基本初等函数讲义(超级全)

合集下载

基本初等函数讲义(超级全)

基本初等函数讲义(超级全)

一、一次函数二、二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时.宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时.常使用顶点式. ③若已知抛物线与x 轴有两个交点.且横线坐标已知时.选用两根式求()f x 更方便. (①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线.对称轴方程为,2x a=-顶点坐标是24(,)24b ac b a a-- ②当0a >时.抛物线开口向上.函数在(,]2b a -∞-上递减.在[,)2ba-+∞上递增.当2b x a =-时.2min 4()4ac b f x a -=;当0a <时.抛物线开口向下.函数在(,]2ba -∞-上递增.在[,)2b a -+∞上递减.当2bx a=-时.2max 4()4ac b f x a -=. 三、幂函数(1)幂函数的定义一般地.函数y x α=叫做幂函数.其中x 为自变量.α是常数. 过定点:所有的幂函数在(0,)+∞都有定义.并且图象都通过点(1,1).(1)根式的概念:如果,,,1nx a a R x R n =∈∈>.且n N +∈.那么x 叫做a 的n 次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈(1)对数的定义①若(0,1)xa N a a =>≠且.则x 叫做以a 为底N 的对数.记作log a x N =.其中a 叫做底数.N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =.log 1a a =.log b a a b =.(3)常用对数与自然对数常用对数:lg N .即10log N ;自然对数:ln N .即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>.那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A .值域为C .从式子()y f x =中解出x .得式子()x y ϕ=.如果对于y 在C 中的任何一个值.通过式子()x y ϕ=.x 在A 中都有唯一确定的值和它对应.那么式子()x y ϕ=表示x 是y 的函数.函数()x y ϕ=叫做函数()y f x =的反函数.记作1()x fy -=.习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域.即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=.并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上.则'(,)P b a 在反函数1()y f x -=的图象上.④一般地.函数()y f x =要有反函数则它必须为单调函数. 例题一、求二次函数的解析式例1.抛物线244y x x =--的顶点坐标是()A .(2.0)B .(2.-2)C .(2.-8)D .(-2.-8)例2.已知抛物线的顶点为( 1.2).且通过(1.10).则这条抛物线的表达式为()A .()2312y x =-- B .()2312y x =-+ C. ()2312y x =+- D.()2312y x =-+---例3.抛物线y=的顶点在第三象限.试确定m 的取值范围是( ) A .m <-1或m >2 B .m <0或m >-1 C .-1<m <0 D .m <-1例4.已知二次函数()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的两根立方和等于17求()f x 的解析式二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时.求函数223y x x =--的最大值和最小值.例6.当0x ≥时.求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时.求函数21522y x x =--的最小值(其中t 为常数).222x mx m -++三、幂函数例8.下列函数在(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是() A.23y x = B.32y x = C.23y x-= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性.并画出图象的示意图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域;(2)判断函数的奇偶性; (3)求函数的单调区间.四、指数函数的运算例11.计算122(2)-⎡⎤-⎣⎦的结果是( ) A、12C、—12例12.等于( ) A 、 B 、C 、 D 、例13.若53,83==ba .则b a233-=___________五、指数函数的性质例14.{|2},{|xM y y P y y ====.则M ∩P () A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 例15.求下列函数的定义域与值域: (1)442x y -=(2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0.1)B .(1.1)C .(2.3)D .(2.4)例17求函数y=2121x x -+的定义域和值域.并讨论函数的单调性、奇偶性.4416a 8a 4a 2a五、对数函数的运算例18.已知32a=.那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a -例19.2log (2)log log a a a M N M N -=+.则NM的值为( ) A 、41B 、4C 、1D 、4或1 例20.已知732log [log (log )]0x =.那么12x -等于( )A 、13B C D 例21.2log 13a <.则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中.在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 例23.函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称例23.求证函数)()lg f x x =是(奇、偶)函数。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点基本初等函数是指在数学中常见且重要的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

这些函数在数学中广泛应用于各种数学问题和实际应用中,对于学习和理解高等数学和物理等学科具有重要意义。

本文将对这些基本初等函数进行详细介绍。

首先,常数函数是最简单的一个函数,它的函数值始终保持不变。

常数函数的一般形式为f(x)=c,其中c是常数。

常数函数在数学中常用于表示等级和水平等不变的情况。

例如,常用的数学常数π就是一个常数函数,表示圆周长与直径之比。

其次,幂函数是一类形如f(x)=x^n的函数,其中x是变量,n是常数。

幂函数的特点是通过改变幂指数n的大小可以得到不同形状的函数图像。

比如当n为正偶数时,函数图像是一个开口朝上的平滑曲线;当n为正奇数时,函数图像是一个开口朝下的平滑曲线;当n为负数时,函数图像则是一个经过坐标轴原点的曲线。

指数函数是一类形如f(x)=a^x的函数,其中a是常数,且a大于0且不等于1、指数函数的特点是函数值随着自变量的增大而指数级增长或指数级衰减。

当a大于1时,函数图像是一个增长的指数曲线;当0小于a小于1时,函数图像是一个衰减的指数曲线。

对数函数是指数函数的反函数,它表示一些数在一个给定的底数下的指数。

对数函数的一般形式为f(x) = log_a(x),其中a是常数,且a大于0且不等于1、对数函数和指数函数是一对互逆函数,它们的图像是关于y=x对称的。

三角函数是一类周期函数,包括正弦函数、余弦函数和正切函数等。

正弦函数的一般形式为f(x) = A*sin(Bx+C),余弦函数的一般形式为f(x) = A*cos(Bx+C),正切函数的一般形式为f(x) = A*tan(Bx+C)。

其中A、B、C是常数,分别表示振幅、频率和初相位。

三角函数的图像具有周期性和对称性,常用于描述波动和周期性现象。

反三角函数是三角函数的反函数,它表示一些角度在三角函数中的对应值。

基本初等函数知识点归纳

基本初等函数知识点归纳

基本初等函数知识点归纳1.常值函数:常值函数是指在定义域上的值始终相同的函数。

常见的常值函数有恒等于0的零函数和恒等于1的单位函数。

常值函数的图像是一条与x轴平行的直线。

2.幂函数:幂函数是指形如y=x^n的函数,其中n是一个实数。

当n 为正偶数时,函数的图像在原点右侧递增;当n为正奇数时,图像在全定义域递增;当n为负数时,图像在全定义域递减。

特殊地,当n为0时,函数为常值函数13.指数函数:指数函数是形如y=a^x的函数,其中a为正实数且a≠1、指数函数的图像可以是递增或递减的曲线,具体取决于底数a的大小关系。

当a>1时,函数递增;当0<a<1时,函数递减。

指数函数特点是它们的图像都经过点(0,1)。

4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a为正实数且a ≠ 1、对数函数是指数函数的反函数,因此它们的图像是关于y = x对称的。

对数函数的图像在定义域上递增,对数函数的唯一一个特殊点是(1,0)。

5. 三角函数:三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

这些函数在三角学中起着重要的作用,并且它们的图像都是周期性的。

正弦函数和余弦函数的图像是一条在[-1,1]之间往复的波浪线,而正切函数和余切函数的图像是一条通过原点的无数个波浪线。

6. 反三角函数:反三角函数是三角函数的反函数。

反三角函数包括反正弦函数asin(x)、反余弦函数acos(x)、反正切函数atan(x)等。

它们的定义域和值域与所对应的三角函数的范围正好相反。

反三角函数的图像和所对应的三角函数的图像关于y = x对称。

以上是基本初等函数的主要内容,它们是数学中最常见的函数,不仅在实际问题中有着广泛的应用,而且还在高中数学的教学中起到了重要的作用。

通过对这些函数的学习与理解,可以更好地掌握数学知识,提高数学解题的能力。

基本初等函数第一讲

基本初等函数第一讲

2.1指数函数2.1.1指数与指数幂的运算(1)(I )复习回顾 引例:填空___=; -_____9=)0a _____(2≥=; (II )讲授新课22=4 ,(-2)2=4 ⇒ 2,-2叫4的平方根23=8 ⇒ 2叫8的立方根; (-2)3=-8⇒-2叫-8的立方根25=32 ⇒ 2叫32的5次方根 … 2n =a ⇒2叫a 的n 次方根1.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?na x =是否正确?分析过程:结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。

此时,a 的n 次方根可表示为na x =。

从而有:3273=,2325-=-,236a a =结论2:当n 为偶数时(跟平方根一样),有下列性质:正数的n 次方根有两个且互为相反数,负数没有n 次方根。

此时正数a 的n 次方根可表示为:)0a (a n >± 其中n a 表示a 的正的n 次方根,n a -表示a 的负的n 次方根。

结论3:0的n 次方根是0,记作n n a ,00即=当a=0时也有意义。

这样,可在实数范围内,得到n 次方根的性质: 3.n 次方根的性质:(板书)*)(2,12,N k kn a k n a x n n ∈⎪⎩⎪⎨⎧=±+== 其中叫根式,n 叫根指数,a 叫被开方数。

