电磁屏蔽技术基础知识

合集下载

EMC理论基础知识——电磁屏蔽理论

EMC理论基础知识——电磁屏蔽理论

EMC理论基础知识——电磁屏蔽理论1、屏蔽效能的感念屏蔽是利用屏蔽体来阻挡或减小电磁能传输的一种技术,是抑制电磁干扰的重要手段之一。

屏蔽有两个目的,一是限值内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入某一区域。

电磁场通过金属材料隔离时,电磁场的强度将明显降低,这种现象就是金属材料的屏蔽作用。

我们可以用同一位置无屏蔽体时电磁场的强度与加屏蔽体之后电磁场的强度之比来表征金属材料的屏蔽作用,定义屏蔽效能(Shielding EffecTIveness,简称SE):2、屏蔽体上孔缝的影响实际上,屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用。

上节中分析的理想屏蔽体在30MHz 以上的屏蔽效能已经足够高,远远超过工程实际的需要。

真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括:缝隙、开孔、电缆穿透等。

屏蔽体上面的缝隙十分常见,特别是目前机柜、插箱均是采用拼装方式,其缝隙十分多,如果处理不妥,缝隙将急剧劣化屏蔽体的屏蔽效能。

3、孔缝屏蔽的总体设计思想根据小孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸。

两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大。

如图所示为一典型机柜示意图,上面的孔缝主要分为四类:(1)机箱(机柜)接缝该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏。

该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制。

(2)通风孔该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计。

在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件。

(3)观察孔与显示孔该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计。

屏蔽技术1电磁屏蔽原理屏蔽的定义利用磁性材料或者低阻课件

屏蔽技术1电磁屏蔽原理屏蔽的定义利用磁性材料或者低阻课件

要达到静电屏蔽的目的, 一定要将屏蔽壳体接地
要求屏蔽外壳接地电阻愈低愈好。一般设计在1欧以下
2低频磁场屏蔽
从狭义角度,是指甚低频(VLF)和极低频(ELF)的磁场屏 蔽。
主要屏蔽机理是利用高导磁材料具有低磁阻的特性,使 磁场尽可能通过磁阻很小的屏蔽壳体,而尽量不扩散到 外部空间。屏蔽壳体对磁场起磁分路作用。其屏蔽效能 主要取决于屏蔽
在传输线上传播的理论类似,而且计算也方便,精度也高,是 当前广泛采用的一种分析方法。)
• (2)涡流效应:电磁波在金属壳体上产生感应涡流, 而这些涡流又产生了与原磁场反相的磁场,抵消削弱 了原磁场而达到屏蔽作用。(这种方法忽略磁导率的因子,
误差大,应用受到局限)
• (3)电磁矢量分析:用电磁失量方程来分析,精确度 很高。(由于计算复杂也受到一定限制)
• (2)需要设置通风孔、电缆或导线的进出孔、 照明孔、照伤孔、加水孔和电表的安装孔等; (3)为便于人们查看而留且的屏蔽不连续。这 种不连续包括紧密连接的两金属面间的接缝 (如两金属板用铆接或螺钉紧固时残留的缝隙) 和两金属扳间置入金属衬问题
实际机箱上有许多泄漏源:不同部分结合处的缝隙通风 口、显示窗、按键、指示灯、电缆线、电源线等
K3
20
lg
c
oth
Aa 8.686
实践证明,即使非常密织的金属网,其屏蔽效能
也比金属板差很多。特别在高频时就差得很明显。
当需要100dB以上的屏蔽效能时。必须采用双层和
多层金属网屏蔽。
2.3 屏蔽材料的选择
• 1.屏蔽效能 • 屏蔽材料,其中包括小孔金属材料(如金属网、
冲孔金属板)、伪均匀金属材料(如金属化喷涂) 和实心金属材料(加金属箔、金属板等)。这些 材料可以分成两类: • 铁磁性材料和非铁磁性材料。除极簿的金属 箔以外,都可以按式

电磁屏蔽技术讲义.

电磁屏蔽技术讲义.

现代电磁屏蔽设计技术电磁屏蔽技术是电磁兼容技术的一个重要组成部分,是抑制辐射干扰的最有效手段。

在当前电磁频谱日趋密集,单位体积内电磁功率密度急剧增加,高低电平器件或设备大量混合使用等因素而导致系统电磁环境日益恶化的情况下,其重要性就显得更为突出。

本章将从工程设计人员的角度出发,本着“设备所要满足的标准→屏蔽设计所要达到的屏效指标→屏蔽原理及分类→屏蔽要素及控制→屏效指标确定→屏蔽设计方法→屏蔽材料特性及应用→工程屏蔽设计”的思路,并尽量结合工程实例,来讲述现代电磁屏蔽设计技术。

1、电磁辐射相关标准与所要求的屏效1.1 军用标准及所要求的屏效衡量设备是否达到电磁兼容的要求,其主要手段是确定设备是否满足相应的电磁兼容标准。

与电磁辐射发射与敏感度相关的军用电磁兼容标准为:GJB151A(151)/152A(152)—97(86) 军用分系统或设备电磁发射与敏感度要求(测试方法)。

根据军方的要求,98年以后新签的装备按GJB151A/152A执行,98以前签订的装备按GJB151/152执行。

GJB151A/152A在GJB151/152的基础上,等效采用了MIL—STD—461D/462D,与GJB151/152相比,在测试项目、频率范围、测试环境、测试方法等方面均发生了较大的变化。

表1.1给出了GJB151A/152A与GJB151/152的比较。

两个标准中,与屏蔽有直接关系的测试项目如表1.2所示,表1.3给出的GJB151A的测试要求。

表1.1 GJB 151A,152A与GJB151,152之比较从表1.3中可以看出,RE102和RS103是各类设备必做的测试项目,(RE02和RS03也是GJB151所要求必做的测试项目)。

