实验三-遥感图像的几何校正和裁剪

合集下载

实验遥感影像的几何校正

实验遥感影像的几何校正

实验遥感影像的几何校正简介遥感技术是通过获取遥感影像和数据对地面资源进行探测、监测和评估的一种空间信息技术。

遥感影像是一种带有几何畸变的二维投影图像,其中可能出现伸缩、扭曲、歪斜等问题。

因此,为了更精确地进行信息提取和分析,需要进行几何校正以使影像像素遵循真实地物在地球表面的几何位置分布规律。

实验遥感影像的几何校正是遥感技术学习中重要的一环,本文将介绍实验遥感影像的几何校正的基本概念和方法。

几何校正的基本概念几何校正主要包括校正模型的建立和校正参数的计算。

在进行几何校正之前,需要先确定地面控制点(GCP)和栅格坐标,然后以GCP为基础建立校正模型,计算校正参数,最终将原始影像像素校正为符合真实地物在地球表面位置分布规律的栅格影像。

几何校正的具体流程如下:1.确定GCP:GCP是几何校正的基础,一般应该选取光线影响较小的地物进行标注,例如道路交叉口、建筑物边角等。

标注时需要保证正方向一致,以实现最佳标注效果。

2.建立校正模型:GCP标注完成后,需要以这些GCP为基础建立几何校正模型。

在建立校正模型时,可以使用任意至少3个GCP的组合,其中至少包含一个控制点。

常用的校正模型有仿射变换模型、投影变换模型和多项式变换模型等。

3.计算校正参数:建立校正模型后,需要基于该模型计算校正参数,一般来说,校正参数是指实际地物坐标和栅格影像像素坐标之间的转换参数。

根据不同的校正模型,计算校正参数的方法也不同。

4.生成新影像:计算出校正参数后,需要进行像素级别的校正,使原始影像符合真实地物在地球表面位置分布规律,从而生成新的栅格影像。

几何校正的常用方法实验遥感影像的几何校正方法包括:仿射变换模型在实验中,仿射变换模型适用于影像伸缩和旋转校正,可以通过3个或4个GCP实现,其变换公式为:Xa = a1X + a2Y + a3Ya = a4X + a5Y + a6其中,Xa和Ya为校正后的像素坐标,X和Y为未校正的像素坐标,a1、a2、a3、a4、a5、a6是校正参数。

遥感实验报告裁剪拼接(3篇)

遥感实验报告裁剪拼接(3篇)

第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。

二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。

遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。

裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。

三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。

四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。

2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。

3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。

4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。

五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。

2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。

3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。

六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。

在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。

七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。

ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

实验三 ENVI影像的几何校正本专题旨在介绍如何在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的几何校正。

遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。

一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。

遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。

几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。

本实验将针对不同的数据源和辅助数据,提供以下几种校正方法:Image to Map几何校正:通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入、从矢量文件中获取。

地形图校正就采取这种方法。

Image to image几何校正:以一副已经经过几何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另一幅栅格影像,使相同地物出现在校正后的图像相同位置。

大多数几何校正都是利用此方法完成的。

Image to image自动图像配准:根据像元灰度值自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。

当同一地区的两幅图像由于各自校正误差的影像,使得图上的相同地物不重叠时,可利用此方法进行调整1. 地形图的几何校正(1)打开并显示地形图从ENVI主菜单中,选择file →open image file,打开3-几何校正\地形图\G-48-34-a.JPG。

(2)定义坐标从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。

在image to Map Registration对话框中,点击并选择New,定义一个坐标系从ENVI主菜单栏中,选择Map →Registration →Select GCPs: Image to Map。

遥感几何校正实验报告

遥感几何校正实验报告

遥感几何校正实验报告遥感几何校正实验报告一、引言遥感技术在地球科学和环境研究中起着至关重要的作用。

遥感图像的几何校正是确保图像的准确性和可用性的关键步骤之一。

本实验旨在通过对遥感图像进行几何校正,探索校正过程中的方法和技术。

二、实验目的1. 了解遥感图像的几何校正原理和意义;2. 掌握几何校正的基本步骤和技术;3. 分析几何校正对遥感图像质量的影响。

三、实验材料与方法1. 实验材料:- 遥感图像数据集;- 几何校正软件。

2. 实验方法:- 导入遥感图像数据集;- 对图像进行几何校正;- 分析校正前后图像的差异。

四、实验过程与结果1. 数据导入:在几何校正软件中导入遥感图像数据集,确保图像能够正确显示。

2. 几何校正:根据几何校正软件的操作指南,按照以下步骤进行几何校正:a) 选择合适的控制点:根据图像中的特征选择控制点,以确保校正的准确性;b) 校正图像:通过对控制点进行配准,对图像进行几何校正;c) 评估校正结果:查看校正后的图像,与原始图像进行对比,评估校正的效果。

