,所以21214m m a a m +--=.由累加法得到211(1)4[121]42(1)2m m m a a m m m ---=⨯++⋯+-=⨯=-. 当n 为奇数时令21m n -=,所以12n m +=,所以211(1)22n n n a n --=+=. 当n 为偶数时,2m n =,所以2nm =,所以22242n n n a =⨯=.解:(3)当n 为奇数时,22222211221111n n n a n n n n ==+=+----+. 当n 为偶数时,22222n n n a n==.所以1111111lim(2)lim[2()()()2]2448112n n n S n n n n n →∞→∞-=+-+-+⋯+--=-+.。

上海市虹口区2020届高三一模数学试卷及详细解析(Word版)

上海市虹口区2020届高三一模数学试卷及详细解析(Word版)

上海市虹口区2020届高三一模数学试卷及详细解析2019.12一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 设全集U =R ,若A ={1|21x x x ->},则U A =______2. 若复数3i 1iz -=+(i 为虚数单位),则|z |=______ 3. 设x ∈R +,则21x x ++的最小值为______ 4. 若sin2cos 0cos 1x xx =,则锐角x =______5. 设等差数列{n a }的前n 项和n S ,若2712a a +=,48S =,则n a =______6. 抛物线26x y =的焦点到直线3410x y +-=的距离为______7. 设()()6270127211...x x a a x a x a x --=++++,则5a =______8. 设()1f x -为函数()()2log 41x f x =-的反函数,则当()()12f x f x -=时,x 的值为______9. 已知m 、n 是平面α外的两条不同直线,给出三个论断:① m ⊥n ;② n //α;③ m ⊥a ;以其中两个论断作为条件,写出一个正确的命题(论断用序号表示):______10. 如图所示,两块斜边长均等于2的直角三角板拼在一起,则OD AB ⋅=______11. 如图,1F 、2F 分别是双曲线C :2221x y a -=的左、右焦点,过2F ,的直线与双曲线C 的两条渐近线分别交于A 、B 两点,若F A AB =2,20F A F B ⋅=1,则双曲线C 的焦距|12F F |为______12. 已知函数()f x 的定义域为R ,当x ∈(0,2]时,()()2f x x x =-,且对任意的x ∈R ,均有()()22f x f x +=,若不等式()152f x ≤在x ∈(-∞,a ]上恒成立,则实数a 的最大值为______二、选择题(本大题共4题,每题5分,共20分)13. 设x ∈R ,则“11x -<”是“24x <”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件14. 已知函数()()()3sin 2cos 2f x x x θθ=+++为偶函数,且在[0,2π]. 上为增函数,则θ的一个值可以是( )A . 6πB . 3πC 23πD . 23π- 15. 已知函数()2f x x =+,()g x x t =+,定义函数()()()()()()()f x f x g x g g x F x x f x ≤>⎧⎪=⎨⎪⎩,若对任意的x ∈R ,都有()()2F x F x =-成立,则t 的取值为( )A . 4-B . 2-C . 0D . 216. 正四面体ABCD 的体积为1,O 为其中心,正四面体EFGH 与正四面体ABCD 关于点O 对称,则这两个正四面体的公共部分的体积为( )A . 13B . 12 C. 23 D . 34三、解答题(本大题共5题,共14+14+14+16+18=76分) 17. 在△ABC 中,a =8,b =6,1cos 3A =-求: (1) 角B ;(2) BC 边上的高.18. 如图,在圆柱1OO 中,它的轴截面11ABB A 是一个边长为2的正方形,点C 为棱1BB ,的中点,点1C 为弧11A B 的中点,求:(1)异面直线O C 与11A C 所成角的大小;(2)直线1CC 与圆柱1OO 底面所成角的大小;(3)三棱锥11C OA C -的体积.19. 某企业接到生产3000台某产品的甲、乙、丙三种部件的订单,每台产品需要这3种部件的数量分别为2、2、1(单位:件),已知每个工人可生产甲部件6件,或乙部件3件,或丙部件2件,该企业计划安排200名工人分成三组分别生产这3种部件,生产乙部件的人数与生产甲部件的人数成正比例,比例系数为k (2k ≥为正整数).(1) 设生产甲部件的人数为x ,分别写出完成甲、乙、丙3种部件生产需要的时间;(2) 假设这3种部件额生产同时开工,试确定正整数的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.20. 已知两点F (、F ,设圆O :224x y +=与x 轴交于A 、B 两点,且动点P 满足:以线段2F P 为直径的圆与圆O 相内切,如图所示,记动点P 的轨迹为Γ,过点2F ,与x 轴不重合的直线l 与轨迹Γ交于M 、N 两点.(1) 求轨迹Γ的方程;(2) 设线段MN 的中点为Q ,直线O Q 与直线433x =相交于点R ,求证:2F R ⊥l ; (3) 记△ABM 、△ABN 面积分别为1S 、2S ,求|12S S -|的最大值及此时直线l 的方程.21. 在数列{n a }中,10a =,且对任意的m ∈N *,21m a -、2m a 、21m a +构成以2m 为公差的等差数列.(1) 求证:4a 、5a 、6a 成等比数列;(2) 求数列{n a }的通项公式;(3) 设2222323n n n S a a a =+++试问2n S n -是否存在极限? 若存在,求出其值,若不存在,请说明理由.上海市虹口区2020届高三一模数学试卷及详细解析。