注意:根式是n 次方根的一种表示形式,并且,由n 次方根的定义,可得到根式的运算性质。

4.根式运算性质:(板书)①a a nn =)(,即一个数先开方,再乘方(同次),结果仍为被开方数。

问题2:若对一个数先乘方,再开方(同次),结果又是什么? 由所得结果,可有:(板书)②⎩⎨⎧=为偶数为奇数;n a n a a nn|,|,性质的推导(略): (Ⅳ)例题讲解 注意:根指数n 为奇数的题目较易处理,要侧重于根指数n 为偶数的运算。

基本初等函数讲义(超级全)

基本初等函数讲义(超级全)

一、一次函数之阳早格格创做二、二次函数(1)二次函数剖析式的三种形式 ①普遍式:2()(0)f x ax bx c a =++≠ ②顶面式:2()()(0)f x a x h k a =-+≠ ③二根式:12()()()(0)f x a x x x x a =--≠ (2)供二次函数剖析式的要领 ①已知三个面坐标时,宜用普遍式.②已知扔物线的顶面坐标或者与对付称轴有关或者与最大(小)值有关时,常使用顶面式.③若已知扔物线与x 轴有二个接面,且横线坐标已知时,采用二根式供()f x 更便当.(3)二次函数图象的本量①.二次函数2()(0)f x ax bx c a =++≠的图象是一条扔物线,对付称轴圆程为,2bx a =-顶面坐标是24(,)24b ac b a a-- ②当0a >时,扔物线启心进与,函数正在(,]2ba-∞-上递减,正在[,)2b a-+∞上递加,当2bx a =-时,2min 4()4ac b f x a-=;当0a <时,扔物线启心背下,函数正在(,]2b a -∞-上递加,正在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a-=.三、幂函数(1)幂函数的定义普遍天,函数y x α=喊干幂函数,其中x 为自变量,α是常数.(2)幂函数的图象过定面:所有的幂函数正在(0,)+∞皆有定义,而且图象皆通过面(1,1). 四、指数函数(1)根式的观念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 喊干a 的n 次圆根.(2)分数指数幂的观念①正数的正分数指数幂的意思是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的背分数指数幂的意思是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的背分数指数幂不意思.(3)运算本量①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r=>>∈ab a b a b r R (4)指数函数五、对付数函数(1)对付数的定义①若(0,1)x a N a a =>≠且,则x 喊干以a 为底N 的对付数,记做log a x N =,其中a 喊干底数,N喊干真数.②背数战整不对付数. ③对付数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个要害的对付数恒等式log 10a =,log 1a a =,log b a a b =.(3)时常使用对付数与自然对付数时常使用对付数:lg N ,即10log N ;自然对付数:ln N ,即log e N (其中 2.71828e =…).(4)对付数的运算本量 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈④log aNa N =⑤log log (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且(5)对付数函数(6)反函数的观念设函数()y f x =的定义域为A ,值域为C,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对付于y 正在C 中的所有一个值,通过式子()x y ϕ=,x 正在A 中皆有唯一决定的值战它对付应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=喊干函数()y f x =的反函数,记做1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的供法①决定反函数的定义域,即本函数的值域;②从本函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并证明反函数的定义域. (8)反函数的本量 ①本函数()y f x =与反函数1()y f x -=的图象关于曲线y x =对付称. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 正在本函数()y f x =的图象上,则'(,)P b a 正在反函数1()y f x -=的图象上.④普遍天,函数()y f x =要有反函数则它必须为单调函数.例题一、供二次函数的剖析式244y x x =--的顶面坐标是()A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知扔物线的顶面为(-1,-2),且通过(1,10),则那条扔物线的表白式为()A .()2312y x =-- B .()2312y x =-+C.()2312y x =+- D.()2312y x =-+-例3.扔物线y=222xmx m -++的顶面正在第三象限,试决定m的与值范畴是()A .m <-1或者m >2B .m <0或者m >-1C .-1<m <0D .m <-1()f x 共时谦脚条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的二根坐圆战等于17供()f x 的剖析式 二、二次函数正在特定区间上的最值问题例5. 当22x -≤≤时,供函数223y x x =--的最大值战最小值. 例6.当0x ≥时,供函数(2)y x x =--的与值范畴.例7.当1t x t ≤≤+时,供函数21522y x x =--的最小值(其中t 为常数).三、幂函数(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -={}0x x >的是()A.23y x = B.32y x = C.23y x -= D.32y x-=例10.计划函数y =52x 的定义域、值域、奇奇性、单调性,并绘出图象的示企图. 例10.已知函数y =42215x x --.(1)供函数的定义域、值域; (2)推断函数的奇奇性; (3)供函数的单调区间. 四、指数函数的运算122(2)-⎡⎤-⎣⎦的截止是()A、12C 、— D 、—12例12.44等于()A 、16a B 、8a C 、4a D 、2a53,83==ba,则b a233-=___________五、指数函数的本量例14.{|2},{|xM y y P y y ====,则M∩P ()A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 例15.供下列函数的定义域与值域:(1)442x y -=(2)||2()3x y =()2301x y a a a -=+>≠且的图像必通过面 ()A .(0,1)B .(1,1)C .(2,3)D .(2,4) 例17供函数y=2121x x -+的定义域战值域,并计划函数的单调性、奇奇性.五、对付数函数的运算32a =,那么33log 82log 6-用a 表示是()A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a - 例19.2log (2)log log a a a M N M N -=+,则NM 的值为()A 、41B 、4 C 、1 D 、4或者1732log [log (log )]0x =,那么12x-等于()A 、13B C D 例21.2log 13a <,则a 的与值范畴是()A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭五、对付数函数的本量例22.下列函数中,正在()0,2上为删函数的是()A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于()A 、x 轴对付称B 、y 轴对付称C 、本面对付称D 、曲线y x =对付称)()lgf x x=是(奇、奇)函数.课下做业1.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象大概是图所示的( )2.对付扔物线y=22(2)x --3与y=-22(2)x -+4的道法不精确的是()A .扔物线的形状相共B .扔物线的顶面相共C .扔物线对付称轴相共D .扔物线的启心目标差异3. 二次函数y=221xx --+图像的顶面正在()A .第一象限B .第二象限C .第三象限D .第四象限4. 如图所示,谦脚a >0,b <0的函数y=2ax bx +的图像是()5.如果扔物线y=26x x c ++的顶面正在x 轴上,那么c 的值为()A .0B .6C .3D .96.一次函数y =ax +b 与二次函数y =ax2+bx +c 正在共一坐标系中的图象大概是( )7.正在下列图象中,二次函数y=ax2+bx +c 与函数y=(ab )x 的图象大概是 ()8.若函数f(x)=(a -1)x2+(a2-1)x +1是奇函数,则正在区间[0,+∞)上f(x)是( )A .减函数B .删函数C .常函数D .大概是减函数,也大概是常函数9.已知函数y =x2-2x +3正在关区间[0,m]上有最大值3,最小值2,则m 的与值范畴是( )A .[1,+∞)B .[0,2]C .[1,2]D .(-∞,2]10、使x2>x3创造的x 的与值范畴是( )A 、x <1且x≠0B 、0<x <1C 、x >1D 、x <111、若四个幂函数y =ax ,y=bx ,y =c x ,y =d x 正在共一坐标系中的图象如左图,则a 、b 、c 、d 的大小关系是( ) A 、d >c >b >a B 、a >b >c >d C 、d >c >a >b D 、a >b >d >c12.若幂函数()1m f x x -=正在(0,+∞)上是减函数,则 ( )A .m >1B .m <1C .m =lD .不克不迭决定 13.若面(),A a b 正在幂函数()n y x n Q =∈的图象上,那么下列论断中不克不迭创造的是A .00a b >⎧⎨>⎩B .00a b >⎧⎨<⎩C.00a b <⎧⎨<⎩ D .00a b <⎧⎨>⎩14.若函数f(x)=log 12(x2-6x +5)正在(a ,+∞)上是减函数,则a 的与值范畴是( )A .(-∞,1]B .(3,+∞)C .(-∞,3)D .[5,+∞)15、设集中2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是() A 、∅ B 、T C 、S D 、有限集16、函数22log (1)y x x =+≥的值域为()A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞17、设1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则()A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>18、正在(2)log (5)a b a -=-中,真数a 的与值范畴是()A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<19、估计lg52lg2)lg5()lg2(22•++等于() A 、0 B 、1 C 、2 D 、320、已知3log 2a =,那么33log 82log 6-用a 表示是() A 、52a - B 、2a - C 、23(1)a a -+ D 、231a a --21、已知幂函数f(x)过面(2,),则f(4)的值为()A 、12B 、 1C 、2D 、81.扔物线y =8x2-(m -1)x +m -7的顶面正在x 轴上,则m =________.23-=xy 的定义域为___________.()()12m f x m x +=-,如果()f x 是正比率函数,则m=____ ,如果()f x 是反比率函数,则m=______,如果f(x)是幂函数,则m=____.14(1)x --蓄意思,则x ∈___________.35x y <=___________.25525x x y ⋅=,则y 的最小值为___________.7、若2log 2,log 3,m n a a m n a +===. 8、函数(-1)log (3-)x y x =的定义域是. 9、2lg 25lg 2lg50(lg 2)++=.1622<-+x x的解集是__________________________.282133x x --⎛⎫< ⎪⎝⎭的解集是__________________________.103,104x y ==,则10x y -=__________________________.13、已知函数3xlog x (x 0)1f (x),f[f ()]2(x 0)9>⎧=⎨≤⎩,则,的值为 14、函数2)23x (lg )x (f +-=恒过定面2、已知幂函数f (x )=23221++-p p x(p ∈Z )正在(0,+∞)上是删函数,且正在其定义域内是奇函数,供p 的值,并写出相映的函数f (x )、222(3)lg 6x f x x -=-,(1)供()f x 的定义域;(2)推断()f x 的奇奇性.a R ∈,22()()21xx a a f x x R ⋅+-=∈+,试决定a 的值,使()f x 为奇函数.5. 已知函数x 121f (x)log[()1]2=-,(1)供f(x)的定义域;(2)计划函数f(x)的删减性.。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。