3. 结果分析:a) 观察校正后的图像:比较校正前后图像的差异,注意观察图像的形状、位置和尺度是否发生变化;b) 分析校正效果:根据观察结果,评估几何校正的效果。

若图像形状、位置和尺度变化较小,说明校正效果较好;c) 讨论校正结果:讨论校正结果对后续遥感分析的影响,如地物提取、变化检测等。

五、讨论与总结几何校正是遥感图像处理的重要步骤,能够提高图像的准确性和可用性。

本实验通过对遥感图像进行几何校正,探索了校正过程中的方法和技术。

校正后的图像形状、位置和尺度变化较小,说明校正效果较好。

几何校正结果对后续遥感分析有重要影响,能够提高地物提取和变化检测的精度。

然而,几何校正过程中仍存在一些挑战和限制。

例如,控制点的选择和配准的准确性对校正结果至关重要。

此外,校正过程中可能出现图像畸变和信息丢失的情况,需要在校正结果的评估中进行综合考虑。

ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

实验三 ENVI影像的几何校正本专题旨在介绍如何在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的几何校正。

遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。

一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。

遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。

几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。

本实验将针对不同的数据源和辅助数据,提供以下几种校正方法:Image to Map几何校正:通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入、从矢量文件中获取。

地形图校正就采取这种方法。

Image to image几何校正:以一副已经经过几何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另一幅栅格影像,使相同地物出现在校正后的图像相同位置。

大多数几何校正都是利用此方法完成的。

Image to image自动图像配准:根据像元灰度值自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。

当同一地区的两幅图像由于各自校正误差的影像,使得图上的相同地物不重叠时,可利用此方法进行调整1. 地形图的几何校正(1)打开并显示地形图从ENVI主菜单中,选择file →open image file,打开3-几何校正\地形图\G-48-34-a.JPG。

(2)定义坐标从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。

在image to Map Registration对话框中,点击并选择New,定义一个坐标系从ENVI主菜单栏中,选择Map →Registration →Select GCPs: Image to Map。

遥感数据图像处理实验三、遥感图像的几何校正与裁剪

遥感数据图像处理实验三、遥感图像的几何校正与裁剪

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image)2.图像几何校正(Geometric Correction)3.图像拼接处理(Mosaic Imgaes)4.生成三维地形表面(3D Surfacing)1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。

1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例)规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标)→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→裁剪范围(Subset Definition):ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围)→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→OK(关闭Subset对话框,执行图像裁剪)方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标)→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit →输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪)方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框)→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers):2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置:→AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框)→单击OK(退出Subset对话框,执行图像裁剪)→单击OK(退出Modeler对话框,完成图像裁剪)1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

遥感图像的几何校正实验报告

遥感图像的几何校正实验报告

实验报告实验名称:遥感图像的几何校正课程名称:《遥感导论》教师:院系:矿业工程学院班级:姓名:遥感图像的几何校正实验报告一、实验目的通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。

二、实验环境操作系统:windows 8.1软件:ENVI 4.3三、实验内容ERDAS 软件中图像预处理模块下的图像几何校正几何校正的必要性:由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。

产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。

几何校正的原理:遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。

在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数:25243210'25243210'y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=,得到变换后的图像坐标(x ′,y ′)与参考图像坐标的关系,从而对图像进行几何校正。

实验步骤:运行ENVI 软件第一步:显示图像文件从ENVI 主菜单中,选择File —— Open Image File 当Enter Data Filename文件选择对话框出现后,选择进入当前目录下的"几何校正"子目录,从列表中选择bldr_tm.img和bldr_sp.img文件。