在实际工程中,RE02(RE102)是最难通过的项目,我们以要求最高的陆军用设备的RE02(RE102)为例子说明其屏效的指标要求。

表中,A表示该要求适用;L表示该项要求应按标准相应条款加以限制;S表示由订购单位在订购规范中对适用性和极限要求作详细规定;空白栏表示该项要求不适用。

电磁屏蔽知识

电磁屏蔽知识

磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题.根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆.静电屏蔽在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础.因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论.(一)封闭导体壳内部电场不受壳外电荷或电场影响.如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电(如图1).静电平衡时壳内无电场.这不是说壳外电荷不在壳内产生电场,根发电场.由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零.因而导体壳内部不会受到壳外电荷q或其他电场的影响.壳外壁的感应电荷起了自动调节作用.如果把上述空腔导体外壳接地(图2),则外壳上感应正电荷将沿接地线流入地下.静电平衡后空腔导体与大地等势,空腔内场强仍然为零.如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场.这时因空腔内壁有异号感应电荷,因此空腔内有电场(图3).此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响.由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响.(二)接地封闭导体壳外部电场不受壳内电荷的影响.如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在(图4),此电场可以说是由壳内电荷q间接产生.也可以说是由壳外感应电荷直接产生的但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零(图5).可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地.这与第一种情况不同.这里还须注意:①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电.假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷(图6).②实际应用中金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果,虽然这种屏蔽并不是完全、彻底的.③在静电平衡时,接地线中是无电荷流动的,但是如果被屏蔽的壳内的电荷随时间变化,或者是壳外附近带电体的电荷随时间而变化,就会使接地线中有电流.屏蔽罩也可能出现剩余电荷,这时屏蔽作用又将是不完全和不彻底的.总之,封闭导体壳不论接地与否,内部电场不受壳外电荷与电场影响;接地封闭导体壳外电场不受壳内电荷的影响.这种现象,叫静电屏蔽.静电屏蔽有两方面的意义,其一是实际意义:屏蔽使金属导体壳内的仪器或工作环境不受外部电场影响,也不对外部电场产生影响.有些电子器件或测量设备为了免除干扰,都要实行静电屏蔽,如室内高压设备罩上接地的金属罩或较密的金属网罩,电子管用金属管壳.又如作全波整流或桥式整流的电源变压器,在初级绕组和次级绕组之间包上金属薄片或绕上一层漆包线并使之接地,达到屏蔽作用.在高压带电作业中,工人穿上用金属丝或导电纤维织成的均压服,可以对人体起屏蔽保护作用.在静电实验中,因地球附近存在着大约100V/m的竖直电场.要排除这个电场对电子的作用,研究电子只在重力作用下的运动,则必须有eE<MEG,可算出E其二是理论意义:间接验证库仑定律.高斯定理可以从库仑定律推导出来的,如果库仑定律中的平方反比指数不等于2就得不出高斯定理.反之,如果证明了高斯定理,就证明库仑定律的正确性.根据高斯定理,绝缘金属球壳内部的场强应为零,这也是静电屏蔽的结论.若用仪器对屏蔽壳内带电与否进行检测,根据测量结果进行分析就可判定高斯定理的正确性,也就验证了库仑定律的正确性.最近的实验结果是威廉斯等人于1971年完成的,指出在式F=q1q2/r2±δ中,δ<(2.7±3.1)×10-16,可见在现阶段所能达到的实验精度内,库仑定律的平方反比关系是严格成立的.从实际应用的观点看,我们可以认为它是正确的.静磁屏蔽静磁场是稳恒电流或永久磁体产生的磁场.静磁屏蔽是利用高磁导率μ的铁磁材料做成屏蔽罩以屏蔽外磁场.它与静电屏蔽作用类似而又有不同.静磁屏蔽的原理可以用磁路的概念来说明.如将铁磁材料做成截面如图7的回路,则在外磁场中,绝大部份磁场集中在铁磁回路中.这可以把铁磁材料与空腔中的空气作为并联磁路来分析.因为铁磁材料的磁导率比空气的磁导率要大几千倍,所以空腔的磁阻比铁磁材料的磁阻大得多,外磁场的磁感应线的绝大部份将沿着铁磁材料壁内通过,而进入空腔的磁通量极少.这样,被铁磁材料屏蔽的空腔就基本上没有外磁场,从而达到静磁屏蔽的目的.材料的磁导率愈高,筒壁愈厚,屏蔽效果就愈显著.因常用磁导率高的铁磁材料如软铁、硅钢、坡莫合金做屏蔽层,故静磁屏蔽又叫铁磁屏蔽.静磁屏蔽在电子器件中有着广泛的应用.例如变压器或其他线圈产生的漏磁通会对电子的运动产生作用,影响示波管或显像管中电子束的聚焦.为了提高仪器或产品的质量,必须将产生漏磁通的部件实行静磁屏蔽.在手表中,在机芯外罩以软铁薄壳就可以起防磁作用.前面指出,静电屏蔽的效果是非常好的.这是因为金属导体的电导率要比空气的电导率大十几个数量级,而铁磁物质与空气的磁导率的差别只有几个数量级,通常约大几千倍.所以静磁屏蔽总有些漏磁.为了达到更好的屏蔽效果,可采用多层屏蔽,把漏进空腔里的残余磁通量一次次地屏蔽掉.所以效果良好的磁屏蔽一般都比较笨重.但是,如果要制造绝对的“静磁真空”,则可以利用超导体的迈斯纳效应.即将一块超导体放在外磁场中,其体内的磁感应强度B永远为零.超导体是完全抗磁体,具有最理想的静磁屏蔽效果,但目前还不能普遍应用.电磁屏蔽电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有电磁屏蔽电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有其中μ和ζ分别为屏蔽材料的磁导率和电导率.若电视频率f=100 MHz,对铜导体(ζ=5.8×107/ ·m,μ≈μo=4π×10-7H/m)可求出d=0.00667mm.可见良导体的电磁屏蔽效果显著.如果是铁(ζ=107/ ·m)则d=0.016mm.如果是铝(ζ=3.54×107/ ·m)则d=0.0085mm.为了得到有效的屏蔽作用,屏蔽层的厚度必须接近于屏蔽物质内部的电磁波波长(λ=2πd).如在收音机中,若f=500kHz,则在铜中d=0.094mm(λ=0.59mm).在铝中d=0.12mm(λ=0.75mm ).所以在收音机中用较薄的铜或铝材料已能得到良好的屏蔽效果.因为电视频率更高,透入深度更小些,所需屏蔽层厚度可更薄些,如果考虑机械强度,要有必要的厚度.在高频时,由于铁磁材料的磁滞损耗和涡流损失较大,从而造成谐振电路品质因素Q值的下降,故一般不采用高磁导率的磁屏蔽,而采用高电导率的材料做电磁屏蔽.在电磁材料中,因趋肤电流是涡电流,故电磁屏蔽又叫涡流屏蔽.在工频(50Hz)时,铜中的d=9.45mm,铝中的d=11.67mm.显然,采用铜、铝已很不适宜了,如用铁,则d=0.172mm,这时应采用铁磁材料.因为在铁磁材料中电磁场衰减比铜、铝中大得多.又因是低频,无需考虑Q值问题.可见,在低频情况下,电磁屏蔽就转化为静磁屏蔽.电磁屏蔽和静电屏蔽有相同点也有不同点.相同点是都应用高电导率的金属材料来制作;不同点是静电屏蔽只能消除电容耦合,防止静电感应,屏蔽必须接地.而电磁屏蔽是使电磁场只能透入屏蔽体一薄层,借涡流消除电磁场的干扰,这种屏蔽体可不接地.但因用作电磁屏蔽的导体增加了静电耦合,因此即使只进行电磁屏蔽,也还是接地为好,这样电磁屏蔽也同时起静电屏蔽作用.综上所述,静电屏蔽、静磁屏蔽、电磁屏蔽的物理内容、物理条件、屏蔽作用是不同的,所用材料也要从具体情况出发.但它们都是屏蔽电磁场,是有本质联系的.软磁材料基本概念所谓软磁材料,特指那些矫顽力小、容易磁化和退磁的磁性材料.所谓的软,指这些材料容易磁化,在磁性上表现“软”.软磁材料的用途非常广泛.因为它们容易磁化和退磁,而且具有很高的导磁率,可以起到很好的聚集磁力线的作用,所以软磁材料被广泛用来作为磁力线的通路,即用作导磁材料,例如变压器、传感器的铁芯,磁屏蔽罩,特殊磁路的轭铁等.这里,介绍几种常用的软磁材料和用它们做成的常见元器件.