2024届上海市虹口区高三一模数学试题及答案

2024届上海市虹口区高三一模数学试题及答案

上海市虹口区2024届高三一模数学试卷(满分150分,时间120分钟)2023.12.12一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 0,1,2,3,4,5A ,21B x x ,则A B .2.函数lg 2y x的定义域为.3.4.5.在x6.已知7.双曲线8.9.已知y 且21(1)0f a f a ,则实数a 的10.天值班,若每天安排两人,则甲、乙两人安排在同一天的概率为11.设a .12.设312231,,,,,a a a b b b是平面上两两不相等的向量,若1223312a a a a a a ,且对任意的,i j1,2,3,均有 j i a b ,则122331b b b b b b.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.设i 为虚数单位,若2521iz i i,则z ().A 12i ;.B 12i ;.C 2i ;.D 2i .第8题图14.空气质量指数AQI 是反映空气质量状况的指数,其对应关系如下表:为监测某化工厂排放废气对周边空气质量指数的影响,某科学兴趣小组在工厂附近某处测得10月1日—20日AQI 的数据并绘成折线图如下:.A .B .C .D 15..A .C 316.已知曲线 的对称中心为O ,若对于 上的任意一点A ,都存在 上两点B 、C ,使得O 为ABC 的重心,则称曲线 为“自稳定曲线”.现有如下两个命题:①任意椭圆都是“自稳定曲线”;②存在双曲线是“自稳定曲线”.则().A ①是假命题,②是真命题;.B ①是真命题,②是假命题;.C ①②都是假命题;.D ①②都是真命题.第18题图三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分14分,第1小题满分7分,第2小题满分7分)设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若 sin sin sin ,sin m A B C A,,n c b c a ,//m n .(1)求角B 的大小;(2)若ABC 为锐角三角形,求sin sin y A C 的取值范围.18.1CC 的中点,满足11AM A B (1)(2)所成角的大小.19.(本题满分14分,第1小题满分6分,第2小题满分8分)2022年12月底,某厂的废水池已储存废水800吨,以后每月新产生的2吨废水也存入废水池.该厂2023年开始对废水处理后进行排放,1月底排放10吨处理后的废水,计划以后每月月底排放一次,每月排放处理后的废水比上月增加2吨.(1)若按计划排放,该厂在哪一年的几月份排放后,第一次将废水池中的废水排放完毕?(2)该厂加强科研攻关,提升废水处理技术,经过深度净化的废水可以再次利用.该厂从2023年7月开始对该月计划排放的废水进行深度净化,首次净化废水5吨,以后每月比上月提高20%的净化能力.试问:哪一年的几月份开始,当月排放的废水能被全部净化?已知点 ,4M m 在抛物线2:2x py (0p )上,点F 为 的焦点,且5MF .过点F 的直线l 与及圆 2211x y 依次相交于点A 、B 、C 、D ,如图.(1)求抛物线 的方程及点M 的坐标;(2)求证:AC BD 为定值;(3)过A 、B 两点分别作 的切线1l 、2l ,且1l 与2l 相交于点P ,求ACP 与BDP 的面积之和的最小值.第20题图已知 y f x 与 y g x 都是定义在 0, 上的函数,若对任意 12,0,x x ,当12x x 时,都有121212f x f xg x g x x x,则称 y g x 是 y f x 的一个“控制函数”.(1)判断2y x 是否为函数2y x (0x )的一个控制函数,并说明理由;(2)设 ln f x x 的导数为 'f x ,0a b ,求证:关于x 的方程'f b f a f x b a在区间,a b 上有实数解(3)设 ln f x x x ,函数 y f x 是否存在控制函数?若存在,请求出 y f x 的所有控制函数;若不存在,请说明理由.1M 1( 第18题图1 )B 虹口区2023学年度第一学期期终学生学习能力诊断测试高三数学 参考答案和评分标准 2023年12月一、填空题(本大题共12题,满分54分;第1-6题每题4分;第7-12题每题5分 ) 1.{}1,2,3 2.(2,5) 3. 924. 12π 5.560 6.7. 35 8.cos(2)6x π− 9. (1, 10.1711.()9,+∞ 12.3二、选择题(本大题共4题,满分18分;第13-14题每题4分,第15-16题每题5分) 13. A 14. C 15. D 16. B 三、解答题(本大题共5题,满分78分)17.(本题满分14分,第1小题7分,第2小题7分)解:(1) 因为m //n ,所以 ()()sin sin sin sin A B C b c a c A +−⋅+−=⋅, …… 2分由正弦定理,可得 ()()a b c b c a ac +−⋅+−=,即 222ac a c b =+−. …… 4分于是,由余弦定理得 2221cos 22a cb B ac +−==,又()0,B π∈,所以3B π=.…… 7分(2)由(1)可知2,3A C π+=所以23sin sin sin sin()sin )326y A C A A A A A ππ=+=+−==+ …… 11分 由△ABC 为锐角△,得20,0,232A A πππ<<<−<且所以,62A ππ<<从而362.3A πππ<+<所以sin sin )6y A C A π=+=+的取值范围为32,.⎛ ⎝ …… 14分 18.(本题满分14分,第1小题6分,第2小题8分) 证:(1) 取AC 中点D ,连接DN ,A 1D .因AA 1=AC ,AD =CM ,∠A 1AD =∠ACM 90=︒, 故△A 1AD ≌△ACM . …… 2分从而∠AA 1D =∠CAM ,又因∠AA 1D +∠A 1DA 90=︒, 故∠CAM +∠A 1DA 90=︒.所以AM ⊥A 1D .由于AM ⊥A 1B 1及A 1B 111,A D A ⋂=因此( 第18题图2 )AM ⊥平面A 1B 1D. …… 4分因D , N 分别为AC , BC 的中点,故D N // AB ,从而D N // A 1B 1,于是A 1,P ,B 1,N ,D 在同一平面内,故AM ⊥面A1PN. …… 6分 解:(2) 因为AB =AC =4,BC =AB 2+AC 2=BC 故AB ⊥AC.因AM ⊥A 1B 1,A 1B 1∥AB ,故AM ⊥AB ; 又因AM ∩AC =A ,所以AB ⊥面ACC 1A 1 , 从而AB ⊥AA 1;因此AB ,AC ,AA 1两两垂直.以A 为原点,以AB ,AC ,AA 1分别为x ,y ,z 轴, 建立空间直角坐标系,如图. ……8分则由条件,相关点的坐标为M (0,4,2),N (2,2,0),P ( 1,0,4),B 1(4,0,4). 设平面MNP 的一个法向量为(,,),n x y z =则(,,)(2,2,2)2220,,2,(,,)(1,4,2)420,n MN x y z x y z y z x z n MP x y z x y z ⎧⋅=⋅−−=−−==⎧⎪⎨⎨=⋅=⋅−=−+=⎩⎪⎩即取1,(2,1,1).z n ==得 ……11分因1AB = (4,0,4),设直线1AB 与平面PMN 所成的角为θ,则111(4,0,4)(2,1,1)123sin cos ,.(4,0,4)(2,1,1)2426AB n AB n AB nθ⋅⋅=<>====⋅⋅⋅故直线1AB 与平面PMN 所成角的大小为.3π ……14分 19.