遥感影像裁剪实验报告

遥感影像裁剪实验报告

一、实验目的1. 掌握遥感图像几何校正的基本方法和步骤;2. 掌握图像拼接的原理,以及两幅图像拼接的时候需要的条件,掌握拼接技术;3. 学习通过 ERDAS 进行遥感图像规则分幅裁剪,不规则分幅裁剪和掩膜处理。

二、实验内容1. 规则分幅裁剪:根据行列号、左上角和右下角两点坐标、图像文件、ROI 矢/量文件等获取矩形裁剪范围,进行规则裁剪。

2. 不规则分幅裁剪:通过手动绘制裁剪范围和外部矢量数据裁剪图像两种方法进行不规则裁剪。

3. 掩膜处理:对全州县东山瑶族自治乡七宝坑研究区TM影像进行掩膜处理,提取研究区信息。

三、实验步骤1. 规则分幅裁剪:(1)打开ENVI软件,选择File>Open Image File,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)选择Import File,导入裁剪范围数据。

(4)在ENVI主菜单栏中选择File>Save As,保存裁剪后的图像。

2. 不规则分幅裁剪:(1)打开ENVI软件,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)在ENVI界面中,使用鼠标绘制裁剪范围或导入外部矢量数据。

(4)在ENVI主菜单栏中选择File>Save As,保存裁剪后的图像。

3. 掩膜处理:(1)打开ENVI软件,导入124-42双牌幅TM影像数据。

(2)选择File>Save File As>ENVI Standard,创建新文件。

(3)在ENVI界面中,使用掩膜工具对研究区进行掩膜处理。

(4)在ENVI主菜单栏中选择File>Save As,保存掩膜后的图像。

四、实验结果与分析1. 规则分幅裁剪:成功获取124-42双牌幅TM影像数据的矩形裁剪范围,裁剪后的图像符合预期。

遥感实验报告几何校正

遥感实验报告几何校正

遥感实验报告几何校正1. 引言遥感技术在地球科学领域中起着至关重要的作用,可以提供大量的空间信息。

然而,由于地球曲率、地表高程、投影效果等原因,遥感图像中存在一定的几何失真。

为了解决这些问题,需要对遥感图像进行几何校正,以确保图像的精确度和准确性。

本实验旨在通过软件工具进行遥感图像的几何校正,以便更好地分析和解读遥感图像所提供的信息。

2. 实验目标本实验的主要目标是对给定的遥感图像进行几何校正,达到以下几个具体目标:1. 去除图像中的地理畸变,使图像上的物体形状和比例与现实世界相符合;2. 将图像从传感器坐标系转换到地理坐标系,使图像可以与其他地理数据进行叠加分析;3. 评估图像几何校正的效果,验证几何校正的有效性。

3. 实验步骤3.1 数据准备在实验开始前,我们需要准备一幅遥感图像和其对应的地理坐标信息。

安装并配置合适的遥感图像处理软件,以便进行后续的操作。

3.2 图像去畸变首先,需要对图像进行去畸变处理,以消除地理畸变对图像造成的影响。

根据实际情况选择适合的去畸变算法,对图像进行处理,并保存处理后的图像。

3.3 坐标系转换将处理后的图像从传感器坐标系转换到地理坐标系。

选择合适的坐标转换方法和参数,进行坐标系转换,并保存转换后的图像。

3.4 评估几何校正效果通过对比几何校正前后的图像,评估几何校正的效果。

可以采用多种指标进行评估,如虚拟控制点对比、图像配准精度等。

4. 实验结果经过上述实验步骤,我们成功实现了对遥感图像的几何校正。

通过图像去畸变和坐标系转换,我们得到了一幅与现实世界相符合的几何校正后的遥感图像。

评估几何校正效果时,通过与虚拟控制点对比和图像配准精度的测量,我们发现几何校正的效果符合预期,并且达到了较好的精度要求。

5. 结论与展望本实验通过对遥感图像进行几何校正,成功消除了图像中的地理畸变,实现了图像的空间精确定位。

几何校正的结果具有较高的精度和准确性,可以为后续的遥感图像分析和解读提供可靠的基础。

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

61-实验三遥感图像预处理(波段合成、裁剪与拼接)