常用软磁材料:硅钢片:硅钢是含硅量在3%左右、其它主要是铁的硅铁合金.硅钢片大量用于中低频变压器和电机铁芯,尤其是工频变压器.硅钢的特点是具有常用软磁材料中最高的饱和磁感应强度(2.0T以上),因此作为变压器铁芯使用时可以在很高的工作点工作(如工作磁感值1.5T).但是,硅钢在常用的软磁材料中铁损也是最大的,为了防止铁芯因损耗太大而发热,它的使用频率不高,一般只能工作在20KHz以下.硅钢通常是薄片状的,这是为了在制造变压器铁芯时减小铁芯的涡流损失.目前硅钢片主要分热轧和冷轧两大类.所谓热轧硅钢,是把硅钢板坯在850度以上加热后轧制,然后再进行退火.由于轧制温度高,所轧制出来的硅钢片都是各向同性的,也就是说硅钢片的磁性在各个方向上相同.这种各向同性的硅钢也叫做无取向硅钢.无取向硅钢大量应用在电机中的定子或者转子.因为要制造电机定子和转子,就要在大的硅钢片上冲压出圆形的零件.这时总是希望硅钢片沿圆周方向磁性一致,所以要用无取向硅钢.为了获得更好的磁性能,后来人们发明了冷轧硅钢片,即在较低温度下轧制,再退火.冷轧取向硅钢片是其中的代表.冷轧取向硅钢片首先对板坯进行冷轧,使得材料内部产生很多结构缺陷.在随后的退火过程中,材料发生结构上的变化(称为再结晶),这种变化会使硅钢片在某个方向上磁性能非常好,也就是说磁性能和方向有关,因此被称为取向硅钢.在最终使用时,让铁芯中的磁力线沿磁性能最好的方向通过,这样便可以最大限度地发挥硅钢片的磁性能潜力.例如,在变压器中,铁芯材料的磁力线是沿一个方向通过的,如果把硅钢片适当裁剪,然后卷绕成铁芯,使得铁芯周长方向恰好是硅钢片磁性能最好的方向,那么铁芯的导磁率就会很高,容易磁化,能量损耗小,最终提高了变压器效率. 我国对硅钢片的编号是:热轧硅钢片D(如D31指含硅3.1%的热轧硅钢);冷轧硅钢片DT;高磁感取向硅钢片Q和QG.这些材料的磁性能可以从相关的书籍和手册中得到.坡莫合金:坡莫合金指铁镍合金,其含镍量的范围很广,在35%-90%之间.坡莫合金的最大特点是具有很高的弱磁场导磁率.它们的饱和磁感应强度一般在0.6--1.0T之间.最简单的坡莫合金是铁镍两种元素组成的合金,通过适当的轧制和热处理,它们能够具备高导磁率,同时也可以合理搭配铁和镍的含量,获得比较高的饱和磁感应强度.但是,这种坡莫合金的电阻率低,力学性能不好,所以实际应用并不很多.目前大量应用的坡莫合金是在铁镍的基础上添加一些其它元素,例如钼、铜等.添加这些元素的目的是增加材料的电阻率,以减小做成铁芯后的涡流损失.同时,添加元素也可以提高材料的硬度,这尤其有利于作为磁头等有磨损的应用.坡莫合金的生产过程比较复杂.例如,板材轧制的工艺、退火温度、时间、退火后的冷却快慢等都对材料最终的磁性能有很大影响.我国的坡莫合金牌号是1JXX.其中,J表示“精密合金”,“1”表示软磁,后面的数字为序号,通常表示合金中的含镍量.例如1J50、1J851等.坡莫合金具有高的导磁率,所以常常用在中高频变压器的铁芯或者对灵敏度有严格要求的器件中,例如高频(数十KHz)开关电源变压器、精密互感器、漏电开关互感器、磁屏蔽、磁轭等.软磁铁氧体:铁氧体是一系列含有氧化铁的复合氧化物材料(或者称为陶瓷材料).铁氧体的特点是饱和磁感应强度很低(0.5T以下),但导磁率比较高,而且电阻率很高(这时因为铁氧体是由很小的颗粒压制成的,颗粒之间的接触不好,所以导电不佳),因此非常有利于降低涡流损耗.正因为如此,铁氧体能够在很高的频率下(可以达到兆Hz甚至更高)使用,而它的饱和磁感应强度低,因此不适合在低频下使用.铁氧体最广泛的用途是高频变压器铁芯和各种电感铁芯.常用软磁元器件:变压器:所谓变压器,就是利用电磁感应实现交流电压变换的器件.变压器的原理已经在“电磁感应”中说明.因为变压器的铁芯处于不断变化的电磁场中,铁芯材料的磁化强度和磁感应强度也是不断改变的.这就自然要求铁芯材料对这种变化的阻力小,变化足够灵敏.所以,几乎对所有的变压器铁芯,都要求导磁率高.同时,交变的电磁场必然会在铁芯中产生能量损耗(例如涡流),所有还要求材料的铁损低,以降低铁芯的温升,提高变压器效率.变压器的形式和品种繁多.在不同的场合,变压器的工作方式大不相同,所以对变压器铁芯的具体要求也存在很大差别.低频变压器:工作频率较低(例如低于1KHz)一般地,工作点较低时电流和电压都是正弦波.由于频率低,铁芯损耗不大,所以铁芯的工作磁感可以设计得比较高.因此这时需要高饱和磁感的软磁材料作铁芯,例如硅钢.硅钢片作为配电变压器铁芯时,工作磁感可以达到1.4T以上.铁基非晶合金作为变压器铁芯时,工作点可以达到1.3T.为了提高变压器效率,要求铁芯材料的铁损低,同时要求材料导磁率高,以减小初级线圈的激磁电流,降低因线圈电阻带来的损耗(称为铜损).高频变压器:随着技术的进步,高频电源已经大量应用.之所以发展高频电源,是因为传统的工频电源效率不高.从电磁感应原理不难推出,变压器铁芯所能够传输的功率与磁通变化的频率成正比.因此,如果提高变压器的工作频率,那么变压器铁芯的体积便可以大幅度缩小,重量减轻,并且提高电源的效率,降低各种损耗.所以,自从七十年代以来,高频电源的发展非常迅猛.但另一方面,工作频率的提高会导致变压器铁芯铁损的急剧增大.要解决这个问题,一是降低铁芯的工作磁感,二是采用更好的软磁材料.通常,高频变压器铁芯不能再使用硅钢片,而是要用损耗更小的铁镍合金(坡莫合金)、铁氧体或者非晶合金滤波电感、扼流圈及电抗器:在稳压电源和开关电源中,为了消除晶体管整流产生的巨大纹波、得到平滑的直流输出而使用的器件.我们知道,电感就是一个通交流电的螺线管线圈(可以含有铁芯).由于线圈在通电的瞬间会产生感应电压,而该感应电压的反向是反抗所通电流形成的磁通,因此电感器件对变化的电流存在一种阻碍作用,使其不能通过,这称为感抗.所通信号变化越快,感抗就越大,因此电感器件的特点是信号的频率越高,器件对该信号的阻碍就越强.如果对电感通上一个直流信号,那么器件对信号没有阻碍.电感器件对交流电的阻碍作用使用在电源上,安装在整流后的电路中,可以挡住交流信号,而让直流信号通过,仿佛是把交流信号过滤掉了.所以,电感(或者电感和其它元器件的组合)又称为滤波器. 因为电感铁芯工作在交直流叠加状态,所以铁芯不但要承受交流信号的磁化,而且还有直流电流的磁化(称为偏磁).这时,铁芯既要有较高的导磁率,用来产生电感量,以阻止交流信号的通过,又要防止因直流信号的偏磁导致铁芯被磁化到饱和.为了做到这一点,经常采用的手段是把铁芯切口,这样可以使铁芯在较大直流电流磁化时不饱和.另外就是采用粉末做的铁芯.粉末铁芯一般是用软磁材料的粉末和粘接剂、绝缘剂压制成的.由于粉末颗粒之间被粘接剂和绝缘剂隔离开来,铁芯虽然被压制成了一个整体,但实际上磁路是断开的,就好象在铁芯的磁路上开了许多小小的切口,这样也就防止了铁芯被磁化饱和.一.关于CAD辅助设计软件与网络分析仪对于高频电路设计,当前已经有了很好的CAD类软件,其强大的功能足以克服人们在设计经验方面的不足及繁琐的参数检索与计算,再配合功能强大的网络分析仪,按理应该是稍具经验者便能完成质量较好的射频部件.但是,实际中却不是这回事.CAD设计软件依靠的是强大的库函数,包含了世界上绝大部分无线电器件生产商提供的元器件参数与基本性能指标.不少射频工程师错误地认为:只要利用该工具软件进行设计,就不会有多大问题.但实际结果却总是与愿望相反,原因是他们在错误认识下放弃高频电路设计基本概念的灵活应用及基本设计原则的应用经验积累,结果在软件工具的应用中常犯下基本应用错误.射频电路设计CAD软件属于透明可视化软件,利用其各类高频基本组态模型库来完成对实际电路工作状态的模拟.至此,我们已经可以明白其中的关键环节棗高频基本组态模型有两类,一类属于集中参数形态之元器件模型,另一类属于常规设计中的局部功能模型.于是存在如下方面问题:(1)元器件模型与CAD软件长期互动发展,日趋完善,实际中可以基本相信模型的*真度.但元器件模型所考虑的应用环境(尤其是元器件应用的电环境)均为典型值.多数情况下,必须利用经验确定系列应用参数,否则其实际结果有时甚至比不借助CAD软件的设计结果相差更远.(2)CAD软件中建立的常规高频基本组态模型,通常限于目前应用条件下可预知的方面,而且只能局限于基本功能模型(否则产品研发无须用人,仅靠CAD一手包办而诞生各类产品).(3)特别值得注意的是:典型功能模型的建立,是以典型方式应用元器件并以典型完善的工艺方式构造(包括PCB构造)下完成的,其性能也达到“典型”的较高水平.但在实际中,就是完全模仿,也与模型状态相差甚远.原因是:尽管选用的元器件及其参数一致,但它们的组合电环境却无法一致.在低频电路或数字电路中,这种相差毫厘的情况妨碍不大,但在射频电路中,往往发生致命的错误.(4)在利用CAD软件进行设计中,软件的容错设计并不理睬是否发生与实际情况相违背的错误参数设置,于是,按照其软件运行路径给出一理想的结果,实际中却是问题百出的结果.可以知道其关键错误环节在于没有利用射频电路设计的基本原则去正确应用CAD软件.(5)CAD软件仅仅属于设计辅助工具,利用其具备的实时模拟功能、强大的元器件模型库及其函数生成功能、典型应用模型库等等方面来简化人们的繁琐设计与计算工作,。