函数通常用f(x)表示,其中x是自变量,f(x)是因变量。

函数有以下性质:1. 定义域和值域:函数的定义域是所有可输入的自变量的集合,值域是所有对应的因变量的集合。

2. 奇偶性:一个函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

3. 单调性:函数可以是单调递增或单调递减的。

单调递增函数满足当x1小于x2时,f(x1)小于f(x2);单调递减函数则相反。

二、常见的基本初等函数1. 幂函数:指数函数是形如y=x^n的函数,其中n是一个实数。

根据n的不同取值,幂函数可以分为多种情况,如正幂函数、负幂函数、倒数函数等。

2. 指数函数:指数函数是以指数为自变量的函数,常见的指数函数有以e为底的自然指数函数(y=e^x)和以10为底的常用对数函数(y=log(x))。

3. 对数函数:对数函数是指以某个正实数为底的函数,常见的对数函数有以e为底的自然对数函数(y=ln(x))和以10为底的常用对数函数。

4. 三角函数:三角函数是以角度或弧度为自变量的函数,常见的三角函数有正弦函数(y=sin(x))、余弦函数(y=cos(x))、正切函数(y=tan(x))等。

5. 反三角函数:反三角函数是三角函数的逆函数,常见的反三角函数有反正弦函数(y=arcsin(x))、反余弦函数(y=arccos(x))、反正切函数(y=arctan(x))等。

三、基本初等函数的图像和性质1. 幂函数的图像与性质:平方函数(y=x^2)的图像是一个开口上的抛物线,立方函数(y=x^3)的图像则是一个S形曲线。

幂函数的性质与指数n的奇偶性、正负有关。

2. 指数函数的图像与性质:自然指数函数(y=e^x)具有递增的特点,其图像是一条通过原点且向上增长的曲线。

常用对数函数(y=log(x))的图像则是一条斜率逐渐减小的曲线。

必修一_基本初等函数_知识点讲解

必修一_基本初等函数_知识点讲解

基本初等函数第一讲 幂函数1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.注意:y x α=中,前面的系数为1,且没有常数项2、幂函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =3、幂函数的性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.分数指数幂概念 有理指数幂运算性质(0,,)r s r s a a a a r s Q +=>∈;()(0,,)r s rs a a a r s Q =>∈(0,,*,1)a m n N n >∈>且 ()(0,0,)r r r ab a b a b r Q =>>∈第二讲 指数函数1、指数(1)n 次方根的定义若x n =a ,则称x 为a 的n 次方根,“n”是方根的记号.在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根.(2)方根的性质①当n 为奇数时,n n a =a . ②当n 为偶数时,n n a =|a |=⎩⎨⎧<-≥).0(),0(a aa a(3)分数指数幂的意义①a nm =n m a (a >0,m 、n 都是正整数,n >1). ②an m -=nm a1=nma1(a >0,m 、n 都是正整数,n >1).2、指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . 说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .n mnm a a=nmn m nm aa a1==-000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量, 5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等, 不符合(01)x y a a a =>≠且的形式,所以不是指数函数.3、 指数函数的图像及其性质(1)底数互为倒数的两个指数函数的图象关于y 轴对称.(2)在[,]x a b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (3)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R;(4)对于指数函数()xf x a =(a >0且a ≠1),总有(1);f a =(5)当a >1时,若1x <2x ,则1()f x <2()f x ;第三讲 对数函数1、 对数(1)对数的概念一般地,若(0,1)xa N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N =a 叫做对数的底数,N 叫做真数.如:24416,2log 16==则,读作2是以4为底,16的对数. 1242=,则41log 22=,读作12是以4为底2的对数. (2)指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0). (4)两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.2、对数函数的概念一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 3、对数函数的图象及其性质a <11))底数互为倒数的两个对数函数的图象关于x 轴对称.。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、引言在数学中,初等函数是由基本初等函数经过有限次的四则运算(加、减、乘、除)以及复合运算得到的函数。

基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数以及反三角函数。

本文将详细介绍这些基本初等函数的定义、性质和图像。

二、常数函数定义:常数函数 \( f(x) = c \),其中 \( c \) 是一个实数常数。

性质:常数函数的图像是一条平行于 \( x \) 轴的直线,其所有点的函数值都等于常数 \( c \)。

图像:见附录图1。

三、幂函数定义:幂函数 \( f(x) = x^n \),其中 \( n \) 是实数。

性质:幂函数的性质取决于指数 \( n \) 的值。

当 \( n \) 为正整数时,函数图像是 \( n \) 次幂的曲线;当 \( n \) 为负整数时,函数图像是倒数的幂函数曲线。

图像:见附录图2。

四、指数函数定义:指数函数 \( f(x) = a^x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。

性质:指数函数的底数 \( a \) 决定了函数图像的形状。

当 \( a > 1 \) 时,函数是增长的;当 \( 0 < a < 1 \) 时,函数是衰减的。

图像:见附录图3。

五、对数函数定义:对数函数 \( f(x) = \log_a(x) \),其中 \( a > 0 \) 且\( a \neq 1 \)。

性质:对数函数是指数函数的逆函数。

当 \( a > 1 \) 时,函数是单调增加的;当 \( 0 < a < 1 \) 时,函数是单调减少的。

图像:见附录图4。

六、三角函数1. 正弦函数 \( \sin(x) \)2. 余弦函数 \( \cos(x) \)3. 正切函数 \( \tan(x) \)定义:这些函数与单位圆上的点的坐标有关。

性质:三角函数具有周期性,它们的周期为 \( 2\pi \)。

基本初等函数的导数公式及倒数的运算法则课件

基本初等函数的导数公式及倒数的运算法则课件
基本初等函数的导数公式 及倒数的运算法则课件
本课件将介绍基本初等函数的导数公式,以及导数的概念和定义。我们将探 讨常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数的导数 公式,并讲解倒数的运算法则。让我们一起深入了解导数和倒数的重要性。
基本初等函数的定义
常数函数
恒定输出的函数,例如f(x) = 3。
指数函数
以常数e为底的指数函数,例如f(x) = e^x。
幂函数
以x为底的指数函数,例如f(x) = x^2。
对数函数
以常数为底的对数函数,例如f(x) = log(base 2)(x)。
导数的概念及定义
导数
描述函数在某一点的瞬时变化率。
定义
导数可以通过极限来定义,即函数的微小变化 与自变量的微小变化之比。
2
导数
cos(x),-sin(x),sec^ 2(x)
3
例子
sin (x)的导数为c os(x)
导数公式:反三角函数的导数
反三角函数
• arcsin(x) • arccos(x) • arctan(x)
导数
• 1/sqrt(1-x^2) • -1/sqrt(1-x^2) • 1/(1+x^2)
导数公式:复合函数的求导法则
导数公式:常数函数的导数源自常数函数 f(x) =c导数 f'(x) =0
导数公式:幂函数的导数
1
幂函数
f(x) = x^n
导数
2
f'(x) =nx^(n-1)
3
例子
f(x) =x^3,导数为f'(x) =3x^2
导数公式:指数函数的导数
1 指数函数
f(x) =e^x

必修一基本初等函数复习PPT课件

必修一基本初等函数复习PPT课件

18
底数互为倒数的两个 对数函数
y = loga x, y = log1 x
的函数图像关于x轴对a称。
19
当a>1时,a值越大, y=logax的图像越靠近x轴;
当0<a<1时,a值越大, y=logax的图像越远离x轴。
20
4.若loga2<logb2<0,则( B )
(A)0<a<b<1
(B)0<b<a<1
y
叫做幂函数,
其中x是自变
量,α是常数.
O
x
23
幂函数的性质
函数
性质 y=x
y=x2
1
y=x3 y = x 2
y=x-1
定义域 R
R
R [0,+∞) {x|x≠0}
值域 R [0,+∞) R [0,+∞) {y|y≠0}
奇偶性 奇