实验三遥感图像预处理(波段合成、裁剪与拼接)一、 实验目的通过实验了解整个图像的预处理过程,从而加深对遥感图像计算机处理的内容及概念的理解。

二、 实验内容1.自定义坐标系2.波段合成(图像融合)3.图像镶嵌(图像拼接)4.图像裁剪三、 实验数据1. TM-30m.img2. bldr_sp.img3. Mosaic1.img4. Mosaic2.img5. bhtmsat.img6. can_tmr.img7. qb_boulder_msi.img8. qb_boulder_pan.img四、 实验操作原理及步骤遥感图像预处理主要包括图像几何校正、图像融合、图像镶嵌、图像裁剪等过程,其处理顺序一般如下图所示。

图 1一般图像预处理流程1.自定义坐标系一般国外商业软件坐标系都分为标准坐标系和自定义坐标系两种。

我国情况较为特殊,往往需要自定义坐标系。

所以,在ENVI第一次使用时,需要对系统自定义北京54坐标系西安80坐标系。

1.1添加参考椭球体找到ENVI系统自定义坐标文件夹—C:\Program Files\ITT\IDL708\products\envi46\map_proj。

根据每台电脑安装的路径以及版本不同而略有不同。

以记事本形式打开ellipse.txt,将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入文本末端。

(这里主要是为了修改克拉索夫斯基因音译而产生的错误,以便让其他软件识别;另外中间的逗号必须是英文半角。

)1.2添加基准面以记事本格式打开datum.txt,将“Beijing-54, Krasovsky, -12, -113, -41”和“Xi'an-80,IAG-75,0,0,0”加入文本末端。

1.3定义坐标定义完椭球参数和基准面后就可以在ENVI中以我们定义的投影参数新建一个投影信息(Customize Map Projections),在编辑栏里分别定义投影类型、投影基准面、中央子午线、缩放系数等,最后添加为新的投影信息并保存。

遥感图像的几何校正原理

遥感图像的几何校正原理

遥感图像的几何校正原理遥感图像的几何校正是指通过对图像进行空间几何变换,将其投影到地球表面,使得图像中的每一点对应到地球表面上的一个准确位置。

这样做的目的是为了消除图像中由于遥感器在获取图像时的姿态、高度、地球自转等因素造成的图像畸变,并且使得图像能够与地理信息系统中的地图数据进行精确叠加,从而实现对地理空间信息的准确提取和分析。