(本题满分14分,第1小题6分,第2小题8分)解:(1)设从2023年1月起第n 个月处理后的废水排放量为n a 吨,则由已知条件知: 数列{}n a 是首项为10,公差为2的等差数列,故28n a n =+. ……2分当18002nni an =≥+∑时,即[]10(28)80022n n n ++≥+, ……4分化简得278000n n +−≥,解得25,32;n n ≥≤−或 由n 是正整数,则25n ≥.故该厂在2025年1月底第一次将废水池中的废水排放完毕. ……6分 (2)设从2023年1月起第n 个月深度净化的废水量为n b 吨. 由已知条件,1260b b b ====,当7n ≥时, 数列{}n b 是首项为5,公比为1.2的等比数列,故70,16,5 1.2,7,n n n b n −≤≤⎧=⎨⨯≥⎩ (n 为正整数). ……8分 显然,当16n ≤≤时,n n a b >. 当7n n n a b ≥≤时,由得 7285 1.2n n −+≤⨯. (*) ……10分设7285 1.2n n c n −=+−⨯,则812 1.2n n n c c −−−=−,所以当711n ≤≤时,数列{}n c 是严格增数列,且0;n c > 当12n ≥时,数列{}n c 是严格减数列. ……12分由于19 1.420c ≈>,20 5.500c ≈−<.所以不等式(*)的解为20n ≥(n 为正整数). 故该厂在2024年8月开始计划排放的废水能被全部净化. ……14分20.(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 解:(1)易知抛物线Γ的焦点F 的坐标为(0,),2p 准线为2py =−,由抛物线的定义,得 452pMF +==,故2p =.所以,抛物线Γ的方程为24.x y = ………2分将 (,4)M m 代入Γ的方程,得4x =±,所以点M 的坐标为:(4,4),或(4,4).− ………4分 (2)由(1)知F (0,1),又由条件知直线l 的斜率 存在,设直线l 的方程为1y k x =+,并设A 11(,),x yB 22(,),x y 则由21,4,y k x x y =+⎧⎨=⎩得2440,x kx −−=故216(1)0,k ∆=+>且12124, 4.x x k x x +==−………7分由抛物线的定义,可知11,AF y =+2 1.BF y =+又因圆22(1)1x y +−=的圆心为F (0,1),半径为1,于是 11,AC AF y =−= 21.BD FB y =−=所以 AC BD ⋅222121212()14416x x x x y y ==⋅==. ………10分(3)由24x y =得24x y =,而12y x '=.故过点A 211(,)4x x 的抛物线 Γ的切线1l 的方程为2111(),42x x y x x −=−即 21120.2x x x y −−= ①………12分同理,过点B 222(,)4x x 的抛物线Γ的切线2l 的方程为 22220.2x x x y −−= ②由①,②可得:2212121212112,() 1.2424P P P x x x x x k y x x x x x ⎡⎤++===+−==−⎢⎥⎣⎦即(2,1).P k − ……15分 所以点P 到直线l : 10k x y −+=的距离为d ==于是 111()222ACP BDP S S AC d BD d AC BD d ∆∆+=⋅+⋅=+⋅ ()()()()22212121212221112224811682218x x y y d d x x x x d k k ⎛⎫+⎡⎤=+⋅=⋅=+−⋅ ⎪⎣⎦⎝⎭=+⋅+ 故当k =0,即直线l 为y =1 时,ACP BDP S S ∆∆+有最小值2. ……18分 21. (本题满分18分,第1小题4分,第2小题6分,第3小题8分)解:(1)由于对任意()12,0x x ∈+∞,,当12x x <时,都有112222x x x x ≤+≤; ……2分 即有2212121222,x x x x x x −≤≤−故由控制函数的定义,22y x y x ==是函数的控制函数. ……4分证:(2)关于x 的方程ln ln 1b a b a x −=−在区间(),a b 上有实数解1ln ln 1b a b b a a−⇔<<−()()ln ln ln ln a b a b a b b a ⇔−<−<−ln ln ln 10ln ln ln 10b a b b b a a a a a b a a a b b b b−⎧⎧−<−+<⎪⎪⎪⎪⇔⇔⎨⎨−⎪⎪−<−+<⎪⎪⎩⎩. ……7分 记()ln 1F x x x =−+,则()11'1x F x x x−=−=,当()0,1x ∈时()'0F x >,()F x 在()0,1上严格增;当()1,x ∈+∞时()'0F x <,()F x 在()1,+∞上严格减. 而01a b b a <<<,故()()10,10a b F F F F b a ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,于是所要证的结论成立.……10分 另证:关于x 的方程ln ln 1b a b a x −=−在区间(),a b 上有实数解1ln ln 1b a b b a a −⇔<<− ()()ln ln ln ln a b a b a b b a ⇔−<−<−ln ln 0ln ln 0a b b a a a b a a b b b −+−<⎧⇔⎨−+−<⎩. ……7分 记()ln ln F x a x x a a a =−+−,则()'1a F x x =−,当[],x a b ∈时()'0F x ≤,故()F x 在[],a b 上严格减,()()0F b F a <=.记()ln ln G x b x x b b b =−+−,则()G'1b x x=−,当[],x a b ∈时()'0G x ≥,故()G x 在[],a b 上严格增,()()0G a G b <=. 于是所要证的结论成立. ……10分解:(3)①先证引理:对任意0a b <<,关于x 的方程()()()'f b f a f x b a −=−在区间(),a b 上恒有实数解. 这等价于()()()()ln ln ln 1ln 1ln 1ln ln ln 1b b a a a b a b a b b a a b b a b a −+<<+⇔+−<−<+−− 1ln ln 1b a b b a a−⇔<<−,由(2)知结论成立. ……12分 ②(证控制函数的唯一性)假设()y f x =存在“控制函数”()y g x =,由上述引理知,对任意()12,0x x ∈+∞,,当12x x <时,都存在()12,c x x ∈使得()12()'()g x f c g x ≤≤.……(*) 下证:()()()',0,g x f x x =∈+∞.若存在()10,t ∈+∞使得()()11'g t f t >,考虑到()'ln 1f x x =+是值域为R 的严格增函数,故存在21t t >使得()()21'f t g t =.由(*)知存在()012,c t t ∈使得()102()'()g t f c g t ≤≤,于是有()()()012''f c g t f t ≥=,由()'f x 的单调性知02c t ≥,矛盾.故对任意()0,x ∈+∞都有()()'g x f x ≤.同理可证,对任意()0,x ∈+∞都有()()'g x f x ≥,从而()()'g x f x =. ……15分 ③(证控制函数的存在性)最后验证,()()'g x f x =是()y f x =的一个“控制函数”. 对任意()12,0x x ∈+∞,,当12x x <时,都存在()12,c x x ∈使得()1212()()'f x f x f c x x −=−,而由()'f x 的单调性知()12'()''()f x f c f x ≤≤,即121212()()()()f x f x g x g x x x −≤≤−. 综上,函数()y f x =存在唯一的控制函数ln 1y x =+. ……18分。