电磁屏蔽基本原理介绍

电磁屏蔽基本原理介绍

电磁屏蔽基本原理介绍电磁屏蔽是指通过采取一定的措施,将电磁辐射或电磁波的干扰降至可接受的水平的过程。

在现代社会中,电磁辐射已经成为无处不在的存在,如电视、手机、电脑等电子设备都会产生电磁辐射。

然而,过高的电磁辐射会对人体和其他电子设备造成不良影响,因此电磁屏蔽就显得尤为重要。

电磁屏蔽的基本原理可以归纳为两个方面:屏蔽材料和屏蔽结构。

1. 屏蔽材料:屏蔽材料是指用于隔离电磁辐射的材料,常见的屏蔽材料包括金属、导电涂料、导电纤维等。

这些材料具有良好的导电性能,能够吸收或反射电磁波,从而降低电磁辐射的强度。

金属是一种常用的屏蔽材料,如铜、铝等。

金属具有良好的导电性和反射性,能够有效地吸收和反射电磁波。

常见的金属屏蔽材料有金属屏蔽罩、金属屏蔽板等。

导电涂料是一种将导电材料加入到涂料中形成的涂层,具有良好的导电性能。

通过在电子设备的外壳或电路板上涂覆导电涂料,可以形成一层导电膜,起到屏蔽电磁辐射的作用。

导电纤维是一种将导电材料织入纤维中形成的材料,具有良好的导电性能和柔软性。

导电纤维可以用于制作电磁屏蔽布料,可以用于制作电子设备的屏蔽罩或服装等。

2. 屏蔽结构:屏蔽结构是指通过设计合理的结构来实现电磁屏蔽的效果。

常见的屏蔽结构包括屏蔽罩、屏蔽壳、屏蔽膜等。

屏蔽罩是一种金属或导电塑料制成的外壳,可以将电子设备完全包裹在内,从而阻挡电磁波的传播。

屏蔽罩通常具有开口和连接器,以便电子设备与外界进行通信。

屏蔽壳是一种金属或导电塑料制成的外壳,可以将电子设备的关键部件包裹在内,从而阻挡电磁波的干扰。

屏蔽壳通常具有开口和密封装置,以便维修和保养。

屏蔽膜是一种将导电材料涂覆在基材上形成的薄膜,可以用于电子设备的屏蔽。

屏蔽膜具有柔软性和可塑性,可以根据需要进行剪裁和粘贴,方便实现电磁屏蔽。

总结:电磁屏蔽是通过屏蔽材料和屏蔽结构来降低电磁辐射的干扰。

屏蔽材料具有良好的导电性能,能够吸收或反射电磁波;屏蔽结构通过设计合理的结构来实现电磁屏蔽的效果。

电磁屏蔽及相关知识.doc

电磁屏蔽及相关知识.doc

电磁屏蔽及相关知识1. EMC(电磁兼容性)定义:EMC性能表示为在一定的时间、频率、电磁空间的范围内,某设备或单元与其它设备或单元,在所述范围内“和平共处”能力的大小,换句话说:电磁兼容是一台设备在所处的环境中能满意地工作的能力,它既不对其它设备造成干扰,也不受其它干扰源的影响。

2.干扰源:2.1干扰的形式:A.电磁干扰(EMI)B.射频干扰(RFI)是电磁干扰的一种特殊形式C.光、热和X射线是电磁能量的其它特殊形式。

RFI/EMI源可以划分为两类:·天然干扰源—例如雷电放电;·人为干扰源—它可以进一步划分为有意和无意干扰源,有意辐射信号来源于电源开关,焊接设备和射频加热器,实际上,所有电子和电气设备都不同程度的产生辐射干扰。

2.2电磁干扰分类:A.传导干扰: 通过信号线、天线馈线、电源线、甚至通过接地线进行传导。

B.耦合干扰: 在具有某些互阻抗的元件、电路或设备之间耦合,通过这种互阻抗,一个电路中的电流或电压能在另一电路中引起电流或电压。

C.辐射干扰: 通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板,以及机壳的非理想连接面等进行辐射。

比如: 电视和广播雷达发射机等等.但要注意一点: 电磁干扰需要两个基本条件:电磁能量源和对这个源产生的特定幅度、频率的能量敏感的器件,称为敏感器。

也就是说每一种干扰源只相对于它的敏感器产生干扰.如:电视和广播航空导航系统雷达发射机广播和电视接收机3. 法规和标准我们在产品设计时, 对于不同类型的电子设备及不同的销售国家有不同的法规和标准,一定要符合该国家的最低要求. 对于设备工程师,了解不同市场中对电子设备的EMC法规和标准的知识是十分必要的。