在遥感图像处理中,几何校正是非常重要的一环,对于后续的遥感信息提取、地图制图和空间分析等应用具有重要的意义。

遥感图像的几何校正原理主要包括以下几个方面:1. 姿态校正:遥感器在获取图像时往往会受到外部因素的影响,导致姿态不稳定,从而引起图像中的位置畸变。

因此,需要对图像进行姿态校正,使得图像中的每一个像素能够按照准确的空间位置进行定位。

姿态校正的主要方法包括使用姿态角信息进行校正、使用GPS/惯导等辅助信息进行姿态测量以及使用地面控制点进行姿态精确校正。

2. 像元定位:在遥感图像中,像元是指图像中的一个最小单元,通常对应于地面上的一个小区域。

在进行几何校正时,需要将图像中的像元与地球表面上的实际位置进行对应,这就需要确定每个像元的准确位置,即像元的定位。

像元定位的主要方法包括使用地面控制点进行像元定位、通过建立像元坐标系系统进行像元定位以及通过地形起伏对像元进行补偿。

3. 系统误差校正:在遥感图像获取过程中,会受到一些系统误差的影响,例如大气、地形或者地面表面的变化等因素会导致图像中的位置畸变。

因此,需要进行系统误差校正,以消除这些系统误差对图像的影响,从而提高图像的精度和准确度。

系统误差校正的主要方法包括对图像进行大气校正、进行地形效应校正以及通过地面控制点进行系统误差校正。

4. 投影变换:在进行几何校正时,需要对图像进行投影变换,将其投影到地球表面上的准确位置。

投影变换的最常用方法是采用地图投影方法,将图像投影到地图数据的坐标系上,从而实现图像与地图数据的叠加和精确对应。

遥感图像的几何校正

遥感图像的几何校正

5.采集地面检查点(Ground Check Point)
以上采集的 GCP的类型均为控制点,用于控制计算,建立转换模型 及多项式方程。下面所要采集的GCP类型是检查点
6.计算转换模型(Compute Transformation)
在控制点采集过程中,一般是设置为自动转换计算模型。所以随着 控制点采集过程的完成,转换模型就自动计算生成。
在Set Geo-Correction Input File对话框中,需要确定校正图像, 有两种选择情况:
其一:首先确定来自视窗(From Viewer),然后选择显示图像视 窗。
其二:首先确定来自文件(From Image File),然后选择输入图 像。
三、遥感图像几何校正的途径
1.显示图像文件(Display Image Files)
4.采集地面控制点(Ground Control Point)
GCP的具体采集过程: 在图像几何校正过程中,采集控制点是一项非常重要和繁重的工 作,具体过程如下: (1)在GCP工具对话框中,点击Select GCP图表,进入GCP选 择状态; (2)在GCP数据表中,将输入GCP的颜色设置为比较明显的黄色。 (3)在Viewer1中移动关联方框位置,寻找明显的地物特征点, 作为输入GCP。 ( 4 ) 在 GCP 工 具 对 话 框 中 , 点 击 Create GCP 图 标 , 并 在 Viewer3中点击左键定点,GCP数据表将记录一个输入GCP,包括其 编号、标识码、X坐标和Y坐标。
2.启动几何校正模块(Geometric Correction Tool)
(1)Viewer1菜单条:Raster→ Geometric Correction→打 开Set Geometric Model对话框

遥感影像处理实验报告(3篇)

遥感影像处理实验报告(3篇)

第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。

遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。

本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。

二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。

2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。

3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析:对分类结果进行分析,评估分类精度。

三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。

- 确保影像数据具有较好的质量和分辨率。

2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。

- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。

- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。

3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。

- 对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。

- 对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析- 对分类结果进行分析,评估分类精度。

- 分析分类结果中存在的问题,并提出改进措施。

四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。

2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。

3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。

ENVI遥感图像的几何校正

ENVI遥感图像的几何校正

遥感图像的几何校正(配准)1.实验目的与任务:(1)了解几何校正的原理;(2)学习使用ENVI软件进行几何校正;2.实验设备与数据:设备:遥感图像处理系统ENVI数据:TM数据3 几何校正的过程:注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配准或几何校正。

1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY2(右)。

BASE图像指参考图像而warp则指待校正影像。

选择OK!4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方,就可以选择ADD POINT添加点了。

(PS:看不清出别忘记放大)如果要放弃该点选择右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。

选好4个点后就可以预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参考影像相对应的位置,而后再进行适当的调整并选点。

5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII..当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII...6.接下来就是进行校正了:在ground control points.对话框中选择:options->warp file(as image to map)在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters对话框:首先点change proj按钮,选择坐标系然后更改象素的大小,如果本身就是你所需要大小则不用改了最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了遥感图像的监督分类1 实验的目的和任务1)理解遥感图像计算机分类的原理和方法;2)掌握监督分类的步骤和方法。

实验三遥感图像裁剪、镶嵌、融合

实验三遥感图像裁剪、镶嵌、融合

实验四遥感图像的拼接、裁剪、融合一、实习目的与要求·掌握图像拼接的原理,以及两幅图像拼接的时候需要的条件,掌握拼接技术;·学习通过ERDAS进行遥感图像规则分幅裁剪,不规则分幅裁剪的实验过程,能够对一幅大的遥感图像按照要求裁剪图像;·掌握不同分辨率图像的特性,详细理解各种融合方法的原理,以及各种融合方法的优缺点,能够根据不同的应用目的合理选择融合方法,掌握融合的操作过程;二、实验原理·图像拼接(mosaic image)是具有地理参考的若干相邻的图像合并成一幅图像或一组图像,需要拼接的图像必须含有地图投影也就是说图像必须经过几何校正处理,虽然所有的输入图像可以具有不同的投影类型,不同的象元大小,但必须有相同的波段数。

在进行图像拼接时需要确定一幅参考影像,参考图像作为图像拼接的基准,决定输出图像的地图投影和象元大小和数据类型。

·在实际工作中,经常需要根据研究区域的工作范围对图像进行分幅裁剪,erdas中可以对图像进行规则分幅裁剪(rectangle subset)和不规则分幅裁剪(pdygon subset),根据实际的应用对图像选择不同的裁剪方式。