上海市虹口区2019-2020学年高考第一次模拟数学试题含解析

上海市虹口区2019-2020学年高考第一次模拟数学试题含解析

上海市虹口区2019-2020学年高考第一次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()sinx 12sinxf x =+的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )①绕着x 轴上一点旋转180︒;②沿x 轴正方向平移;③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称.A .①③B .③④C .②③D .②④ 【答案】D【解析】【分析】 计算得到()()2f x k f x π+=,22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案.【详解】 ()sin 12sin x f x x=+,()()()()sin 2sin 212sin 212sin x k x f x k f x x k x πππ++===+++,k Z ∈, 当沿x 轴正方向平移2,k k Z π∈个单位时,重合,故②正确;co sin 2212co s s s 12in 2x f x x x x πππ⎛⎫- ⎪⎛⎫⎝⎭-== ⎪+⎛⎫⎝⎭+- ⎪⎝⎭,co sin 2212co s s s 12in 2x f x x x x πππ⎛⎫+ ⎪⎛⎫⎝⎭+== ⎪+⎛⎫⎝⎭++ ⎪⎝⎭, 故22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,函数关于2x π=对称,故④正确; 根据图像知:①③不正确;故选:D .本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.2.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( )A .12B .45C .38D .34【答案】C【解析】【分析】设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,x y ,以12:00点为开始算起,则有5x y y x ≤⎧⎨-≤⎩,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:11101010105532210108P ?创-创==´. 故选:C本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力. 3.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( )A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃- 【答案】B【解析】【分析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果.【详解】 ()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x ∴=--=++<, 由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U .故选:B .【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况.4.已知3ln 3,log ,log a b e c e π===,则下列关系正确的是( )A .c b a <<B .a b c <<C .b a c <<D .b c a <<【答案】A【解析】【分析】首先判断,,a b c 和1的大小关系,再由换底公式和对数函数ln y x =的单调性判断,b c 的大小即可.【详解】因为ln3ln 1a e =>>,311log ,log ln 3ln b e c e ππ====,1ln3ln π<<,所以1c b <<,综上可得c b a <<.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823π 【答案】C【解析】【分析】 由题意可得PA ⊥面ABC ,可知PA BC ⊥,因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥.由此推出三棱锥P ABC -外接球球心是PC 的中点,进而算出2CP =,外接球半径为1,得出结果.【详解】解:由DA AB ⊥,翻折后得到PA AB ⊥,又PA AC ⊥,则PA ⊥面ABC ,可知PA BC ⊥.又因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥,因此三棱锥P ABC -外接球球心是PC 的中点.计算可知2CP =,则外接球半径为1,从而外接球表面积为4π.故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.6.圆心为()2,1且和x 轴相切的圆的方程是( )A .()()22211x y -+-=B .()()22211x y +++=C .()()22215x y -+-=D .()()22215x y +++= 【答案】A【解析】【分析】求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为()2,1且和x 轴相切的圆的半径为1,因此,所求圆的方程为()()22211x y -+-=. 故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.7.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .5【答案】D【解析】【分析】对函数求导,根据函数在3x =-时取得极值,得到()30f '-=,即可求出结果.【详解】因为()3239f x x ax x =++-,所以()2323f x x ax =++', 又函数()3239f x x ax x =++-在3x =-时取得极值, 所以()327630f a -=-+=',解得5a =.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.8.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A .1B .2C .3D .0【答案】C【解析】【分析】 由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【详解】由三视图还原原几何体如图,其中ABC ∆,BCD ∆,ADC ∆为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.故选:C.【点睛】本小题主要考查由三视图还原为原图,属于基础题.9.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x =- 【答案】C【解析】【分析】由每个函数的单调区间,即可得到本题答案.【详解】 因为函数12,2x y x y ==和1y x=-在(0,)+∞递增,而12log y x =在(0,)+∞递减. 故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.10.下列函数中,既是奇函数,又在(0,1)上是增函数的是( ).A .()ln f x x x =B .()x x f x e e -=-C .()sin 2f x x =D .3()f x x x =- 【答案】B【解析】【分析】奇函数满足定义域关于原点对称且()()0f x f x +-=,在(0,1)上()'0f x ≥即可.【详解】A :因为()ln f x x x =定义域为0x >,所以不可能时奇函数,错误;B :()x x f x e e -=-定义域关于原点对称,且()()0x x x x f x f x e e e e --+-=-+-=满足奇函数,又()'0x x f x e e -=+>,所以在(0,1)上()'0f x ≥,正确;C :()sin 2f x x =定义域关于原点对称,且()()sin 2sin 20f x f x x x +-=+-=满足奇函数,()'2cos2f x x =,在(0,1)上,因为()()'0'122cos20f f =⨯<,所以在(0,1)上不是增函数,错误;D :3()f x x x =-定义域关于原点对称,且()()33()0f x f x x x x x +-=-+-+=, 满足奇函数,()2'31f x x =-在(0,1)上很明显存在变号零点,所以在(0,1)上不是增函数,错误; 故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.11.复数z 满足()11i z i +=-,则z =( )A .1i -B .1i +C -D + 【答案】C【解析】【分析】 利用复数模与除法运算即可得到结果.【详解】解: )()())1111111222ii i z i i i i ---=====-+++-, 故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.12.定义在R 上的函数()()f x x g x =+,()22(2)g x x g x =--+--,若()f x 在区间[)1,-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式不一定成立的是( )A .()2112f t t f ⎛⎫++> ⎪⎝⎭B .(2)0()f f t ->>C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】D【解析】【分析】 根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.【详解】由条件可得(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+=∴函数()f x 关于直线1x =-对称;()f x Q 在[1-,)+∞上单调递增,且在20t -<<时使得(0)()0f f t <g ;又(2)(0)f f -=Q()0f t ∴<,(2)(0)0f f -=>,所以选项B 成立;223112()0224t t t ++-=++>Q ,21t t ∴++比12离对称轴远, ∴可得21(1)()2f t t f ++>,∴选项A 成立; 22(3)(2)250t t t +-+=+>Q ,|3||2|t t ∴+>+,∴可知2t +比1t +离对称轴远 (2)(1)f t f t ∴+>+,选项C 成立;20t -<<Q ,22(2)(1)23t t t ∴+-+=+符号不定,|2|t ∴+,|1|t +无法比较大小, (1)()f t f t ∴+>不一定成立.故选:D .【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本题共4小题,每小题5分,共20分。