现在有许多关于产品辐射和传导发射限制的国家标准和国际标准。

有些还规定了对各种干扰的最低敏感度要求。

虽然一个产品要获得市场的成功,满足这些标准是必要的,但符合这些标准是自愿的。

电磁屏蔽基本原理介绍要点

电磁屏蔽基本原理介绍要点

在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。

为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。

在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。

屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。

由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。

在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。

屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强1(1)和加入屏蔽体后,辐射干扰源传输到空间同一点(P)的场强2(2)之比,用dB(分贝)表示。

图1 屏蔽效能定义示意图屏蔽效能表达式为(dB) 或(dB)工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。

由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。

因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。

图2 两类基本源在空间所产生的叠加场远近场的划分是根据两类基本源的场随1/r(场点至源点的距离)的变化而确定的,为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。

【电磁兼容】第6章 屏蔽技术

【电磁兼容】第6章 屏蔽技术

截止波导管的设计步骤
SE
fc f SE
孔 洞 的 泄 漏 不 能 满 足 屏 蔽 要 求
确 定 截 止 波 导 管 的 截 面 形 状










的 5f 的









计 算 截 止 波 导 管 的 截 面 尺 寸
由 确 定 截 止 波 导 管 的 长 度
通风口的处理
穿孔金属板
截止波导通风板
饱和 最大磁导率
起始磁导率
磁场强度 H
低频强磁场的屏蔽
高导磁率材料:饱和
低导磁率材料:屏效不够
低导磁率材料 高导磁率材料
加工的影响
100 80 60
40
20 10
跌落前 跌落后
100
1k
10k
第4节 电磁场的屏蔽原理
• 电磁屏蔽是指利用屏蔽 体阻止高频电磁能量在 空间的传播
• 电磁屏蔽的原理
• 反射损耗 • 吸收损耗 • 多次反射损耗
实心材料屏蔽效能的计算
入射波
SE = R1 + R2 + A+B = R+ A+B
场强
R1
B
吸收损耗A
R2
距离
吸收损耗的计算
0.37E0
入射电磁波E0 t
剩余电磁波E1
E1 = E0e-t
=E0e-t/
A = 20 lg ( E0 / E1 ) = 20 lg ( e t / )
f
3 108 / 2r
综合屏蔽效能 (0.5mm铝板)
屏蔽效能 (dB)
250

磁屏蔽的基本原理

磁屏蔽的基本原理

磁屏蔽的基本原理
磁屏蔽是一种常见的电磁兼容(EMC)技术,用于减少电子设备对外部磁场的敏感度,或者减少电子设备产生的磁场对周围环境的影响。

磁屏蔽的基本原理是通过设计和应用磁性材料,来吸收、偏转或者反射磁场,从而达到减少磁场对设备的影响的目的。

磁屏蔽的基本原理主要包括以下几个方面:
1. 磁性材料的选择,磁屏蔽通常使用铁、镍、钴等具有良好磁导性能的材料。

这些材料能够有效地吸收和偏转磁场,从而减少磁场对设备的影响。

2. 磁屏蔽结构的设计,磁屏蔽结构的设计是磁屏蔽的关键。

通过合理的结构设计,可以使磁性材料得到最大程度的利用,从而达到最佳的磁屏蔽效果。

3. 磁屏蔽材料的应用,磁性材料通常以覆盖层、屏蔽罩、屏蔽板等形式应用在设备的关键部位,如电源线、传感器、电路板等。

这些磁屏蔽材料能够有效地减少磁场的影响,提高设备的抗干扰能力。

4. 磁屏蔽的测试和验证,磁屏蔽的效果需要通过测试和验证来进行评估。

常见的测试方法包括磁场测量、屏蔽效果测试等。

只有通过有效的测试和验证,才能确保磁屏蔽的效果达到预期的要求。

总之,磁屏蔽的基本原理是通过合理选择磁性材料,设计合理的屏蔽结构,并将磁性材料应用在设备的关键部位,从而达到减少磁场对设备的影响的目的。

通过测试和验证,可以确保磁屏蔽的效果达到预期的要求,提高设备的抗干扰能力,保障设备的正常工作和可靠性。

磁屏蔽技术在电子设备、航空航天、通信、医疗等领域都有广泛的应用,对提高设备的抗干扰能力和可靠性具有重要意义。

随着科技的不断进步,磁屏蔽技术也在不断创新和发展,为各行各业提供更加可靠和稳定的电子设备和系统。

电磁屏蔽基础理论

电磁屏蔽基础理论

防止或者减少电磁波侵入空间某些部位的措施。

通常的办法是用金属网或者金属壳将产生电磁波的区域与需防止侵入的区域隔开。

例如某些仪器或仪表常安装在金属箱中,又如高电压实验室的墙壁内及室顶中常埋设有金属的屏蔽网,以防止或减少它所受到的干扰及它对其余区域的干扰。

常选择有较高的电导率和磁导率的导体作为屏蔽物的材料。

因为高导电性材料在电磁波的作用下将产生较大的感应电流。

这些电流按照楞次定律将削弱电磁波的透入。

采用的金属网孔愈密,直到采用整体的金属壳,屏蔽的效果愈好,但所费材料愈多。

高导磁性的材料可以引导磁力线较多地通过这些材料,而减少被屏蔽区域中的磁力线。

屏蔽物通常是接地的,以免积累电荷的影响。

电磁波向大块金属透入时将不断衰减,直到衰减为零。

衰减的程度随着材料的电导率、磁导率及电磁波频率的增加而加大。

屏蔽的要求较高时往往采用多层屏蔽。

例如有时采用铸铁、坡莫合金、电解铜 3种材料制成多层屏蔽,以满足导电、导磁等要求。

但是实现完全的屏蔽是很难办到的,因为被屏蔽的区域与其余区域之间往往仍需要有电路的连接,引线与引线、引线与外壳之间总存在着绝缘间隙,仍然为电磁波提供通道。

即使对于完全封闭的金属壳,在频率极低的外部电磁场作用下,理论上内部的磁通密度并不为零。

电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减。

从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小。

导体表面的场量最大,愈深入导体内部,场量愈小。

这种现象也称为趋肤效应。

利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置。

它比静电、静磁屏蔽更具有普遍意义。

电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段。

合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备。

如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音。

音频馈线用屏蔽线也是这个道理。

电磁屏蔽专业技术

电磁屏蔽专业技术

电磁屏蔽技术————————————————————————————————作者:————————————————————————————————日期:电磁干扰及其屏蔽1、屏蔽的基本概念屏蔽就是用导电或导磁材料制成的盒、壳、板、栅等结构形式, 将电磁千扰场限制在一定的空间范围内, 使干扰场经过屏蔽体时受到很大衰减,从而抑制电磁干扰源对相关设备或空间的干扰。