·分辨率融合是对不同分辨率的摇杆图像进行融合处理,使处理后的图像既具有较好的空间分辨率又具有多光谱特征,从而增加图像的可解译性。

图像分辨率融合的关键是融合前两幅图像的配准以及融合方法的选择只有将不同空间分辨率的图像进行精确的配准才能达到满意的融合效果,而融合的方法的选择主要是由被融合图像的特性以及融合的目的进行选择的,同时需要对融合的原理有正确的认识。

三、实验内容和实验过程本次试验主要包括遥感图像拼接、遥感图像分幅裁剪、遥感图像分辨率融合。

下面分别介绍:1.图像拼接实验步骤:(1)启动图象拼接工具,在ERDAS图标面板工具条中,点击Dataprep/Data preparation/Mosaicc lmages—打开Mosaic Tool 视窗。

遥感图像几何精校正实验报告

遥感图像几何精校正实验报告

遥感图像几何精校正姓名:池佩佩班级:环境科学101学号:实验名称:遥感图像的几何精校正。

实验目的:1.了解和熟悉envi软件的几何校正的原理2.熟悉和掌握envi软件的几何校正的功能和使用方法;3.对自己的图像先找到投影,再另存一幅图像,去掉投影,在其它软件中旋转一角度,用原先的图像作为参考对旋转后的图像进行几何校正,使得其比较精确。

实验原理:几何校正,主要方法是采用多项式法,机理是通过若干控制点,建立不同图像间的多项式控件变换和像元插值运算,实现遥感图像与实际地理图件间的配准,达到消减以及消除遥感图像的几何畸变。

多项式几何校正激励实现的两大步:1. 图像坐标的空间变换:有几何畸变的遥感图像与没有几何畸变的遥感图像,其对应的像元的坐标是不一样的,如下图1右边为无几何畸变的图像像元分布图,像元是均匀且不等距的分布。

为了在有几何畸变的图像上获取无几何畸变的像元坐标,需要进行两图像坐标系统的空间装换。

图1:图像几何校正示意图在数学方法上,对于不同二维笛卡儿坐标系统间的空间转换,通常采用的是二元n次多项式,表达式如下:其中x, y为变换前图像坐标, u, v为变换后图像坐标, aij , bij为多项式系数, n = 1, 2,3, ⋯。

二元n次多项式将不同坐标系统下的对应点坐标联系起来, ( x, y )和( u, v )分别应不同坐标系统中的像元坐标。

这是一种多项式数字模拟坐标变换的方法,一旦有了该多项式,就可以从一个坐标系统推算出另一个坐标系统中的对应点坐标。

如何获取和建立二元n次多项式,即二元n次多项式系数中a和b的求解,是几何校正成败的关键。

数学上有一套完善的计算方法,核心是通过已知若干存在于不同图像上的同名点坐标,建立求解n次多项式系数的方程组,采用最小二乘法,得出二元n次多项式系数。

不同的二元n次多项式,反映了几何畸变的遥感图像与无几何畸变的遥感图像间的像元坐标的对应关系, 其中哪种多项式是最佳的空间变换模拟式,能达到图像间坐标的完全配准,是需要考虑和分析的。

遥感图像的几何校正实验

遥感图像的几何校正实验

遥感图像的几何校正实验报告1.实验目的和内容实验目的:学习如何使用ENVY中Image to Image和Image to Map两种方法对遥感图像进行几何校正,了解掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。

实验内容:(1)Image to Image以一副已经经过几何校正的栅格文件作为基准图,通过从二幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置。

(2)Image to Map通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入,从矢量文件中获取或者从栅格文件中获取。

2.图像处理方法和流程A. Image to Image1、加载影像,打开ENVI,file>>open image file,加载待校正影像与已校正影像。

2、启动几何校正模块Map>>Registration>>Select GCPs:Image to Image,打开几何校正模块。

选择显示base.img文件的Display为基准影像(Base Image),显示uncorrected.img文件的Display为待校正影像(Warp Image)点击OK3、采集地面控制点(1)在两个Display中找到相同区域,在Zoom窗口中,将十字光标定位到相同点上,点击Ground Control Points Selection上的Add Point按钮,将当前找到的点加入控制点列表。