【2020年】上海市虹口区高考数学一模试卷及解析

【2020年】上海市虹口区高考数学一模试卷及解析

上海市虹口区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为.2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则=.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=.5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是.7.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC 的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=.11.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣115.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+12018年上海市虹口区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为(﹣∞,2).【解答】解:要使函数有意义,可得2﹣x>0,即x<2.函数f(x)=lg(2﹣x)定义域为:(﹣∞,2).故答案为:(﹣∞,2).2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=0.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣1)=﹣f(1),f(0)=0,即f(﹣1)+f(0)+f(1)=0,故答案为:0.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则= 1.【解答】解:根据题意,等比数列{a n}的首项和公比均为,则其前n项和S n==1﹣()n,则=1;故答案为:1.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=﹣.【解答】解:因为a:b:c=2:3:4,所以设a=2k,b=3k,c=4k,则根据余弦定理得:cosC===﹣.故答案为:﹣5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是[,] .【解答】解:∵z=a+bi(a,b∈R),且|z|=1,∴,即a2+b2=1,令a=cosθ,b=sinθ,则ab=cosθ•sinθ=,∴ab∈[,].故答案为:.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是18.【解答】解:根据题意,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,分2种情况讨论:①、从物理、化学、生物这三门中选1门,政治、历史、地理这三门选2门,有C31C32=9种选法,②、从物理、化学、生物这三门中选2门,政治、历史、地理这三门选1门,有C31C32=9种选法,则一共有9+9=18种选法;故答案为:187.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.【解答】解:如图,设三棱锥P﹣ABC的底面积为S,高为h,∵M是AB的中点,∴,∵N是PC的中点,∴三棱锥N﹣MBC的高为,则,,∴=.故答案为:.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.【解答】解:根据题意,抛物线y2=12x的焦点为(3,0),若双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的顶点坐标为(±3,0),则有a2=9,则双曲线的方程为:﹣y2=1,双曲线的焦点在x轴上,则其渐近线方程为故答案为:9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.【解答】解:由题意正余弦函数的图象可得:y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC是等腰三角形,∵底边长为一个周期T=2π,高为,∴△ABC的面积=2=,故答案为:.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=4.【解答】解:∵椭圆+的左右焦点分别为F1,F2,a=2,过焦点F1的直线交椭圆于M(x1,y1),N(x2,y2)两点,△MNF2的内切圆的面积为π,∴△MNF2内切圆半径r=1.∴△MNF2面积S=×1×(MN+MF2+MF2)=2a=4,故答案为:411.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.【解答】解:如图所示,∵D是BC的中点,∴=+=+,又=+,,∴+=+a n(+),)+,化为:=(1﹣a n﹣a n+1∵点列P n(n∈N*)在线段AC上,+=1,∴1﹣a n﹣a n+1化为:a n=﹣,又a1=1,+1则数列{a n}是等比数列,首项为1,公比为﹣.∴a n=.故答案为:.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为(0,0)或(1,0).【解答】解:根据题意,函数y=f(x)的零点为方程x2+2a•x+b•2x=0的根,如果函数y=f(x)与函数y=f(f(x))的零点完全相同,则有f(x)=x,即x2+2a•x+b•2x=x,方程x2+2a•x+b•2x=x的根就是函数y=f(x)与函数y=f(f(x))的零点,则有,解可得x=0,即x2+2a•x+b•2x=0的1个根为x=0,分析可得b=0,则f(x)=x2+2a•x,解可得x1=0或x2=﹣2a,f(f(x))=(x2+2a•x)2+2a(x2+2a•x),若函数y=f(x)与函数y=f(f(x))的零点完全相同,分析可得a=0或a=1,则(a,b)为(0,0)或(1,0);故答案为(0,0)或(1,0).二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]【解答】解:∵异面直线a和b所成的角为θ,∴θ的范围是(0,].故选:C.14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣1【解答】解:命题:“若x2=1,则x=1”的逆否命题为“若x≠1,则x2≠1”;即“若x≠1,则x≠1且x≠﹣1”.故选:C.15.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.【解答】解:∵函数,∴f(1)+f(2)+f(3)+…+f(2017)=1009×f(﹣1)+1008×f(0)=1009×2﹣1+1008×20=.故选:D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.【解答】解:以AB,AC为坐标轴建立坐标系,则B(4,0),C(0,6),∵||=2,∴M的轨迹是以A为圆心,以2为半径的圆.∵,∴N是MC的中点.设M(2cosα,2sinα),则N(cosα,sinα+3),∴=(cosα﹣4,sinα+3),∴||2=(cosα﹣4)2+(sinα+3)2=6sinα﹣8cosα+26=10sin(α﹣φ)+26,∴当sin(α﹣φ)=﹣1时,||取得最小值=4,当sin(α﹣φ)=1时,||取得最大值=6.故选B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.【解答】证明:(1)在三棱锥P﹣ABC中,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.∴PM⊥AC,AB⊥平面PAC,∴PM⊥AB,∵AB∩AC=A,∴PM⊥平面ABC.解:(2)连结BM,∵PM⊥平面ABC,∴∠PBM是直线PB和平面ABC所成的角,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点,∴PM==,BM===,∴tan∠PBM===,∴.∴直线PB和平面ABC所成的角为arctan.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.【解答】解:函数=sinωx+cosωx=2sin (ωx),(1)∵函数的最小正周期等于π.即∴ω=2.可得f(x)=2sin(2x),由2x,k∈Z得:≤x≤故得函数的单调递增区间为[,],k∈Z(2)∵f(x)=2sin(2x),当,(2x)∈[]∴当2x=时,函数f(x)取得最大值为2.当2x=时,函数f(x)取得最小值为﹣1.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.【解答】解:(1)设AQ=x,则由得:即AP=故S==(x>1);(2)由(1)得:S′=(x>1);当x∈(1,2)时,S′<0,当x∈(2,+∞)时,S′>0,故x=2时,S min=4.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.【解答】解:(1)如图,以FK的中点为坐标原点O,FK所在的直线为x轴,过O的垂线为y轴建立直角坐标系,即有F(,0),直线l:x=﹣,动圆M过点F且与直线l相切,可得|AE|=|AF|,由抛物线的定义可得曲线C的轨迹为F为焦点、直线l为准线的抛物线,可得方程为y2=2px;(2)点A到直线l的距离为d,可得|AE|=|AF|=d,且,设A(x0,y0),可得y02=2px0,即有d=x0+,则x0=d﹣,即有|EF|2=p2+y02=p2+2p(d﹣)=2pd,在△EAF中,cos∠EAF==1﹣,可得﹣≤cos∠EAF≤,可得arccos≤π﹣arccos,则∠EAF的取值范围是[arccos];(3)∠EAF的平分线所在的直线与曲线的交点个数为1.设A(x0,y0),可得y02=2px0,当A与O重合时,显然一个交点;当A不与O重合,由∠EAF的平分线交x轴于M,连接EM,可得∠AMF=∠MAF,即有|MF|=|AF|=d,四边形AEMF为菱形,EF垂直平分AM,可得∠AMF+∠EFM=90°,tan∠AMF=cot∠EFM==,可设y0>0,则直线AM的方程为y﹣y0=(x﹣x0),则y0y﹣y02=px﹣px0,化为y0y=px+px0,代入抛物线的方程y2=2px,消去x可得,y2﹣2y0y+2px0=0,即为(y﹣y0)2=0,可得y=y0,x=x0,即∠EAF的平分线所在的直线与曲线的交点个数为1.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+1【解答】解:(1)∵无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.a2=2,且对于一切正整数n,均有,∴==1,=,由此猜想=23﹣n.再利用数学归纳法证明:①当n=1时,=4,成立.②假设n=k时,成立,即,则a k+1====2(6﹣2k)﹣(4﹣k)=22﹣k=23﹣(k+1).由①②得,∴{a n}是首项为4,公比为的等比数列,∴S n==8(1﹣).(2)∵对于一切正整数n,均有a n•a n+1=S n,∴S n=a n a n+1,S n﹣1=a n﹣1a n,∴a n=a n(a n+1﹣a n﹣1),∴a n+1﹣a n﹣1=1.a1=4,由a n•a n+1=S n,得a2=1,a3=5,a4=3,…∴当n为偶数时,+===.当n为奇数时,S n=++==.证明:(3)∵对于一切正整数n,均有a n+a n+1=3S n,∴a n+a n+1=3S n,a n﹣1+a n=3S n﹣1,∴a n+1﹣a n﹣1=3a n,a1+a2=3a1,a2=2a1=8,能被8整除,a3﹣a1=3a2,a3=28,假设a3k﹣1=8m,m∈N*.=3a2k+1+a3k=3(3a3k+a3k﹣1)+a3k则a3k+2=10a3k+a3k﹣1=40p+24q,p,q∈N*能被8整除,综上,a3n能被8整除.﹣1。

2020-2021学年度第一学期 上海虹口区高三数学 一模解析 期终学生学习能力诊断测试

2020-2021学年度第一学期 上海虹口区高三数学 一模解析 期终学生学习能力诊断测试
上. (1)若 a , b , c 是常数列,求 PB 的最小值;
(2)若 a , b , c 成等差数列,且 PA l ,求 PB 的最大值;
(3)若 a , b , c 成等比数列,且 PA l ,求 PB 的取值范围. y
x A OB
【解析】
(1)直线 l

x
y
1
0,
PBmin
d B l
1 0 1 12 12
故此时 PA 5 34km, PB 3 34km
【答案】
(1) APB arccos 5 27
(2) PA 5 34km, PB 3 34km
20.(本题满分 16 分.第(1)小题 3 分,第(2)小题 7 分,第(3)小题 6 分).
已知点 A1, 0 、 B 1, 0 ,直线 l : ax by c 0 (其中 a,b, c R ),点 P 在直线 l
(1)当 f x 是奇函数时,求实数 a 的值; (2)当函数 f x 在2, 上单调递增时,求实数 a 的取值范围.
【解析】
(1) f (x) (a 1)x 2 (a 1)x a 2 1 为奇函数,则只可能 a 1
检验 f (x) 2x 成立
(2) f (x) (a 1)x2 (a 1)x a 2 1 在[2, ) 单调递增
P
(2)求三棱锥 P BMC 的体积. M
A
C
B
【解析】
(1)以 AB, AC, AP 建立空间直角坐标系, B(3, 0, 0), M (0, 0,1), P(0, 0,3),C(0,3, 0)
Байду номын сангаас
BM (3, 0,1), PC (0,3, 3) , cos