单调性

[0,+∞)增 (-∞,0]减

非奇非偶 奇
(0,+∞)减
常用对数:通常将log10N的对数叫做常用对数,为了简便, N的常用对数记作lgN。
自然对数:通常将使用以无理数e=2.71828…为底的对数

做自然对数,为了简便,
N的自然对数logeN简记作lnN.
12
2024/10/27
13
9.对数恒等式
( ) aloga N = N a 0且a 1,N 0 叫做对数恒等式
10.对数的性质 (1)负数和零没有对数; (2)1的对数是零,即loga1=0; (3)底数的对数等于1,即logaa=1 11.对数的运算法则 如果a>0,a≠1,M>0,N>0,那么

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、函数的概念:函数是自变量与因变量之间的一种对应关系。

其中,自变量是函数的输入,因变量是函数的输出。

函数可以用来描述不同变量之间的关系或者用来描述一些变量随着另一个变量的变化而发生的变化。

二、函数的表示法:函数可以用不同的表示法来表示。

最常见的表示法有解析式表示法、图像表示法和表格表示法。

例如,一元一次函数y=ax+b就是一个常见的初等函数。

三、函数的性质:1.定义域和值域:函数的定义域是自变量的取值范围,值域是函数的因变量的可能取值范围。

2.奇偶性:对于函数f(x),如果对于任意x,有f(-x)=f(x)成立,则函数具有偶性;如果对于任意x,有f(-x)=-f(x)成立,则函数具有奇性。

3.单调性:如果对于任意x1>x2,有f(x1)>f(x2)成立,则函数为递增函数;如果对于任意x1>x2,有f(x1)<f(x2)成立,则函数为递减函数。

4.周期性:如果对于任意x,有f(x+T)=f(x)成立,则函数具有周期T。

四、常见初等函数的性质和图像:1.常数函数:f(x)=c(c为常数),图像为平行于x轴的一条直线。

2. 一次函数:f(x) = ax + b(a和b为常数),图像为一条直线,斜率a决定了直线的倾斜程度,b为与y轴交点的纵坐标。

3.幂函数:f(x)=x^n(n为常数),图像的形状与n的奇偶性以及正负有关,例如,当n为正奇数时,图像的右上和左下部分都在x轴上方。

4.指数函数:f(x)=a^x(a为常数且大于0且不等于1),图像呈现出一种快速增长的趋势。

5. 对数函数:f(x) = loga(x)(a为常数且大于0且不等于1),图像为一条光滑的上升曲线,a决定了函数增长的速度。

五、初等函数的运算:1.四则运算:对于两个初等函数f(x)和g(x),可以进行加减乘除运算,得到新的初等函数。

2.复合运算:对于两个初等函数f(x)和g(x),可以将g(x)的值代入f(x)进行运算,得到新的初等函数。

基本初等函数讲义(超级全)

基本初等函数讲义(超级全)

一、一次函数之相礼和热创作二、二次函数(1)二次函数解析式的三种方式 ①一样平常式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法①已知三个点坐标时,宜用一样平常式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常运用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性子①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a-- ②当0a >时,抛物线开口向上,函数在(,]2ba -∞-上递减,在[,)2b a-+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a-+∞上递减,当2b x a =-时,2max 4()4ac b f x a-=.三、幂函数(1)幂函数的定义一样平常地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象过定点:全部的幂函数在(0,)+∞都有定义,而且图象都经过点(1,1). 四、指数函数(1)根式的概念:假如,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.(2)分数指数幂的概念①负数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②负数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没故意义.(3)运算性子①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r=>>∈ab a b a b r R(4)指数函数五、对数函数(1)对数的定义①若(0,1)x且,则x叫做以a为底N的对数,记作=>≠a N a alog a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个紧张的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)经常运用对数与自然对数经常运用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性子 假如0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a MM N N-=③数乘:log log ()n a a n M M n R =∈④log aNa N =⑤log log (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.假如对于y 在C 中的任何一个值,经过式子()x y ϕ=,x 在A 中都有独一确定的值和它对应,那么式子()x y ϕ=暗示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,风俗上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性子 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一样平常地,函数()y f x =要有反函数则它必须为单调函数.例题一、求二次函数的解析式244y x x =--的顶点坐标是()A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知抛物线的顶点为(-1,-2),且经过(1,10),则这条抛物线的表达式为()A .()2312y x =-- B .()2312y x =-+C. ()2312y x =+- D.()2312y x =-+-例3.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范围是()A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的两根立方和等于17求()f x 的解析式 二、二次函数在特定区间上的最值成绩例5. 当22x -≤≤时,求函数223y x x =--的最大值和最小值. 例6.当0x ≥时,求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).三、幂函数(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -={}0x x >的是()A.23y x = B.32y x = C.23y x -= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的表示图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域; (2)判别函数的奇偶性; (3)求函数的单调区间. 四、指数函数的运算122(2)-⎡⎤-⎣⎦的结果是()A、12C 、D 、—12例12.44等于() A 、16a B 、8a C 、4a D 、2a53,83==ba,则b a233-=___________五、指数函数的性子 例14.{|2},{|xM y y P y y ====,则M∩P ()A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 例15.求下列函数的定义域与值域: (1)442x y -=(2)||2()3x y =()2301x y a a a -=+>≠且的图像必经过点 ()A .(0,1)B .(1,1)C .(2,3)D .(2,4) 例17求函数y=2121x x -+的定义域和值域,并讨论函数的单调性、奇偶性.五、对数函数的运算32a =,那么33log 82log 6-用a 暗示是()A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a -例19.2log (2)log log a a a M N M N -=+,则NM 的值为()A 、41B 、4 C 、1 D 、4或1732log [log (log )]0x =,那么12x-等于()A 、13B D 例21.2log 13a <,则a 的取值范围是()A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭五、对数函数的性子例22.下列函数中,在()0,2上为增函数的是() A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于() A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称 )()lg f x x =是(奇、偶)函数.课下作业1.已知二次函数y=ax2+bx+c,假如a>b>c,且a+b+c=0,则它的图象可能是图所示的( )2.对抛物线y=22(2)x --3与y=-22(2)x -+4的说法不正确的是()A .抛物线的外形相反B .抛物线的顶点相反C .抛物线对称轴相反D .抛物线的开口方向相反3. 二次函数y=221x x --+图像的顶点在()A .第一象限B .第二象限C .第三象限D .第四象限4. 如图所示,满足a >0,b <0的函数y=2ax bx +的图像是()5.假如抛物线y=26x x c ++的顶点在x 轴上,那么c 的值为()A .0B .6C .3D .96.一次函数y =ax +b 与二次函数y =ax2+bx +c 在同一坐标系中的图象大致是( )7.在下列图象中,二次函数y=ax2+bx +c 与函数y=(ab)x 的图象可能是 ()8.若函数f(x)=(a -1)x2+(a2-1)x +1是偶函数,则在区间[0,+∞)上f(x)是( )A .减函数B .增函数C .常函数D .可能是减函数,也可能是常函数9.已知函数y =x2-2x +3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .[1,2]D .(-∞,2]10、使x2>x3成立的x 的取值范围是( )A 、x <1且x≠0B 、0<x <1C 、x >1D 、x <111、若四个幂函数y =a x ,y =b x ,y =c x ,y =d x 在同一坐标系中的图象如右图,则a 、b 、c 、d 的大小关系是( )A 、d >c >b >aB 、a >b >c >dC 、d >c >a >bD 、a >b >d >c12.若幂函数()1m f x x -=在(0,+∞)上是减函数,则 ( )A .m >1B .m <1C .m =lD .不克不及确定13.若点(),A a b 在幂函数()n y x n Q =∈的图象上,那么下列结论中不克不及成立的是A .00a b >⎧⎨>⎩B .00a b >⎧⎨<⎩C.00a b <⎧⎨<⎩ D .00a b <⎧⎨>⎩14.若函数f(x)=log 12(x2-6x +5)在(a ,+∞)上是减函数,则a 的取值范围是( )A .(-∞,1]B .(3,+∞)C .(-∞,3)D .[5,+∞)15、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是()A 、∅B 、TC 、SD 、无限集16、函数22log (1)y x x =+≥的值域为()A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 17、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则()A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>18、在(2)log (5)a b a -=-中,实数a 的取值范围是()A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<19、计算lg52lg2)lg5()lg2(22•++等于() A 、0 B 、1 C 、2 D 、320、已知3log 2a =,那么33log 82log 6-用a 暗示是()A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a --21、已知幂函数f(x)过点(2),则f(4)的值为()A 、12B 、 1C 、2D 、8二、填空题1.抛物线y =8x2-(m -1)x +m -7的顶点在x 轴上,则m =________.23-=x y 的定义域为___________.()()12m f x m x +=-,假如()f x 是反比例函数,则m=____ ,假如()f x 是反比例函数,则m=______,假如f(x)是幂函数,则m=____. 14(1)x --故意义,则x ∈___________.35x y <=___________.25525x x y ⋅=,则y 的最小值为___________. 7、若2log 2,log 3,m n a a m n a +===.8、函数(-1)log (3-)x y x =的定义域是.9、2lg 25lg 2lg50(lg 2)++=.1622<-+x x 的解集是__________________________.282133x x --⎛⎫< ⎪⎝⎭的解集是__________________________.103,104x y ==,则10x y -=__________________________.13、已知函数3x log x (x 0)1f (x),f[f ()]2(x 0)9>⎧=⎨≤⎩,则,的值为 14、函数2)23x (lg )x (f +-=恒过定点三、简答题2、已知幂函数f (x )=23221++-p p x (p ∈Z )在(0,+∞)上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x )、222(3)lg 6x f x x -=-,(1)求()f x 的定义域;(2)判别()f x 的奇偶性. a R ∈,22()()21x x a a f x x R ⋅+-=∈+,试确定a 的值,使()f x 为奇函数. 5. 已知函数x 121f (x)log[()1]2=-,(1)求f(x)的定义域;(2)讨论函数f(x)的增减性.。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点基本初等函数是数学中常见的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