屏蔽是抑制电磁干扰源的有力措施之一。

从屏蔽的侧重范围可大体分为电屏蔽、磁屏蔽和电磁场屏蔽三种:(1)电屏蔽, 即对静电或电场的屏蔽, 防止或抑制寄生电容祸合, 隔离静电或电场干扰。

(2)磁屏蔽, 即磁场屏蔽。

用于防止磁感应,抑制寄生电感藕合, 隔离磁场干扰。

(3)电磁场屏蔽, 用于防止和抑制高频电磁场电磁波的屏蔽。

(4)屏蔽效能, 即屏蔽前后空间某点的电磁场强度之比, 常用分贝数表示。

2、电场屏蔽2.1静电屏蔽静电干扰分为静电场感应作用和静磁场藕合作用。

当某电子元器件或电路上具有电荷时, 在其空间就会产生电场当这些电荷流动时, 在其周围空间还同时产生磁场。

这种电场和磁场作用到其周围邻近的电路或元件时就将产生感应电流和电压, 这些感应电流和电压又反过来影响原来电路或元件中的电流或电压。

在用电设备中通过电场和磁场产生的寄生感应干扰, 统称为静电干扰。

静电干扰可通过静电屏蔽来抑制。

设导体A带有正电荷, 则其邻近导体B将由于静电感应而带负电荷, 如图1(a)。

如图1(b), 如果将导体A屏蔽, 屏蔽体外侧将感应出与A等量的正电荷, 导体A不直接影响导体B, 但导体B同样因屏蔽体的电场感应而带负电,导体B如何才能避免导体A的静电干扰呢?如图(C), 将屏蔽体接地, 消除屏蔽体的外电场,导体B才能免受导体A的静电干扰。

可见, 将屏蔽体良好接地是防止静电干扰的关键, 接地电阻愈低愈好。

2.2 近场电屏蔽近场电屏蔽的一种方法就是在感应源与受感器之间加一接地良好的金属板, 把感应源的寄生电容短接到地, 通过抑制寄生电容祸合, 达到电场屏蔽的目的。

第5章-电磁屏蔽技术分析

第5章-电磁屏蔽技术分析
13
怎样屏蔽低频磁场?
低频磁场 高导电材料
高导磁材料
低频 磁场
吸收损耗小 (趋肤深度大)
反射损耗小(低阻抗)
高导电材料
方法1:高导磁率材料的表面 增加一层高导电率材料,增加 电场波在屏蔽材料与空气界面
上的反射损耗。
方法2 :低磁阻通路旁路。 关 键:采用高导磁率材料,
减少磁阻。
H
1
14
磁屏蔽材料的频率特性
17
良好电磁屏蔽的关键因素
屏蔽体的 导电连续
有无穿过屏 蔽体的导体
不要忘记: 选择适当的屏蔽材料
你知道吗: 与屏蔽体接地与否无关
屏蔽效能高的屏蔽体
屏蔽体的完整性(完整、封闭)+导电的连续性是屏蔽的关键
18
实际屏蔽体的问题
实际机箱上有许多泄漏源:不同部分结合处的缝隙 通风口、显示窗、按键、指示灯和电缆线、电源线等
压力的场合
导电布衬垫 柔软,需要压 湿热环境中容易 不能提供较大压力的场合 力小 价格低 损坏
26
电磁密封衬垫的主要参数
➢ 屏蔽效能 (关系到总体屏蔽效能)
➢ 回弹力(关系到盖板的刚度和螺钉间距) ➢ 最小密封压力(关系到最小压缩量) ➢最大形变量(关系到最大压缩量) ➢ 压缩永久形变(关系到允许盖板开关次数) ➢ 电化学相容性(关系到屏蔽效能的稳定性)
影响屏蔽效能的两个因素:屏蔽体的导电连续性和穿过 屏蔽机箱的导线(危害更大=辐射+传导)。
缝隙
电源线
显示窗
调节旋钮
电缆插座
通风口

键盘

线
指示灯 19
远场区孔洞的屏蔽效能
H
h
l
l
当电磁波入射到一个缝隙孔洞时,其作用相当于一个偶极天线 (第二章已讲述)

电磁屏蔽理论基础

电磁屏蔽理论基础

1 K 2 2 t B 20 lg 1 ( ) e 1 K
K Z2 / Z1
Z3 Z1
良导体
① 吸收损耗 A (dB)
A 20 lg e
rt
20 lg e
t
20 t lg e 8.98 t 0.131t f r r (dB)
r r
——相对于铜的电导率,铜:

Zm 3.69 107 r f / r 6.68 105 Ω
Zwm 2π0 fr 0.08Ω Zm
0.1 A 0.2 A B 10 lg 1 2 10 cos(0.23 A ) 10 1.81dB

SE Rm +A+B 49.4+7.24 1.81 54.83dB
( ) :

(1 j )
r f f 3.69107 r
77

传播常数:
j j c
j j
良导体:

j j (1 j) f
波阻抗:
a. 远场:
Zw
0 120 377Ω 0
7
r f / r
媒质本 征阻抗
Zw 120π 377Ω
1 2 f 0 r
Rw 168.1 10lg(r f / r )
频率升高,反射损耗减小
b.近场:电场源
Z we
r 2 3 Re 321.7 10lg( r f ) r
频率升高,反射损耗增加
c.近场:磁场源
12 23e
t

1 1 2123e2 t
80
故:

电磁屏蔽

电磁屏蔽
场和磁场同时屏蔽,即电磁屏蔽。
原理: 1. 原理与分析方法 ①表面反射(R— 反射损耗)
② 屏蔽材料吸收衰减(A— 吸收损耗) ③ 多次反射(B — 多次反射修正) 分析方法:
t
① 电磁感应原理.计算屏蔽体上的涡流的屏蔽效应来计算屏
蔽效能
② 平面波的反射与折射来计算反射与衰减
③ 等效传输线理论计算反射与衰减
电磁 屏蔽
1、电磁屏蔽是解决电磁兼容问题的重要手段之一 2、什么是屏蔽 为什么要屏蔽 怎样实现屏蔽
3、生活中常见的例子
4、本次讲述的缺陷
目录
概述 电屏蔽 磁屏蔽 电磁屏蔽 屏蔽设计要点 结束语
概述
电子设备
1. 屏蔽的含义: 屏蔽是用导电或导磁材料将需要防护区 域封闭起来,以抑制和控制电场、磁场和电 磁波由一个区域对另一个区域的感应和辐射, 将电磁干扰能量限制在一定范围内。 2. 目的: • • 限制内部能量泄漏出内部区域 (主动屏蔽) 防止外来的干扰能量进入某一区域(被动屏蔽)
注意屏蔽体的结构设计,缝隙或长条通风孔循着磁场 方向分布 对于强磁场的屏蔽可采用多层屏蔽,防止发生磁饱和 对于多层屏蔽,应注意磁路上的彼此绝缘
电磁屏蔽的设计要点 1. 确定屏蔽效能
可根据电磁兼容标准要求来确定 2. 材料的选择 根据电磁特性:

近场电屏蔽——高导电率金属,接地; 近场低频磁场屏蔽——高导磁率材料,不接地;
5. 屏蔽效能( SE )
屏蔽效能:屏蔽体的性质的定量评价。
定义:
电屏蔽效能
磁屏蔽效能
E0 SE (dB) 20 log E1
H0 SE (dB) 20 log H1
E0、H0 —— 未加屏蔽时空间中某点的电(磁)场; E1、H1—— 加屏蔽后空间中该点的电(磁)场;

电磁屏蔽

电磁屏蔽

电磁屏蔽一、概述电磁屏蔽(electromagnetic shield)是指利用导电材料或铁磁材料制成的部件对大容量汽轮发电机定子铁心端部进行屏蔽,以降低由定子绕组端部漏磁在结构件中引起的附加损耗与局部发热的措施。