上海市虹口区2019-2020学年高考数学模拟试题含解析

上海市虹口区2019-2020学年高考数学模拟试题含解析

上海市虹口区2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量()0,2=r a,()b x =r ,且a r 与b r 的夹角为3π,则x=( )A .-2B .2C .1D .-1【答案】B 【解析】 【分析】由题意cos 3a b a bπ⋅=r rr r ,代入解方程即可得解. 【详解】由题意1cos 32a b a b π⋅===r r r r ,所以0x >,且2x =2x =.故选:B. 【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题. 2.已知函数f (x )=sin 2x+sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14CD.2【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x+sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 2111cos 22223x x π⎛⎛⎫-=-+ ⎪ ⎝⎭⎝⎭,因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题. 3.已知(1)2i ai bi -=+(i 为虚数单位,,a b ∈R ),则ab 等于( ) A .2 B .-2 C .12D .12-【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解. 【详解】(1)2i ai bi -=+Q ,2a i bi ∴+=+,得2a =,1b =.2ab ∴=.故选:A . 【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.4.已知i 为虚数单位,若复数12z i =+,15z z ⋅=,则||z = A .1 BC .5 D.【答案】B 【解析】 【分析】 【详解】 由15z z ⋅=可得15z z =,所以155||2i ||||z z +====B . 5.已知集合{1,3,5}A =,{1,2,3}B =,{2,3,4,5}C =,则()A B C ⋂⋃=( ) A .{1,2,3,5}B .{1,2,3,4}C .{2,3,4,5}D .{1,2,3,4,5}【答案】D 【解析】 【分析】根据集合的基本运算即可求解. 【详解】解:{1,3,5}A =Q ,{1,2,3}B =,{2,3,4,5}C =, 则(){1,3}{2,3,4,5}{1,2,3,4,5}A B C ⋂⋃=⋃= 故选:D. 【点睛】本题主要考查集合的基本运算,属于基础题.6. “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .23【答案】A 【解析】 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.7.若424log 3,log 7,0.7a b c ===,则实数,,a b c 的大小关系为( ) A .a b c >> B .c a b >>C .b a c >>D .c b a >>【答案】A 【解析】 【分析】将a 化成以4 为底的对数,即可判断,a b 的大小关系;由对数函数、指数函数的性质,可判断出,b c 与1的大小关系,从而可判断三者的大小关系. 【详解】依题意,由对数函数的性质可得244log 3log 9log 7a b ==>=.又因为40440.70.71log 4log 7c b =<==<=,故a b c >>.故选:A. 【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小. 8.已知函数()sin()f x x ωθ=+,其中0>ω,0,2πθ⎛⎫∈ ⎪⎝⎭,其图象关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min 2x x π-=,将函数()f x 的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的单调递减区间是()A .()2,6k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B 【解析】 【分析】根据已知得到函数()f x 两个对称轴的距离也即是半周期,由此求得ω的值,结合其对称轴,求得θ的值,进而求得()f x 解析式.根据图像变换的知识求得()g x 的解析式,再利用三角函数求单调区间的方法,求得()g x 的单调递减区间. 【详解】解:已知函数()sin()f x x ωθ=+,其中0>ω,00,2π⎛⎫∈ ⎪⎝⎭,其图像关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min1222x x ππω-==⋅,∴2ω=. 再根据其图像关于直线6x π=对称,可得262k ππθπ⨯+=+,k ∈Z .∴6πθ=,∴()sin 26f x x π⎛⎫=+⎪⎝⎭. 将函数()f x 的图像向左平移6π个单位长度得到函数()sin 2cos 236g x x x ππ⎛⎫=++= ⎪⎝⎭的图像. 令222k x k πππ≤≤+,求得2k x k πππ≤≤+,则函数()g x 的单调递减区间是,2k k πππ⎡⎤+⎢⎥⎣⎦,k ∈Z ,故选B. 【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.9.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM AC ,B .存在点E ,使得平面//BEF 平面11CCD D C .BM ⊥平面1CC F D .三棱锥B CEF -的体积为定值【答案】B 【解析】 【分析】根据平行的传递性判断A ;根据面面平行的定义判断B ;根据线面垂直的判定定理判断C ;由三棱锥B CEF -以三角形BCF 为底,则高和底面积都为定值,判断D.【详解】在A 中,因为,F M 分别是,AD CD 中点,所以11////FM AC AC ,故A 正确;在B 中,由于直线BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故B 错误;在C 中,由平面几何得BM CF ⊥,根据线面垂直的性质得出1BM C C ⊥,结合线面垂直的判定定理得出BM ⊥平面1CC F ,故C 正确;在D 中,三棱锥B CEF -以三角形BCF 为底,则高和底面积都为定值,即三棱锥B CEF -的体积为定值,故D 正确; 故选:B 【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.10.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种 B .36种 C .54种 D .72种【答案】B 【解析】 【分析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得. 【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有234336C A =种.故选:B . 【点睛】本题考查排列组合,属于基础题.11.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A 1B .25-C .D .1【答案】D 【解析】 【分析】利用抛物线的定义,求得p 的值,由利用两点间距离公式求得PM ,根据二次函数的性质,求得minPM ,由PQ 取得最小值为min1PM -,求得结果.【详解】由抛物线2:2(0)C y px p =>焦点在x 轴上,准线方程2p x =-,则点(5,)t 到焦点的距离为562pd =+=,则2p =, 所以抛物线方程:24y x =,设(,)P x y ,圆22:(6)1M x y -+=,圆心为(6,1),半径为1, 则2222(6)(6)4(4)20PM x y x x x =-+=-+=-+, 当4x =时,PQ 取得最小值,最小值为201251-=-, 故选D. 【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目. 12.已知正四面体的内切球体积为v ,外接球的体积为V ,则Vv=( ) A .4 B .8C .9D .27【答案】D 【解析】 【分析】设正四面体的棱长为1,取BC 的中点为D ,连接AD ,作正四面体的高为PM ,首先求出正四面体的体积,再利用等体法求出内切球的半径,在Rt AMN ∆中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解. 【详解】设正四面体的棱长为1,取BC 的中点为D ,连接AD , 作正四面体的高为PM ,则3233AD AM AD ===, 2263PM PA AM ∴=-=,134312P ABC V -∴=⨯⨯=, 设内切球的半径为r ,内切球的球心为O ,则1443P ABC O ABC V V --==⨯,解得:r =; 设外接球的半径为R ,外接球的球心为N , 则MN PM R =-或R PM -,AN R =, 在Rt AMN ∆中,由勾股定理得:222AM MN AN +=,22133R R ⎛⎫∴+-= ⎪ ⎪⎝⎭,解得R =, 3Rr∴=, 3327V R v r∴== 故选:D 【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2020年上海虹口区高三一模数学试卷