它们在数学和科学领域应用广泛,对于理解和解决实际问题具有重要意义。

本文将介绍基本初等函数的定义、性质和应用,以帮助读者全面理解和掌握这些知识点。

一、常数函数常数函数是指函数的函数值始终保持不变的函数。

它的定义域是全体实数,通常表示为f(x) = c,其中c为常数。

常数函数的图像是一条水平的直线,平行于x轴。

无论自变量取何值,函数值始终为常数。

常数函数在数学中的应用较少,但在物理、经济学等学科中有时会用到。

二、幂函数幂函数是指自变量的指数和函数值之间的关系为幂关系的函数。

幂函数的表达式可以写作f(x) = x^a,其中a为实数。

幂函数的图像形状与指数a的正负、大小有关。

当a为正数时,函数图像是递增的曲线;当a为负数时,函数图像是递减的曲线;当a为0时,函数图像是一条常数函数的直线。

三、指数函数指数函数是自变量为指数的函数。

指数函数的一般形式为f(x) = a^x,其中a为正实数且不等于1。

指数函数的图像是一条递增或递减的曲线。

当a大于1时,函数图像是递增曲线;当a介于0和1之间时,函数图像是递减曲线。

指数函数在经济学、生物学、物理学等领域有广泛的应用。

四、对数函数对数函数是指自变量和函数值之间的关系为指数关系的函数。

对数函数的一般形式为f(x) = logₐ(x),其中a为正实数且不等于1。

对数函数的图像是一条递增或递减的曲线。

当a大于1时,函数图像是递增曲线;当a介于0和1之间时,函数图像是递减曲线。

对数函数在科学计算、数据处理等领域被广泛运用。

五、三角函数三角函数是指以角度或弧度为自变量的函数。

常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。

三角函数的图像是周期性曲线。

它们的性质和图像形态与角度或弧度的取值范围有关。

三角函数在物理学、几何学、信号处理等领域具有重要应用价值。

基本初等函数讲义超级全

基本初等函数讲义超级全

一、一次函数二、二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a=-顶点坐标是24(,)24b ac b a a-- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b fx a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2ba-+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. 三、幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. 过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(1)根式的概念:如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数. 例题一、求二次函数的解析式例1.抛物线244y x x =--的顶点坐标是()A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8) 例2.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为()A .()2312y x =-- B .()2312y x =-+ C. ()2312y x =+- D.()2312y x =-+---例3.抛物线y=的顶点在第三象限,试确定m 的取值范围是( ) A .m <-1或m >2 B .m <0或m >-1 C .-1<m <0 D .m <-1例4.已知二次函数()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的两根立方和等于17求()f x 的解析式二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时,求函数223y x x =--的最大值和最小值.例6.当0x ≥时,求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).222x mx m -++三、幂函数例8.下列函数在(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是() A.23y x = B.32y x = C.23y x-= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的示意图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域;(2)判断函数的奇偶性; (3)求函数的单调区间.四、指数函数的运算例11.计算122(2)-⎡⎤-⎣⎦的结果是( ) A、12C、—12例12.等于( ) A 、 B 、C 、 D 、例13.若53,83==ba ,则b a233-=___________五、指数函数的性质例14.{|2},{|xM y y P y y ====,则M ∩P ()A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 例15.求下列函数的定义域与值域: (1)442x y -=(2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0,1)B .(1,1)C .(2,3)D .(2,4)例17求函数y=2121x x -+的定义域和值域,并讨论函数的单调性、奇偶性.4416a 8a 4a 2a五、对数函数的运算例18.已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a -例19.2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 例20.已知732log [log (log )]0x =,那么12x -等于( )A 、13B C D 例21.2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 例23.函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称例23.求证函数)()lg f x x =是(奇、偶)函数。