(2)当选择一定数量的控制点之后(至少3个),利用自动找点功能。

Ground Control Points Selection窗口>>Options>>Automatically Generate Tie Points,选择一个匹配波段点击OK。

(3)Image to Image GCP List窗口>>Options>Order Points by Error,按照RMS值有高到底排序。

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正遥感图像是通过无人机、卫星等远距离设备获取的地球表面的影像数据。

这些图像在应用于地理信息系统(GIS)、自然资源管理、城市规划等领域时,需要进行几何校正与纠正。

本文将介绍什么是遥感图像的几何校正与纠正,以及如何进行这一过程。

一、什么是遥感图像的几何校正与纠正遥感图像的几何校正与纠正是指将采集到的图像数据与真实地理空间进行对应,消除由于图像采集时摄像设备、地球曲率等因素引起的形变、偏移等问题,使图像具备准确的地理位置信息。

这项工作是遥感技术应用的重要环节,对于后续的数据分析和信息提取至关重要。

二、遥感图像的几何校正与纠正方法1. 外方位元素法外方位元素法是利用航片或图像外方位元素(像空间坐标与地面坐标之间的变换参数)进行几何校正与纠正的方法。

在这种方法中,需要准确确定图像的摄影中心、摄影距离以及摄影方位角等相关参数,通过计算来修正图像的几何形变。

外方位元素法准确性较高,适用于相对高精度的项目。

2. 控制点法控制点法是通过在图像上选择一系列已知地理位置的控制点,在地面实地测量其坐标,然后通过像点与地理坐标的对应关系,进行几何校正与纠正的方法。

该方法的关键在于控制点的选择与测量精度,控制点越多、分布更均匀,纠正效果越好。

3. 数字高程模型(DEM)法数字高程模型法是通过使用数字高程模型数据,将遥感图像与地面实际高程进行对照校正的方法。

通过图像与DEM之间的高差计算,对图像进行几何校正与纠正。

这种方法适用于大范围的地形起伏、高程变化较大的区域。

三、遥感图像的几何校正与纠正注意事项1. 数据预处理在进行几何校正与纠正之前,需要对采集到的遥感图像进行预处理。

预处理包括影像增强、去噪、边缘检测等步骤,以提高图像质量和准确性。

2. 参考数据选择在进行校正与纠正时,需要选择适当的参考数据,以确保纠正结果的准确性。

参考数据可以包括航片、已经准确校正的图像、已知地理坐标点等。

3. 校正模型选择校正模型选择是几何校正与纠正的关键步骤之一。

遥感实验 数字图像几何校正.

遥感实验 数字图像几何校正.

遥感实验 3 数字图像几何校正一、实验目的学会几何纠正几种常用方法二、实验材料与方法某区域的遥感图像、ERDAS 软件。

三、实验内容及主要步骤纠正地形图用地形图纠正影像用影像纠正影像四、实验结果1986年 TM 数据和 2000年 ETM+数据。

附:实验指导书1、纠正地形图开始几何纠正:在 viewer 中打开待纠正的地形图、点击菜单 raster/geometric correction、在出现的界面中选择 polynomial 、 OK ;定义投影参数 :在出现的 polynomial model properties 中点击 projection 下add/change projection 、选择合适的投影参数、 apply 、 close ;选择坐标输入方式:在出现的界面中选择键盘输入; OK ;输入控制点及坐标:在图像中找到合适的坐标点 (方里网交叉点 , 用加入控制点工具在图中加入控制点、读出坐标并在 xref 和 yref 处输入正确坐标;至少输入 4个控制点;可在 GCP tool中点击 point#栏或配合 shift 键以选择一个或多个控制点并点击菜单 edit/set point type设置这些点的类型 (控制点或检查点 ; 输入足够数量控制点且精度满足要求后, 点击开始执行纠正;计算并保存校正好的地形图:在出现的界面中选择文件夹、输入纠正后文件名、选择重采样方法和像元大小, OK 。

2、由地形图校正影像在两个 viewer 中分别打开已纠正好的地形图和待纠正的影像,用前面的方法开始纠正影像、选择从地形图获取坐标;在有坐标的 viewer (地形图中点单左键;读到的投影和坐标信息用在图像中取点、在地形图中取坐标;输入足够数量控制点且精度满足要求后,点击开始执行纠正(过程同前。