2020年上海虹口区高三一模数学试卷

2020年上海虹口区高三一模数学试卷一、填空题(本大题共12题,1~6题每题4分,7~12题每题5分,共54分)1.设全集,若,则 .2.若复数(为虚数单位),则 .3.设,则的最小值为 .4.若,则锐角 .5.设等差数列的前项和,若,,则 .6.抛物线的焦点到直线的距离为 .7.设,则 .8.设为函数的反函数,则当时,的值为 .9.已知、是平面外的两条不同直线,给出三个论断:①;②;③;以其中两个论断作为条件,写出一个正确的命题(论断用序号表示): .10.如图所示,两块斜边长均等于的直角三角板拼在一起,则11.如图,、分别是双曲线:的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,,则双曲线的焦距为 .12.已知函数的定义域为,当时,,且对任意的,均有,若不等式在上恒成立,则实数的最大值为 .二、选择题(本大题共4题,每题5分,共20分)13.设,则“”是“”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.已知函数为偶函数,且在上为增函数,则的一个值可以是( ).A.B.C.D.15.已知函数,,定义函数,若对任意的,都有成立,则的取值为( ).A.B.C.D.16.正四面体的体积为,为其中心,正四面体与正四面体关于点对称,则这两个正四面体的公共部分的体积为( ).A.B.C.D.三、解答题(本大题共5题,共76分)(1)(2)17.在中,,, ,求:角.边上的高.(1)(2)(3)18.如图,在圆柱中,它的轴截面是一个边长为的正方形,点为棱的中点,点为弧的中点,求:异面直线与所成角的大小.直线与圆柱底面所成角的大小.三棱锥的体积.【答案】(1)(2)19.某企业接到生产台某产品的甲、乙、丙三种部件的订单,每台产品需要这种部件的数量分别为、、(单位:件),已知每个工人可生产甲部件件,或乙部件件,或丙部件件,该企业计划安排名工人分成三组分别生产这种部件,生产乙部件的人数与生产甲部件的人数成正比例,比例系数为(为正整数).设生产甲部件的人数为,分别写出完成甲、乙、丙种部件生产需要的时间.假设这种部件额生产同时开工,试确定正整数的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.(1)(2)(3)20.已知两点、,设圆与轴交于、两点,且动点满足:以线段为直径的圆与圆相内切,如图所示,记动点的轨迹为,过点,与轴不重合的直线与轨迹 交于、两点.求轨迹的方程.设线段的中点为,直线与直线 相交于点,求证:.记、面积分别为、,求的最大值及此时直线的方程.(1)(2)(3)21.在数列中,,且对任意的,、、构成以为公差的等差数列,求证:、、成等比数列.求数列的通项公式.设,试问是否存在极限?若存在,求出其值,若不存在,请说明理由.解析:集合.∵,∴,即.解析:∵复数,,则.解析:,,∵,则,,由基本不等式,即,当时等号成立,∴,最小值为.故答案为:.1.或2.3.4.解析:∵,则,,,∴或由为锐角则.故.解析:等差数列的前项和为.,即,,,解方程组,解得,,则,故,.解析:抛物线的焦点,则点到直线的距离为.解析:展开式的通项公式为,令,得,所以,令得,所以,则展开式中的系数为,即.解析:,.5.6.7.8.函数的反函数为,由得,即,所以,令,,则,即,解得(舍去)或,所以,解得.故答案为:.解析:若,则存在直线满足且,因为,所以,又,所以.故由②③可推出①.解析:.解析:由得为的中点,所以,因为,所以,从而,设,:,:,则,又,所以:,联立,可得,若②③,则①9.10.11.联立,可得 ,由为的中点,可得,即,解得,故.12.解析:方法一:当时,函数在单调递增,在单调递减,的最大值为,因为,所以当函数向右平移两个单位时,最大值变为原来的倍,可得,当时,的最大值为;当时,的最大值为;当时,的最大值为;当时,函数在单词递增,在上单调递减,因为要对任意的,都有,所以当最大时,,,解得,故实数的最大值为.方法二:设,则时,,且对任意的,均有,∴当时,,令,解得或,由图象可得.解析:∵,,则,即,∴.故,则是的充分条件.又∵,,解得,∴.故,不是的必要条件.∴,则是的充分不必要条件.故正确.故选.解析:,∵函数为偶函数,∴,,即,,结合选项,当时,,此时函数在上为减函数,不符合题意,当时,,此时函数在上为增函数,符合题意,综上所示,故选.解析:由可得关于直线对称,当时,函数的图象满足关于直线对称.故选.A 13.D 14.A 15.(1)解析:由正四面体的对称性可知,公共部分的体积等于正四面体的体积减去个角上小正四面体的体积.设正四面体的边长,底面三角形的中心为,则 ,,设,则 在中,,则,可得:角上的小正四面体的高为: ,为正四面体的高的一半,则,综上.解析:在中,,, ,由余弦定理,,解得,∵为内角,,B 16.小共(1).(2).17.(2)(1),由正弦定理,,,∴.过作,交于点,∵,∴.解析:以点为原点,直线,分别为,轴,建立空间直角坐标系,如图所示,则相关点的坐标为,,,,,,,于是,,(1).(2).(3).18.(2)(3)(1)(2)从而,因此,异面直线与所成角的大小为.由于是圆柱底面的一个法向量,又,设直线与圆柱底面所成角的大小为,则,于是,直线与圆柱底面所成角的大小为.由于三棱锥的顶点到面的距离为,而,故.解析:设完成甲、乙、丙种部件生产需要的时间(单位:天)分别为,,,则由题意,得,,,即,,,其中,,均为到的正整数,且.完成订单所用的时间为,其定义域为,且,,,由于,均为减函数,为增函数,并注意到,()当时,,(1),,,其中,, 均为到的正整数,且.(2)当时,完成订单任务所用时间最短,最短时间为天.此时生产甲、乙、丙种部件的人数分别为,,人.19.(1)此时,其中且,由,的单调性知,当时,取得最小值,解得,由于,而,,,故当时,完成订单任务所用的时间最短,最短时间为天.()当时,,由于,故,此时且为增函数,于是,由,的单调性知,当时,取得最小值,解得 ,由于,而,,此时完成订单任务的最短时间大于天,综上所述,当时,完成订单任务所用时间最短,最短时间为天.此时生产甲、乙、丙种部件的人数分别为,,人.解析:(1).(2)证明见解析.(3),.20.(2)(3)连结,设的中点为,则,由圆与圆相内切,得,于是,因此,动点的轨迹是:以、为焦点,为长轴长的椭圆,其方程为.设直线的方程为,并设,,联立,得,故,,从而,于是,所以,于是直线 的方程为,由,解得,从而,由于直线的法向量,故.由知:,,故,,而,故,由于最大时,故,当且仅当时,等号成立,因此,此时直线的方程为或.(1)证明见解析.21.(1)(2)(3)解析:因为,且对任意的,,,构成以为公差的等差数列,所以,当时,,,,当时,,,,当时,,,,于是,故,,成等比数列.由题意,对任意的,有,于是,结合,得,(),令,则,得,(为奇数),由题意,对任意的,有,故对正偶数,有,因此,数列的通项公式为或.对任意的,有,,下面分为偶数与奇数两种情况讨论:()当为偶数时,设,,则当时,(2)或.(3)存在极限,且.为奇数为偶数为奇数为偶数,于是.()当为奇数时,设,则当时,,于是,综上,得,于是存在极限,且.为奇数为正偶数。

2020年上海市高三数学一模分类汇编:三角

2020年上海市高三数学一模分类汇编:三角

2(2020松江一模). 若角α的终边过点(4,3)P -,则3sin()2πα+= 4(2020虹口一模). 若sin 2cos 02cos 1x xx =,则锐角x =5(2020青浦一模). 已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,角α的终边与单位圆的交点坐标是34(,)55-,则sin2α=6(2020徐汇一模). 已知函数()arcsin(21)f x x =+,则1()6f π-=8(2020嘉金一模). 已知点(2,)y -在角α终边上,且()tan πα-=sin α=14(2020虹口一模). 已知函数())cos(2)f x x x θθ=+++为偶函数,且在[0,]2π上为增函数,则θ的一个值可以是( )A.6π B. 3π C. 23π D. 23π-14(2020杨浦一模). 要得到函数2sin(2)3y x π=+的图象,只要将2sin 2y x =的图象( )A. 向左平移6π个单位B. 向右平移6π个单位C. 向左平移3π个单位D. 向右平移3π个单位16(2020宝山一模). 提鞋公式也叫李善兰辅助角公式,其正弦型如下:sin cos )a x b x x ϕ+=+,πϕπ-<<,下列判断错误的是( ) A. 当0a >,0b >时,辅助角arctanba ϕ= B. 当0a >,0b <时,辅助角arctan ba ϕπ=+C. 当0a <,0b >时,辅助角arctan ba ϕπ=+D. 当0a <,0b <时,辅助角arctan baϕπ=-16(2020嘉金一模). 某港口某天0时至24时的水深y (米)随时间x (时)变化曲线近似满足如下函数模型:0.5sin() 3.24(06)y x πωπω=++>,若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( )A. 16时B. 17时C. 18时D. 19时17(2020虹口一模). 在△ABC 中,8a =,6b =,1cos 3A =-,求:(1)角B ; (2)BC 边上的高.18(2020宝山一模). 已知函数()sin cos()cos 2f x x x x x π=++.(1)求函数()f x 的最小正周期及对称中心;(2)若()f x a =在区间[0,]2π上有两个解1x 、2x ,求a 的取值范围及12x x +的值.18(2020松江一模). 已知函数2()cos 2sin f x x x x =-. (1)求()f x 的最大值;(2)在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()0f A =,b 、a 、c成等差数列,且2AB AC ⋅=uu u r uuu r,求边a 的长.18(2020崇明一模). 已知函数21()2cos 22f x x x =--. (1)求函数()f x 的最大值,并写出取得最大值时的自变量x 的集合;(2)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且c =()0f C =, 若sin 2sin B A =,求a 、b 的值.18(2020青浦一模). 已知向量,sin )a x x ωω=r ,(cos ,cos )b x x ωω=r,其中0ω>,记()f x a b =⋅r r.(1)若函数()f x 的最小正周期为π,求ω的值;(2)在(1)的条件下,已知△ABC 的内角A 、B 、C 对应的边分别为a 、b 、c ,若()2Af =4a =,5b c +=,求△ABC 的面积.19(2020徐汇一模). 如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,景区管委会又开发了风景优美的景点D ,经测量景点D 位于景点A 的北偏东30°方向8km 处,位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知5AB km =.(1)景区管委会准备由景点D 向景点B 修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1km ) (2)求景点C 与景点D 之间的距离. (结果精确到0.1km )19(2020嘉金一模). 如图,某城市有一矩形街心广场ABCD ,如图,其中4AB =百米,3BC =百米,现将在其内部挖掘一个三角形水池DMN 种植荷花,其中点M 在BC 边上,点N 在AB 边上,要求4MDN π∠=.(1)若2AN CM ==百米,判断△DMN 是否符合要求,并说明理由; (2)设CDM θ∠=,写出△DMN 面积的S 关于θ的表达式,并求S 的最小值.ABCDMN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
x 2
一、填空题
上海市虹口区 2020 届高三一模数学试卷 2019.12
1. 设全集 U =R ,若 A
x | 2x
1
1
,则C A
x
U
2. 若复数 z 3 i
(i 为虚数单位),则 z
1 i
3. 设 x R
,则 x
2 x 1
的最小值为
4.