在通信方面屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。

具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。

二、原理许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。

在这种概念指导下结果是失败。

因为,电磁屏蔽与屏蔽体接地与否并没有关系。

真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。

屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。

这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。

解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。

这就像在流体容器的缝隙处填充橡胶的道理一样。

这种弹性导电填充材料就是电磁密封衬垫。

在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。

实际上这是不确切的。

因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。

当波长远大于开口尺寸时,并不会产生明显的泄漏。

三、影响屏蔽材料的屏蔽效能的因素1.材料的导电性和导磁性越好,屏蔽效能越高,但实际的金属材料不可能兼顾这两个方面,例如铜的导电性很好,但是导磁性很差;铁的导磁性很好,但是导电性较差。

应该使用什么材料,根据具体屏蔽主要依赖反射损耗、还是吸收损耗来决定是侧重导电性还是导磁性;2.频率较低的时候,吸收损耗很小,反射损耗是屏蔽效能的主要机理,要尽量提高反射损耗;3.反射损耗与辐射源的特性有关,对于电场辐射源,反射损耗很大;对于磁场辐射源,反射损耗很小。

电磁屏蔽技术基础知识

电磁屏蔽技术基础知识

电磁屏蔽技术基础知识Thalez Group电磁屏蔽技术基础知识⽬录1.电磁屏蔽的⽬的2.区分不同的电磁波3.度量屏蔽性能的物理量——屏蔽效能4.屏蔽材料的屏蔽效能估算5.影响屏蔽材料的屏蔽效能的因素6.实⽤屏蔽体设计的关键7.孔洞电磁泄漏的估算8.减少缝隙电磁泄漏的措施9.电磁密封衬垫的原理10.电磁密封衬垫的选⽤11.常⽤电磁密封衬垫的⽐较12.电磁密封衬垫使⽤的注意事项13.电磁密封衬垫的电化学腐蚀问题14.与衬垫性能相关的其它环境问题15.截⽌波导管的概念与应⽤16.截⽌波导管的注意事项与设计步骤17.⾯板上的显⽰器件的处理18.⾯板上的操作器件的处理19.通风⼝的处理20.线路板的局部屏蔽21.屏蔽胶带的作⽤和使⽤⽅法电磁波是电磁能量传播的主要⽅式,⾼频电路⼯作时,会向外辐射电磁波,对邻近的其它设备产⽣⼲扰。

另⼀⽅⾯,空间的各种电磁波也会感应到电路中,对电路造成⼲扰。

电磁屏蔽的作⽤是切断电磁波的传播途径,从⽽消除⼲扰。

在解决电磁⼲扰问题的诸多⼿段中,电磁屏蔽是最基本和有效的。

⽤电磁屏蔽的⽅法来解决电磁⼲扰问题的最⼤好处是不会影响电路的正常⼯作,因此不需要对电路做任何修改。

⼀.电磁屏蔽的⽬的同⼀个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。

因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。

电磁波有很多分类的⽅法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平⾯波。

电磁波的波阻抗ZW 定义为:电磁波中的电场分量E与磁场分量H的⽐值: ZW = E / H电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。

距离辐射源较近时,波阻抗取决于辐射源特性。

若辐射源为⼤电流、低电压(辐射源的阻抗较低),则产⽣的电磁波的波阻抗⼩于377,称为磁场波。

若辐射源为⾼电压、⼩电流(辐射源的阻抗较⾼),则产⽣的电磁波的波阻抗⼤于377,称为电场波。

距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空⽓为377Ω。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Thalez Group电磁屏蔽技术基础知识目录1.电磁屏蔽的目的2.区分不同的电磁波3.度量屏蔽性能的物理量——屏蔽效能4.屏蔽材料的屏蔽效能估算5.影响屏蔽材料的屏蔽效能的因素6.实用屏蔽体设计的关键7.孔洞电磁泄漏的估算8.减少缝隙电磁泄漏的措施9.电磁密封衬垫的原理10.电磁密封衬垫的选用11.常用电磁密封衬垫的比较12.电磁密封衬垫使用的注意事项13.电磁密封衬垫的电化学腐蚀问题14.与衬垫性能相关的其它环境问题15.截止波导管的概念与应用16.截止波导管的注意事项与设计步骤17.面板上的显示器件的处理18.面板上的操作器件的处理19.通风口的处理20.线路板的局部屏蔽21.屏蔽胶带的作用和使用方法电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。

另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。

电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。

在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。

用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。

一.电磁屏蔽的目的同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。

因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。

电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平面波。

电磁波的波阻抗ZW 定义为:电磁波中的电场分量E与磁场分量H的比值: ZW = E / H电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。

距离辐射源较近时,波阻抗取决于辐射源特性。

若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。

若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。

距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。

电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。

注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。

例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。

在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。

二.区分不同的电磁波三.度量屏蔽性能的物理量——屏蔽效能屏蔽体的有效性用屏蔽效能(SE)来度量。

屏蔽效能的定义如下:SE=20lg(E1/E2) (dB)式中:E1=没有屏蔽时的场强 E2=有屏蔽时的场强如果屏蔽效能计算中使用的是磁场强度,则称为磁场屏蔽效能,如果屏蔽效能计算中使用的是电场强度,则称为电场屏蔽效能。

屏蔽效能的单位是分贝(dB),下表是衰减量与屏蔽效能的对应关系:一般民用产品机箱的屏蔽效能在40dB以下,军用设备机箱的屏蔽效能一般要达到60dB,TEMPEST设备的屏蔽机箱屏蔽效能要达到80dB以上。

屏蔽室或屏蔽舱等往往要达到100dB。

100dB以上的屏蔽体是很难制造的,成本也很高。

四.屏蔽材料的屏蔽效能估算电磁波在穿过屏蔽体时发生衰减是因为能量有了损耗,这种损耗可以分成两个部分:反射损耗和吸收损耗。

反射损耗:当电磁波入射到不同媒质的分界面时,就会发生反射,使穿过界面的电磁能量减弱。

由于反射现象而造成的电磁能量损失称为反射损耗,用字母R表示。

当电磁波穿过一层屏蔽体时要经过两个界面,要发生两次反射。

因此,电磁波穿过屏蔽体时的反射损耗等于两个界面上的反射损耗总和。

反射损耗的计算公式如下:R=20lg(ZW/ZS) (dB)式中: ZW=入射电磁波的波阻抗 ,ZS=屏蔽材料的特性阻抗|ZS|=3.68×10-7( fμr/σr)1⁄2式中: f=入射电磁波的频率 ,μr=相对磁导率,σr=相对电导率吸收损耗:电磁波在屏蔽材料中传播时,会有一部分能量转换成热量,导致电磁能量损失,损失的这部分能量成为屏蔽材料的吸收损耗,用字母A表示,计算公式如下:A=3.34t(fμrσr)1/2 (dB)多次反射修正因子: 电磁波在屏蔽体的第二个界面(穿出屏蔽体的界面)发生反射后,会再次传输到第一个界面,在第一个界面发射再次反射,而再次到达第二个界面,在这个界面会有一部分能量穿透界面,泄漏到空间。

这部分是额外泄漏的。

应该考虑进屏蔽效能的计算。

这就是多次反射修正因子,用字母B表示,大部分场合,B都可以忽略。

SE = R + A + B五.影响屏蔽材料的屏蔽效能的因素从上面给出的屏蔽效能计算公式可以得出一些对工程有实际指导意义的结论,根据这些结论,我们可以决定使用什么屏蔽材料,注意什么问题。