高中数学-必修1-第2章-基本初等函数-讲义

高中数学-必修1-第2章-基本初等函数-讲义

§2.1.1 指数与指数幂的运算(1)1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.4850复习1:正方形面积公式为;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的,记作;如果一个数的立方等于a,那么这个数叫做a 的,记作 .二、新课导学※学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率为℅,1990年人口数为a万,则x年后人口数为多少万实例2. 给一张报纸,先实验最多可折多少次你能超过8次吗计算:若报纸长50cm,宽34cm,厚,进行对折x 次后,求对折后的面积与厚度问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达℅,则x年后GDP为2000年的多少倍问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P与死亡时碳14关系为57301()2tP=. 探究该式意义小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察:2(2)4±=,那么2±就叫4的;3327=,那么3就叫27的;4(3)81±=,那么3±就叫做81的 .依此类推,若n x a=,,那么x叫做a 的 .新知:一般地,若n x a=,那么x叫做a的n次方根( n th root ),其中1n>,n*∈N.例如:328=2=.反思:当n为奇数时, n次方根情况如何33-, 记:x=当n为偶数时,正数的n次方根情况例如:81的4次方根就是,记:.强调:负数没有偶次方根;0的任何次方根都是00=.试试:4b a=,则a的4次方根为;3b a=,则a的3次方根为 .新知:(radical),这里n 叫做根指数(radical exponent),a叫做被开方数(radicand).试试:计算2.反思:从特殊到一般,n结论:n a=. 当na=;当n是(0)||(0)a aaa a≥⎧=⎨-<⎩.※典型例题例1求下类各式的值:(1);(2);(3;(4)a b<).变式:计算或化简下列各式.(1(2.推广:(a≥0).※动手试试练1.-练2.化简三、总结提升※学习小结1. n次方根,根式的概念;2. 根式运算性质.※知识拓展1. 整数指数幂满足不等性质:若0a>,则0na>.2. 正整数指数幂满足不等性质:①若1a>,则1na>;01na<<. 其中n∈N*.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:).A. 3B. -3C. ±3D. 812. 625的4次方根是().A. 5B. -5C. ±5D. 253.化简2是().A. b-B. bC. b± D.1b4. = .5.计算:3=;1. 计算:(1(2)2. 计算34a a-⨯和3(8)a+-,它们之间有什么关系你能得到什么结论3. 对比()n n nab a b=与()nnna ab b=,你能把后者归入前者吗§2.1.1 指数与指数幂的运算(2)1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算.5053复习1:一般地,若n x a=,则x叫做a的,其中1n>,n*∈N. 简记为: .像的式子就叫做,具有如下运算性质:n=;=;= .复习2:整数指数幂的运算性质.(1)m na a=;(2)()m na=;(3)()nab= .二、新课导学※学习探究探究任务:分数指数幂引例:a>01025a a=,则类似可得=;23a== .新知:规定分数指数幂如下*(0,,,1)mna a m n N n=>∈>;*1(0,,,1)mnmna a m n N na-==>∈>.试试:(1)将下列根式写成分数指数幂形式:= ;0,)m N*∈.(2)求值:238;255;436-;52a-.反思:① 0的正分数指数幂为;0的负分数指数幂为 .②分数指数幂有什么运算性质小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质:(0,0,,a b r s Q>>∈)ra·r r sa a+=;()r s rsa a=;()r r sab a a=.※典型例题例1 求值:2327;4316-;33()5-;2325()49-.变式:化为根式.例2 用分数指数幂的形式表示下列各式(0)b>:(1)2b b;(2)533b b;(3例3 计算(式中字母均正):(1)211511336622(3)(8)(6)a b a b a b-÷-;(2)311684()m n.小结:例2,运算性质的运用;例3,单项式运算. 例4 计算:(1334a a (0)a >;(2)312103652(2)()m n m n --÷- (,)m n N *∈;(3)÷小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①结论:无理指数幂.(结合教材P 53利用逼近的思想理解无理指数幂意义)② 无理数指数幂(0,)a a αα>是无理数是一个确定的实数.实数指数幂的运算性质如何※ 动手试试 练1. 把851323x --⎫⎪⎪化成分数指数幂.练2. 计算:(1443327; (2三、总结提升 ※ 学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.※ 知识拓展放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m mnna a a ÷= B. m n mn a a a ⋅=C. ()nm m n a a += D. 01n n a a -÷=2.化简3225的结果是( ).A. 5B. 15C. 25D. 125 3. 计算(122--⎡⎤⎢⎥⎣⎦的结果是(). AB .D . 4. 化简2327-= .5. 若102,104mn==,则3210m n -= .1. 化简下列各式: (1)3236()49; (2.2.1⎛- ⎝.§2.1.1 指数与指数幂的运算(练习)1. 掌握n次方根的求解;2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算.4853复习1:什么叫做根式运算性质像的式子就叫做,具有性质:n=;=;= .复习2:分数指数幂如何定义运算性质①mna=;mna-= .其中*0,,,1a m n N n>∈>②r sa a=;()r sa=;()sab= .复习3:填空.①n为时,(0)||...........(0)xxx≥⎧==⎨<⎩.②求下列各式的值:= ;= ;= ;= ;= ;= ;= .二、新课导学※典型例题例1 已知1122a a-+=3,求下列各式的值:(1)1a a-+;(2)22a a-+;(3)33221122a aa a----.补充:立方和差公式3322()()a b a b a ab b±=±+.小结:①平方法;②乘法公式;③根式的基本性质=(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立.≠.变式:已知11223a a--=,求:(1)1122a a-+;(2)3322a a--.例2从盛满1升纯酒精的容器中倒出13升,然后用水填满,再倒出13升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少变式:n次后小结:①方法:摘要→审题;探究→结论;② 解应用问题四步曲:审题→建模→解答→作答. ※ 动手试试练1. 化简:11112244()()x y x y -÷-.练2. 已知x +x -1=3,求下列各式的值.(1)1122x x -+; (2)3322x x -+.练 3. 已知12(),0x f x x x π=⋅>,试求.三、总结提升 ※ 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用.※ 知识拓展1. 立方和差公式:3322()()a b a b a ab b +=+-+; 3322()()a b a b a ab b -=-++.2. 完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:).354a a (a >0)的值是( ).A. 1B. aC. 15a D. 1710a 3. 下列各式中成立的是( ).A .1777()n n m m =B=C 34()x y + D .=4. 化简3225()4-= .5. 化简2115113366221()(3)()3a b a b a b -÷= .1. 已知32x a b --=+, .2.2n a +=时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)学习目标1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备5457复习1:零指数、负指数、分数指数幂怎样定义的 (1)0a = ; (2)n a -= ;(3)m na = ;m na -= .其中*0,,,1a m n N n >∈>复习2:有理指数幂的运算性质. (1)m n a a = ;(2)()m n a = ; (3)()n ab = .二、新课导学 ※ 学习探究探究任务一:指数函数模型思想及指数函数概念 实例:A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么讨论:上面的两个函数有什么共同特征底数是什么指数是什么新知:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .反思:为什么规定a >0且a ≠1呢否则会出现什么情况呢试试:举出几个生活中有关指数模型的例子探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗回顾: 研究方法:画出函数图象,结合图象研究函数性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象:1()2x y =, 2x y =讨论:(1)函数2x y =与1()2x y =的图象有什么关系如何由2x y =的图象画出1()2x y =的图象(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或13后呢a >1 0<a <1 图 象性 质 (1)定义域:R (2)值域:(0,+∞) (3)过点(0,1),即x =0时,y =1(4)在 R 上是增函数 (4)在R 上是减函数※ 典型例题例1函数()xf x a =(0,1a a >≠且)的图象过点(2,)π,求(0)f ,(1)f -,(1)f 的值.小结:①确定指数函数重要要素是 ; ② 待定系数法.例2比较下列各组中两个值的大小:(1)0.60.52,2; (2)2 1.50.9,0.9-- ; (3)0.5 2.12.1,0.5 ; (4)231π-与.小结:利用单调性比大小;或间接利用中间数.※ 动手试试练1. 已知下列不等式,试比较m 、n 的大小:(1)22()()33m n >; (2) 1.1 1.1m n <.练2. 比较大小:(1)0.70.90.80.8,0.8, 1.2a b c ===;(2)01, 2.50.4,-0.22-, 1.62.5.三、总结提升 ※ 学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法.※ 知识拓展因为(01)x y a a a =>≠,且的定义域是R , 所以()(01)f x y a a a =>≠,且的定义域与()f x 的定义域相同. 而()(01)x y a a a ϕ=>≠,且的定义域,由()y t ϕ=的定义域确定.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值 2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2)3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是( ).4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 .课后作业1. 求函数y =1151x x--的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域§2.1.2 指数函数及其性质(2)1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识.5760复习1:指数函数的形式是,复习2:在同一坐标系中,作出函数图象的草图:2xy=,1()2xy=,5xy=,1()5xy=,10x y=,1()10x y=.思考:指数函数的图象具有怎样的分布规律二、新课导学※典型例题例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.(1)按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍(2)从2000年起到2020年我国人口将达到多少小结:学会读题摘要;掌握从特殊到一般的归纳法.试试:2007年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x年后的总产值为原来的多少倍多少年后产值能达到120亿小结:指数函数增长模型.设原有量N,每次的增长率为p,则经过x次增长后的总量y= . 我们把形如xy ka= (,0,1)k R a a∈>≠且的函数称为指数型函数.例2 求下列函数的定义域、值域:(1)21xy=+; (2)y=(3)110.4xy-=.变式:单调性如何小结:单调法、基本函数法、图象法、观察法.试试:求函数y=论其单调性.※ 动手试试练 1. 求指数函数212x y +=的定义域和值域,并讨论其单调性.练2. 已知下列不等式,比较,m n 的大小. (1)33m n <; (2)0.60.6m n >; (3)(1)m n a a a >> ;(4) (01)m n a a a <<<.练3. 一片树林中现有木材30000 m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 3.三、总结提升 ※ 学习小结1. 指数函数应用模型(,01)x y ka k R a a =∈>≠且;2. 定义域与值域;2. 单调性应用(比大小).※ 知识拓展形如()(01)f x y a a a =>≠,且的函数值域的研究,先求得()f x 的值域,再根据t a 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视()0f x y a =>. 而形如()(01)x y a a a ϕ=>≠,且的函数值域的研究,易知0x a >,再结合函数()t ϕ进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x(b >0,b ≠1)的图象关于y 轴对称,则有( ). A. a >b B. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x-1的定义域、值域分别是( ). A. R , R B. R , (0,)+∞ C. R ,(1,)-+∞ D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x的图象关于y 轴对称B. 函数f (x )=a 1-x(a >1)在R 上递减 C. 若a 2>a 21-,则a >1 D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-(); 0.763()0.753-(). 5. 在同一坐标系下,函数y =a x , y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .课后作业1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)1. 理解对数的概念;2. 能够说明对数与指数的关系;3. 掌握对数式与指数式的相互转化.6264复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长(2)取多少次,还有尺复习2:假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产是2002年的2倍(只列式)二、新课导学※学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿讨论:(1)问题具有怎样的共性(2)已知底数和幂的值,求指数怎样求呢例如:由1.01x m=,求x.新知:一般地,如果x a N=(0,1)a a>≠,那么数x叫做以a为底N的对数(logarithm).记作logax N=,其中a叫做对数的底数,N 叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm),并把常用对数10log N简记为lg N在科学技术中常使用以无理数e=……为底的对数,以e为底的对数叫自然对数,并把自然对数logeN简记作ln N试试:分别说说lg5 、、ln10、ln3的意义.反思:(1)指数与对数间的关系0,1a a>≠时,x a N=⇔ .(2)负数与零是否有对数为什么(3)log1a=,logaa= .※典型例题例1下列指数式化为对数式,对数式化为指数式.(1)35125=;(2)712128-=;(3)327a=;(4)2100.01-=;(5)12log325=-;(6)=3-;(7)ln100=.变式:12log32?= =小结:注意对数符号的书写,与真数才能构成整体. 例2求下列各式中x 的值:(1)642log 3x =; (2)log 86x =-;(3)lg 4x =; (4)3ln e x =.小结:应用指对互化求x .※ 动手试试练1. 求下列各式的值.(1)5log 25 ; (2)21log 16; (3)lg 10000.练2. 探究log ?n a a = log ?a N a =三、总结提升 ※ 学习小结①对数概念;②lg N 与ln N ;③指对互化;④如何求对数值※ 知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier ,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 若2log3x =,则x =( ). A. 4 B. 6 C. 8 D. 92. log = ( ).A. 1B. -1C. 2D. -2 3. 对数式2log (5)a a b --=中,实数a 的取值范围是().A.(,5)-∞ B .(2,5)C .(2,)+∞D . (2,3)(3,5) 4. 计算:1(3+= .5. 若log 1)1x =-,则x =________,若y =,则y =___________.1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a =(4)1() 1.032m =; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log27; (2)3log 243; (3); (3)(2log (2; (4)625.§§2.2.1 对数与对数运算(2)学习目标1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..学习过程 一、课前准备 6466 复习1:(1)对数定义:如果x a N =(0,1)a a >≠,那么数 x 叫做 ,记作 . (2)指数式与对数式的互化: xa N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = . 复习3:根据对数的定义及对数与指数的关系解答: (1)设log 2a m =,log 3a n =,求m na +; (2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学 ※ 学习探究探究任务:对数运算性质及推导 问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系问题:设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =q a ∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N 根据上面的证明,能否得出以下式子如果 a > 0,a 1,M > 0, N > 0 ,则 (1)log ()log log a a a MN M N =+;(2)log log log a a a MM N N=-;(3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质 性质的证明思路(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)※ 典型例题例1用log a x , log a y , log a z 表示下列各式:(1)2log a xyz ; (2) 35log a x y z.例2计算: (1)5log 25; (2)0.4log 1;(3)852log (42)⨯; (4)9100探究:根据对数的定义推导换底公式log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿 ※ 动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=,lg3=,求lg6、lg12.值.练2. 运用换底公式推导下列结论.(1)log log m n a a nb b m=;(2)1log log a b b a =.练 3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9.三、总结提升 ※ 学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b NN a =;② 对数的倒数公式1log log a b b a=. ③ 对数恒等式:log log n n a a N N =,log log m n a a nN N=,log log log 1a b c b c a =. ※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35abx c=C .35ab x c= D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ). A .y x = B .2y x = C .3y x = D .4y x =4. 计算:(1)99log 3log 27+= ;(2)2121log log 22+= .5.计算:15lg 23= .1. 计算:(1;(2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证: 1112c a b -=.§2.2.1 对数与对数运算(3)学习目标1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.学习过程一、课前准备6669 复习1:对数的运算性质及换底公式.如果 a > 0,a 1,M > 0, N > 0 ,则 (1)log ()a MN = ;(2)log a MN= ;(3) log n a M = .换底公式log a b = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在℅,问哪一年我国人口总数将超过14亿 (用式子表示)二、新课导学 ※ 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是, 计算这次地震的震级(精确到);(2)5级地震给人的振感已比较明显,计算级地震最大振幅是5级地震最大振幅的多少倍(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题: (1)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数(2)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数(3)长沙马王墓女尸出土时碳14的余含量约占原始量的%,试推算古墓的年代反思:① P 和t 之间的对应关系是一一对应;② P 关于t 的指数函数57301()2x P =,则t 关于P的函数为 . ※ 动手试试练1. 计算:(1)0.21log 35-; (2)4912log 3log 2log ⋅-练2. 我国的GDP 年平均增长率保持为%,约多少年后我国的GDP 在2007年的基础上翻两番三、总结提升 ※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y 之间的关系→求解→验证);2. 用数学结果解释现象.※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()x x f x f x f ++≤.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:25()a -(a ≠0)化简得结果是( ).A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ). A. 3 B.3.已知35a b m ==,且112a b+=,则m 之值为( ).A .15B .2254. 若3a=2,则log 38-2log 36用a 表示为 .5. 已知lg20.3010=,lg1.07180.0301=,则lg2.5=;1102=.1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++;(2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.7072复习1:画出2x y =、1 ()2x y =的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的%,试推算马王堆古墓的年代.(列式)二、新课导学 ※ 学习探究 探究任务一:对数函数的概念讨论:t 与P 的关系 (对每一个碳14的含量P 的取值,通过对应关系log t P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x=叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (0a >,且1)a ≠.探究任务二:对数函数的图象和性质 问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象. 2log y x =;0.5log y x =.反思: ((2)图象具有怎样的分布规律※ 典型例题例1求下列函数的定义域:(1)2log a y x =;(2)log (3)a y x =-;变式:求函数y =.例2比较大小: (1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7;(3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)32log 1y x =-.练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和; (3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升 ※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x xf ++≤;当01a <<时,1212()()()22f x f x x xf ++≥.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log log 2 . 5. 函数(-1)log (3-)x y x =的定义域是 .课后作业1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域: (1)2log (35)y x =-(2)0.5log 43y x =-§2.2.2 对数函数及其性质(2)1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.7273复习1:对数函数log (0,1)a y x a a =>≠且图象和性复习2:比较两个对数的大小.(1)10log 7与10log 12 ; (2)0.5log 0.7与0.5log 0.8.复习3:求函数的定义域.(1)311log 2y x=- ; (2)log (28)a y x =+.二、新课导学 ※ 学习探究探究任务:反函数问题:如何由2x y =求出x反思:函数2log x y =由2x y =解出,是把指数函数2x y =中的自变量与因变量对调位置而得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =.新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function )例如:指数函数2x y =与对数函数2log y x =互为反函数.试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质反思:(1)如果000(,)P x y 在函数2x y =的图象上,那么P 0关于直线y x =的对称点在函数2log y x =的图象上吗为什么(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.※ 典型例题例1求下列函数的反函数:(1) 3x y =; (2)log (1)a y x =-.小结:求反函数的步骤(解x →习惯表示→定义域)变式:点(2,3)在函数log (1)a y x =-的反函数图象上,求实数a 的值.例2溶液酸碱度的测量问题:溶液酸碱度pH 的计算公式lg[]pH H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系(2)纯净水7[]10H +-=摩尔/升,计算其酸碱度.小结:抽象出对数函数模型,然后应用对数函数模型解决问题,这就是数学应用建模思想.※ 动手试试练 1. 己知函数()x f x a k =-的图象过点(1,3)其反函数的图象过点(2,0),求()f x 的表达式.练2. 求下列函数的反函数. (1) y =(2)x (x ∈R );(2)y =log a 2x(a >0,a ≠1,x >0)三、总结提升 ※ 学习小结① 函数模型应用思想;② 反函数概念.※ 知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x 的值,y 都有唯一的值和它对应. 对于一个单调函数,反之对应任意y 值,x 也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 函数0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2xy =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x => C. (0)y x x =-> D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x=3log a y x=, 4log a y x =的图象,则底数之间的关系为 .课后作业1. 现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个(参考数据:lg30.477,lg20.301==).2. 探究:求(0)ax by ac cx d+=≠+的反函数,并求出两个函数的定义域与值域,通过对定义域与值域的比较,你能得出一些什么结论§ 对数函数(练习)学习目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一次函数一次函数k kx b k0k0k0k, b符号b0b0b0b0b0b0y y y yy y图象O x O O xxO x O x O x性质y随x的增大而增大y随x的增大而减小二、二次函数(1)二次函数解析式的三种形式①一般式:2f(x)ax bx c(a0)②顶点式:2f(x)a(x h)k(a0)③两根式:f(x)a(x x1)(x x2)(a0)(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质20f x ax bx c a a0a0图像xb2axb2a定义域,对称轴xb 2a顶点坐标2 b4ac b,2a4a文档值域24ac b4a,,24ac b4a ,b2a递减,b2a递增单调区间b 2a ,递增b2a,递减①.二次函数b 2f(x)ax bx c(a0)的图象是一条抛物线,对称轴方程为x,2a顶点坐标是2b4ac b(,)2a4ab②当a0时,抛物线开口向上,函数在(,]2ab上递减,在[,)2a上递增,当x b2a时,f(x)min24ac b4ab;当a0时,抛物线开口向下,函数在(,]2a上递b增,在[,)2a 上递减,当xb2a时,f(x)max24ac b4a.三、幂函数(1)幂函数的定义一般地,函数y x叫做幂函数,其中x为自变量,是常数.(2)幂函数的图象过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).文档四、指数函数n(1)根式的概念:如果x a,a R,x R,n1,且n N,那么x叫做a的n次方根.(2)分数指数幂的概念mn m①正数的正分数指数幂的意义是:(0,,,a n a a m n N且n1).0的正分数指数幂等于0.②正数的负分数指数幂的意义是:m m11ma()()(a0,m,n N,a an n n且n1).0的负分数指数幂没有意义.(3)运算性质r s r s r s rs①a a a(a0,r,s R)②(a)a(a0,r,s R)r r r③(ab)a b(a0,b0,r R)(4)指数函数函数名称指数函数x定义函数y a(a0且a1)叫做指数函数a10a1yx x yy a y a图象y1y1(0,1)(0,1)O Oxx 定义域R值域(0,)过定点图象过定点(0,1),即当x0时,y1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数xa1(x0)xa1(x0)函数值的变化情况xa1(x0)xa1(x0)xa1(x0)xa1(x0)a变化对图象的影响在第一象限内,a越大图象越高;在第二象限内,a越大图象越低.文档标准实用文案五、对数函数(1)对数的定义x①若a N(a0,且a1),则x叫做以a为底N的对数,记作x log N,其中aa叫做底数,N叫做真数.②负数和零没有对数.x ③对数式与指数式的互化:log(0,1,0)x N a N a a N.a(2)几个重要的对数恒等式log a10,log a a1,log ba a b.(3)常用对数与自然对数常用对数:lg N,即log N;自然对数:ln N,即log e N(其中e 2.71828⋯).10(4)对数的运算性质如果a0,a1,M0,N0,那么①加法:log a M log a N log a(MN)②减法:log a log a log aM N M N③数乘:log log n()n M M n R④a alog a Na Nnn⑤log M log M(b0,n R)baab⑥换底公式:log Nblog(0,且1) N b b alog ab(5)对数函数函数名称对数函数定义函数y log x(a0且a1)叫做对数函数aa10a1x1x1y yy log a x y log a x图象(1,0)O(1,0)Ox x(0,)定义域R值域文档标准实用文案过定点图象过定点(1,0) ,即当x 1时,y 0.奇偶性非奇非偶单调性在(0, )上是增函数在(0, )上是减函数log x 0 (x 1) a log x 0 (x 1) a函数值的变化情况log x 0 (x 1)alog x 0 ( x 1)alog x 0 (0 x 1)alog x 0 (0 x 1)aa变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6) 反函数的概念设函数y f (x) 的定义域为 A ,值域为 C ,从式子y f (x) 中解出x ,得式子x y .如果对于y 在C 中的任何一个值,通过式子x ( y) ,x在A 中都有唯一确定( )的值和它对应,那么式子x (y) 表示x是y 的函数,函数x ( y) 叫做函数y f (x) 的反函数,记作x f y ,习惯上改写成1( )1( ) y fx .1( )1( )(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f ( x) 中反解出x f y ;1( )1( )③将x f y 改写成1( )1( ) y f x ,并注明反函数的定义域.1( )1( )(8)反函数的性质①原函数y f (x) 与反函数y f x 的图象关于直线y x 对称.1( )1( )②函数y f (x) 的定义域、值域分别是其反函数y f 1(x) 的值域、定义域.③若P(a, b) 在原函数y f (x) 的图象上,则P' (b,a) 在反函数y f 1(x) 的图象上.④一般地,函数y f (x) 要有反函数则它必须为单调函数.例题一、求二次函数的解析式例1. 抛物线 2 4 4y x x 的顶点坐标是()A.(2,0) B .(2,-2 ) C .(2,-8 ) D .(-2 ,-8 )例2.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为()A. 2y 3 x 1 2 B .2y 3 x 1 2C. 2y 3 x 1 2 D.2y 3 x 1 2文档标准实用文案2 2 2x mx m例3. 抛物线y= 的顶点在第三象限,试确定m的取值范围是()A.m<-1 或m>2 B .m<0 或m>-1 C .-1<m<0 D .m<-1例4. 已知二次函数 f x 同时满足条件:(1)f 1 x f 1 x ;(2) f x 的最大值为15;(3) f x 0 的两根立方和等于17 求 f x 的解析式二、二次函数在特定区间上的最值问题例5. 当 2 x 2时,求函数y x2 2x 3的最大值和最小值.例6.当x 0 时,求函数y x(2 x) 的取值范围.例7.当t x t 1时,求函数 1 2 5y x x 的最小值( 其中t为常数) .2 2 文档三、幂函数例8.下列函数在,0上为减函数的是()1A.y xB.32y xC.3y xD.y x2例9.下列幂函数中定义域为x x0的是()2323A.y xB.3y x2C.y x3D.y x22例10.讨论函数y=5x的定义域、值域、奇偶性、单调性,并画出图象的示意图.例10.已知函数y=415-2x-x2.(1)求函数的定义域、值域;(2)判断函数的奇偶性;(3)求函数的单调区间.文档四、指数函数的运算1例11. 计算 2 2( 2) 的结果是()A、 2B、12 C、— 2 D 、— 124 43 6 a9 6 3 a9例12. 等于()16 8 4a a aA、 B 、C、 D 、2 aa b例13. 若38,3 5 ,则a32b3 =___________五、指数函数的性质x例14. M { y | y 2 }, P { y | y x 1} ,则M∩P()A. { y | y 1}B. { y | y 1}C. { y | y 0}D. { y | y 0} 例15. 求下列函数的定义域与值域:(1)4y (2)2x 4y2|x|( )3例16. 函数x 2 3 0 1y a a 且a 的图像必经过点( )A.(0 ,1) B .(1 ,1) C .(2 ,3) D .(2 ,4)x例17 求函数y= 2 1x 的定义域和值域,并讨论函数的单调性、奇偶性.2 1文档五、对数函数的运算a例18. 已知3 2 ,那么log 8 2log 6用a表示是()3 3A、a 2 B 、5a 2 C 、23a (1 a) D 、 23a a例19. 2log a (M 2N) log a M log a N ,则MN的值为()A、14B、4C、1 D 、4 或11例20. 已知l og [log (log x)] 0,那么7 3 22x 等于()A、13B、12 3C、12 2D、13 3例21. log 2 1a ,则a的取值范围是()3A、20,1,3B、23, C、23,1 D 、2 20, ,3 3五、对数函数的性质例22. 下列函数中,在0,2 上为增函数的是()A、y log (x 1)B、122y log x 12C、y log 21xD、 2y log (x 4x 5)12例23. 函数y2lg 11 x的图像关于()A、x轴对称B、y 轴对称C、原点对称D、直线y x 对称例23. 求证函数 2f ( x) lg x 1 x 是(奇、偶)函数。