sin 2x 2 c os x cos x 0 ,则锐角 x
1
5. 设等差数列
a n 的前 n 项和 S n ,若a 2
a 7 12 , S 4 8 ,则a n
6. 抛物线 x 2
6 y 的焦点到直线3x 4 y 1 0 的距离为
7. 设
2x
1
x
1
6 a
a x a x 2
a x 7 ,则a
1
2
7
5
8. 设 f
1
x 为函数 f x log 4x 1
的反函数,则当 f x
2 f
1
x 时, x 的值为
9.
已知 m 、n 是平面 外的两条不同
直线,给出三个论断:①m ⊥n ;②n // ;③m ⊥ ;以其中两个论断作为条件,写出一个正确的命
题(论断用序号表示):
10. 如图所示,两块斜边长均等于 的直角三角板拼在一起,则OD AB
2
11. 如图, F 1 , F 2 分别是双曲线C :
a 2
y
1的左、右焦点,过 F 2 的直线与双曲线 C 的两条渐近线分别交 于 A 、B 两点,若 F 2 A AB , F 1B F 2 B
0 ,则双曲线 C 的焦距 F 1F 2 为
12. 已知函数 f
x 的定义域为 R ,当 x
0, 2
时,f x
x 2 x
,且对任意的 x
R ,均有 f
x
2
2 f
x ,
若不等式 f
x
15 在 x
, a 上恒成立,则实数a 的最大值为
2
二、选择题
13. 设x R,则“x 1 1”是“x2 4 ”的()
A. 充分不必要条件
B. 必要不充分条件
g
C . 充要条件
D . 既不充分也不必要条件
14. 已知函数 f x 3 s in
2x
cos 2x 为偶函数,且在0,
上为增函数,则
的一个值可以是 2
( )
A .
B .
C .
2 D . 2
6 3
3 3
15. 已知函数 f
x
x 2 , g x
x t ,定义函数 F
x
f
x
f x
g x
,若对任意的 x
R ,都有
f x
g x
F
x
F 2 x
,则 t 的取值为( )
A.
4 B.
2 C. 0
D . 2
16. 正四面体 A BCD 的体积为 1,O 为其中心,正四面体 E FGH 与正四面体 A BCD 关于点 O 对称,则这两个正四面体的公共部分的体积为( ) A. 1 3
三、解答题
B. 1 2
C. 2 3
D. 3
4
17. 在
(1) 角 B ; 中, a 8,b 6, cos A 1
,求: 3 (2) BC 边上的高.
ABC
18. 如图,在圆柱OO 1 中,它的轴截面 ABB 1 A 1 是一个边长为 2 的正方形,点 C 为棱 BB 1 的中点,点C 1 为弧
A 1
B 1 的中点,求:
(1) 异面直线 OC 与 A 1C 1 所成角的大小;
(2) 直线CC 1 与圆柱OO 1 底面所成角的大小;
(3) 三棱锥C 1 OA 1C 的体积.
19. 某企业接到生产 3000 台某产品的甲、乙、丙三种部件的订单,每台产品需要这 3 种部件的数量分别为2、2、1(单位:件),已知每个工人每天可生产甲部件6件,或乙部件3件,或丙部件2件,该企业计划安排 200 名工人分成三组分别生产这 3 种部件,生产乙部件的人数与生产甲部件的人数成正比例, 比例系数为 k ( k 2 为正整数).
(1) 设生产甲部件的人数为 x ,分别写出完成甲、乙、丙 3 种部件生产需要的时间;
(2) 假设这 3 种部件的生产同时开工,试确定正整数的值,使完成订单任务的时间最短,并给出时间最短时
具体的人数分组方案.
20.已知两点F
1
3, 0、F
2
3,0,设圆O : x2 y2 4 与x轴交于A、B 两点,且动点P 满足:以线段
F
2
P 为直径的圆与圆O 相内切,如图所示,记动点P 的轨迹为,过点F
2
与x轴不重合的直线l 与轨迹交于M、N 两点.
(1)求轨迹的方程;
(2)设线段MN 的中点为Q,直线OQ 与直线x
4 3
相交于点R,求证:F R l ;
3 2
(3)记ABM 、面积分别为S1 、S2 ,求S1 S2 的最大值及此时直线l 的方程.
21.在数列 a 中,a 0 ,且对任意的m N* ,a
, a , a
构成以 2m 为公差的等差数列.
n 1 2m 1 2m 2m1
(1)求证:a4 、a5 、a6 成等比数列;
(2)求数列a n的通项公式;
22
(3)设S
n a
32
a
,试问S
n
2n 是否存在极限? 若存在,求出其值,若不存在,请说明理由.
2 3
ABN
n
2
a
n
3
参考答案
一、填空题
1. [0,1]
2.
3. 2
1 4.
5. 2n -3
6. 1
7. 36
8. 1 4
9. 若②③,则① 10. 1
11. 4 3
3
12. 27
4
二、选择题
13. A 14. D 15. A 16. B
三、解答题
17.(1)
;(2) 4 4 18.(1) ;(2) a rcsin 3
3 3 19.(1) 1000 , 2000 , x x x 2 2
1500
200 x
kx ;(2) k =2,A 44 人,B 88 人,C 68 人 20.(1) y
4
1 ;(2)证明略;(3) 3, x
2 y 0 n 2 1 n 2 21.(1) a 4 8, a 5 12, a 6 18 ;(2)当 n 为奇数, a n
2
,当 n 为偶数, a n 2
(3)裂项, lim S 2n 2 2 n n 32 1 52 1
5
2
2
1 1 1 1
1 2。

相关文档
最新文档