3、由影像纠正影像方法同用地形图纠正图像,但找点要容易得多。

使用 2000年的 landsat pan波段数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image)2.图像几何校正(Geometric Correction)1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。

1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例)规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标)→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→裁剪范围(Subset Definition):ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围)→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→OK(关闭Subset对话框,执行图像裁剪)方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标)→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit →输出文件类型(Output Layer Type):Continuous →输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪)方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框)→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit →输出文件类型(Output Layer Type):Continuous →输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置:→AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框)→单击OK(退出Subset对话框,执行图像裁剪) →单击OK(退出Modeler对话框,完成图像裁剪)1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

(一)AOI多边形裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例)→在视窗中打开需要裁剪的图像→应用AOI工具绘制多边形可以将多边形AOI文件保存在文件中(*.aoi),也可以暂时不退出视窗,将图像与AOI多边形保留在视窗中,然后进行以下操作:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标),打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img →Coordinate Type:Map→Output:Unsigned 8 bit→Oupput:Continuous→选定Ignore Zero in Output Stats→Select Layers:2,3,4→单击AOI按钮,打开Choose AOI对话框→选定File→选择文件:2.aoi→单击OK(退出Choose AOI对话框)→单击OK(退出Subset对话框,执行图像裁剪)→单击Modeler对话框中的OK按钮完成图像裁剪(二)ArcInfo多边形裁剪(以c:\Program File\ IMAGINE 8.4\examples\gy_resample.img为例)如果是按照行政区划边界或自然区划边界进行图像的分幅裁剪,往往是首先利用ArcInfo或者ERDAS的Vector 模块绘制精确的边界多边形(Polygon),然后以ArcInfo的Polygon为边界进行图像裁剪。

对于这种情况,需要调用ERDAS其它模块的功能分两步完成。

第一步:将ArcInfo多边形转换为栅格图像文件打开Vector To Raster对话框有两种方法:方法一:ERDAS IMAGINE 8.4 图标面板菜单条:Main→Image Interpreter (或单击ERDAS IMAGINE 8.4 图标面板工具条“Interpreter”图标)→打开Image Interpreter对话框→单击Utilities→打开Utilities对话框→选择Vector To Raster→打开Vector To Raster对话框方法二:ERDAS IMAGINE 8.4 图标面板菜单条:Main→Vector (或单击ERDAS IMAGINE 8.4 图标面板工具条“Vector”图标) →打开Vector Utilities对话框→选择Vector to Raster→打开Vector to Raster对话框本例中选择前一种方法:在Vector to Raster对话框中设置下列参数:→Input Vector File(输入矢量文件名称):boundgy.shp →Vector Type(确定矢量文件类型):polygon→Use Attribute as Value(使用矢量属性值):GYBOUND_ID→Output File(输出栅格文件名称):raster.img→Data Type(栅格数据类型):Unsigned 8 bit→Layer Type(栅格文件类型):Thematic→Size Difinition(转换范围大小):ULX,ULY,LRX,LRY(缺省条件下为整个图像范围)→Units(坐标单位):Meters→Cell Size(输出像元大小):X:30/Y:30→选择Square Cell(正方形像元)→单击OK(关闭Vector To Raster对话框,执行矢量到栅格的转换)矢量图:栅格图:第二步:通过掩模运算(Mask)实现图像的不规则裁剪ERDAS IMAGINE 8.4 图标面板菜单条:Main→Image Interpreter (或单击ERDAS IMAGINE 8.4 图标面板工具条“Interpreter”图标)→Image Interpreter→Utilities→Mask→打开Mask对话框在Mask对话框中设置下列参数:→Input File(输入需要裁剪的图像文件名称):gy_resample.img→Input Mask File(输入掩模文件名称):raster.img→点击Setup Recode按钮设置裁剪区域内新值(New Value)为1,区域外取0值→选择Intersection(确定掩模区域作交集运算)→Output File(输出图像文件名称):mask.img→Output (输出数据类型):Unsigned 8 bit→单击OK(关闭Mask对话框,执行掩模运算)2.图像几何校正(Geometric Correction)几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程;而将地图坐标系统赋予图像数据的过程,称为地理参考(Georeferencing)。

相关文档
最新文档