文档课下作业1. 已知二次函数y=ax2+bx+c, 如果a>b>c, 且a+b+c=0, 则它的图象可能是图所示的( )y y yyO 1 x 1 xO O 1 x O 1 xBA DC2 22(x 2) 2(x 2)2. 对抛物线y= -3 与y=-+4 的说法不正确的是()A.抛物线的形状相同 B .抛物线的顶点相同C.抛物线对称轴相同 D .抛物线的开口方向相反2 2 1x x3. 二次函数y= 图像的顶点在()A.第一象限 B .第二象限 C .第三象限 D .第四象限2ax bx4. 如图所示,满足a>0,b <0 的函数y= 的图像是()2 6x x c5.如果抛物线y= 的顶点在x 轴上,那么 c 的值为()A.0 B .6 C .3 D .96. 一次函数y=ax+b 与二次函数y=ax2+bx+c 在同一坐标系中的图象大致是( )b7. 在下列图象中,二次函数y=ax2+bx+c 与函数y=( a )x 的图象可能是()文档8.若函数 f ( x) =( a-1) x2+( a2-1) x+1 是偶函数,则在区间[0 ,+∞) 上f ( x) 是( ) A.减函数B.增函数C.常函数D.可能是减函数,也可能是常函数9.已知函数y=x2-2x+3 在闭区间[0 ,m]上有最大值3,最小值2,则m的取值范围是( ) A.[1 ,+∞) B .[0,2]C .[1,2] D .( -∞,2]10、使x2>x3 成立的x 的取值范围是()A、x<1 且x≠0B、0<x<1C、x>1D、x<111、若四个幂函数y=ax ,y=bx ,y=cx ,y=dx 在同一坐标系中的图象如右图,则a、b、c、d 的大小关系是()A、d>c>b>aB、a>b>c>dC、d>c>a>bD、a>b>d>c12.若幂函数mf x x1在(0 ,+∞) 上是减函数,则( )A.m>1 B.m<1 C.m=l D.不能确定13.若点A a,b 在幂函数ny x n Q 的图象上,那么下列结论中不能成立的是a 0 a 0 a 0 a 0A.b B .b C.b D .b 014.若函数 f ( x) =log ( x2-6x+5) 在( a,+∞) 上是减函数,则 a 的取值范围是( )12A.( -∞,1] B .(3 ,+∞)C.( -∞,3) D .[5 ,+∞)x 2S y y x R T y y x x R ,则S T 是(){ | 3 , }, { | 1, }15、设集合A、 B 、T C 、S D 、有限集16、函数y 2 log2 x( x≥1)的值域为()A、2, B 、,2 C 、2, D 、3,文档1.510.9 0.48y 4 , y 8 , y1 2 3217、设,则()A、y3 y1 y2 B 、y y y2 13 C 、y1 y3 y2 D 、y y y1 2 318、在log ( 2) (5 )b aa中,实数a的取值范围是()A、a 5或a 2 B 、2 a 3或3 a 5 C 、2 a 5 D 、3 a 42 219、计算(lg2) (lg5) 2lg2 lg5等于()A、0 B 、1 C 、2 D 、320、已知a log3 2 ,那么log 8 2log 63 3 用a表示是()A、5a 2 B 、a 2 C 、 23a (1 a) D 、 23a a 121、已知幂函数f(x) 过点(2, 22),则f(4) 的值为()A、12B 、1C 、2D 、8二、填空题21. 抛物线y=8x -( m-1) x+m-7 的顶点在x 轴上,则m=________.32. 函数y x 2 的定义域为___________.3. 设mf x m 2 x1,如果f x 是正比例函数,则m=____ ,如果f x 是反比例函数,则m=______,如果f(x) 是幂函数,则m=____.14. 若( x 1) 有意义,则x ___________.45. 当3x 5y时, 2 225 y 30 x y 9x ___________.6. 若2x x y5 5 25,则y 的最小值为___________.7、若2m nlog a 2 m,log a 3 n, a 。

相关文档
最新文档