下面给出的结论,初步一看,会感到杂乱无章,无从应用,但是结合上面第三和第四条仔细分析后,会发现这些结论都有着内在联系。

深入理解下面的结论对于结构设计是十分重要的。

1)材料的导电性和导磁性越好,屏蔽效能越高,但实际的金属材料不可能兼顾这两个方面,例如铜的导电性很好,但是导磁性很差;铁的导磁性很好,但是导电性较差。

应该使用什么材料,需根据具体屏蔽主要依赖反射损耗、还是吸收损耗来决定是侧重导电性还是导磁性;2)频率较低的时候,吸收损耗很小,反射损耗是屏蔽效能的主要机理,要尽量提高反射损耗;3)反射损耗与辐射源的特性有关,对于电场辐射源,反射损耗很大;对于磁场辐射源,反射损耗很小。

因此,对于磁场辐射源的屏蔽主要依靠材料的吸收损耗,应该选用磁导率较高的材料做屏蔽材料。

4)反射损耗与屏蔽体到辐射源的距离有关,对于电场辐射源,距离越近,则反射损耗越大;对于磁场辐射源,距离越近,则反射损耗越小;正确判断辐射源的性质,决定它应该靠近屏蔽体,还是远离屏蔽体,是结构设计的一个重要内容。

5)频率较高时,吸收损耗是主要的屏蔽机理,这时与辐射源是电场辐射源还是磁场辐射源关系不大。

6)电场波是最容易屏蔽的,平面波其次,磁场波是最难屏蔽的。

尤其是(1KHz以下)低频磁场,很难屏蔽。

对于低频磁场,要采用高导磁性材料,甚至采用高导电性材料和高导磁性材料复合起来的材料。

六.实用屏蔽体设计的关键一般除了低频磁场外,大部分金属材料可以提供100dB以上的屏蔽效能。

但在实际工作中,要达到80dB以上的屏蔽效能也是十分困难的。

这是因为,屏蔽体的屏蔽效能不仅取决于屏蔽体的结构。

屏蔽体要满足电磁屏蔽的基本原则。

电磁屏蔽的基本原则有两个:1)屏蔽体的导电连续性:这指的是整个屏蔽体必须是一个完整的、连续的导电体。

这一点在实现起来十分困难。

因为一个完全封闭的屏蔽体是没有任何使用价值的。

一个实用的机箱上会有很多孔缝造成屏蔽:通风口、显示口、安装各种调节杆的开口、不同部分的结合缝隙等。

由于这些导致导电不连续的因素存在,如果设计人员在设计时没有考虑如何处理,屏蔽体的屏蔽效能往往很低,甚至没有屏蔽效能。

2)不能有直接穿过屏蔽体的导体:一个屏蔽效能再高的屏蔽机箱,一旦有导线直接穿过屏蔽机箱,其屏蔽效能会损失99.9%(60dB)以上。

但是,实际机箱上总会有电缆穿出(入),至少会有一条电源电缆存在,如果没有对这些电缆进行妥善的处理(屏蔽或滤波),这些电缆会极大的损坏屏蔽体。

妥善处理这些电缆是屏蔽设计的重要内容之一(穿过屏蔽体的导体的危害有时比孔缝的危害更大)。

电磁屏蔽体与接地无关:对于静电场屏蔽,屏蔽体是必须接地的。

但是对于电磁屏蔽,屏蔽体的屏蔽效能却与屏蔽体接地与否无关,这是设计人员必须明确的。

在很多场合,将屏蔽体接地确实改变了电磁状态,但这是由于其它一些原因,而不是由于接地导致屏蔽体的屏蔽效能发生改变。

七.孔洞电磁泄漏的估算在远场区:SE=100-20lgL-20lgf+20lg(1+2.3lg(L/H))若L≥λ/2,则SE=0 dB ,这时,孔洞是完全泄漏的。

式中:L=缝隙的长度(mm)H=缝隙的宽度(mm)f=入射电磁波的频率(MHz)这个公式是在远场区中,最坏的情况下(造成最大泄漏的极化方向)的屏蔽效能(实际情况下屏蔽效能可能会更大一些)。

在近场区:若辐射源是电场辐射源 SE=48+20lgZC-20lgLf+20lg(1+2.3lg(L/H))若辐射源是磁场辐射源 SE=20lg(πD/L)+20lg(1+2.3lg(L/H))式中:ZC=辐射源电路的阻抗(Ω)D=孔洞到辐射源的距离(m)L、 H =孔洞的长、宽(mm)f=电磁波的频率(MHz)注意:1)近场区,孔洞的泄漏与辐射源的特性有关。

当辐射源是电场源时,孔洞的泄漏远比远场小(屏蔽效能高),当辐射源是磁场源时,孔洞的泄漏远比远场大(屏蔽效能低)。

2)对于近场,磁场辐射源的场合,屏蔽效能与电磁波的频率没有关系,因此,千万不要认为辐射源的频率较低(许多磁场辐射源的频率都较低),而掉以轻心。

3)这里对磁场辐射源的假设是纯磁场源,因此可以认为是一种在最坏条件下,对屏蔽效能的保守计算。

对于磁场源,屏蔽与孔洞到辐射源的距离有关,距离越近,则泄漏越大。

这点在设计时一定要注意,磁场辐射源一定要远离孔洞。

多个孔洞的情况:当N个尺寸相同的孔洞排列在一起,并且相距很近(距离小于λ/2)时,造成的屏蔽效能降低10 lgN。

在不同面上的孔洞不会增加泄漏,因为其辐射方向不同,这个特点可以在设计中用来避免某一个面的辐射过强。

如上所述,屏蔽体上的孔洞是造成屏蔽体泄漏的主要因素之一。

孔洞产生的电磁泄漏并不是一个固定的数,而是与电磁波的频率、种类、辐射源与孔洞的距离等因素有关。

八.减少缝隙电磁泄漏的措施一般情况下,屏蔽机箱上的不同部分的结合处不可能完全接触,只能在某些点接触上,这构成了一个孔洞阵列。

缝隙是造成屏蔽机箱屏蔽效能降级的主要原因之一。

在实际工程中,常常用缝隙的阻抗来衡量缝隙的屏蔽效能。

缝隙的阻抗越小,则电磁泄漏越小,屏蔽效能越高。

缝隙处的阻抗:缝隙的阻抗可以用电阻和电容并联来等效,因为接触上的点相当一个电阻,没有接触的点相当于一个电容,整个缝隙就是许多电阻和电容的并联。

低频时,电阻分量起主要作用;高频时,电容分量起主要作用。

由于电容的容抗随着频率升高降低,因此如果缝隙是主要泄漏源,则屏蔽机箱的屏蔽效能优势随着频率的升高而增加。

但是,如果缝隙的尺寸较大,高频泄漏也是缝隙泄漏的主要现象。

影响电阻成分的因素:影响缝隙上电阻成分的因素主要有:接触面积(接触点数)、接触面材料(一般较软的材料接触电阻较小)、接触面的清洁程度、接触面的压力(压力要足以使接触点穿透金属表层氧化层)和氧化腐蚀等。

影响电容成分的因素:根据电容器原理,很容易知道:两个表面之间距离越近,相对的面积越大,则电容越大。

解决缝隙泄漏的措施:1)增大接触面的重合面积,这可以减小电阻、增加电容。

相关文档
最新文档