(精心整理)相似三角形的判定方法

合集下载

(完整版)相似三角形的判定方法

(完整版)相似三角形的判定方法

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

三角形的相似性知识点

三角形的相似性知识点

三角形的相似性知识点相似三角形是高中数学中的重要概念,理解和掌握三角形的相似性对于解决与三角形相关的问题非常重要。

本文将介绍三角形相似性的定义、判定方法以及相似三角形的性质。

在学习相似性知识点时,我们需要掌握比例、角度和边长的关系,并且能够应用相似三角形的性质解决实际问题。

一、三角形相似性的定义相似三角形是指具有相同形状但可能不等大的三角形。

正式定义为,如果两个三角形的对应角度相等,那么这两个三角形是相似的。

通常用符号~表示相似关系。

二、相似三角形的判定方法1. AA判定法:如果两个三角形两个角对应相等,那么这两个三角形是相似的。

2. SSS判定法:如果两个三角形的三个边分别成比例,那么这两个三角形是相似的。

3. SAS判定法:如果两个三角形的一个角相等,另外两个边成比例,那么这两个三角形是相似的。

三、相似三角形的性质1. 对应角相等性质:相似三角形的对应角都相等。

2. 对应边成比例性质:相似三角形的对应边之间的比值相等。

3. 比例性质:相似三角形的相应边长比例等于相应角度的边长比例。

四、相似三角形的应用相似三角形的性质可以应用于实际问题的解决中,例如测量高楼的高度、影子长度的测量等。

以下是一个例子:假设有一根高塔,在地面上有一杆测量仪器,测量仪器与塔尖的距离为1.5米,同时测量仪器与杆子的投影长度为0.5米。

如果知道测量仪器与塔尖的连线与水平面的夹角为30度,求塔的高度。

解决这个问题可以利用相似三角形的性质。

我们可以将测量仪器与塔尖的连线、杆子和塔的高度组成一个相似三角形。

根据相似三角形的性质,我们可以得到以下比例关系:(塔的高度) / (杆子的长度) = (测量仪器与塔尖的距离) / (测量仪器与杆子的投影长度)即 h / 0.5 = 1.5 / 0.5解以上比例可得 h = 1.5 米因此,塔的高度为1.5米。

结语:相似三角形的知识点是解决与三角形相关问题的基础,我们通过掌握相似三角形的定义、判定方法以及性质,能够更好地解决实际问题。

完整版相似三角形的判定方法

完整版相似三角形的判定方法

(一)相似三角形1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1 •所以全等三角形是相似三角形的特例•其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0△ ABC的相似比「当它们全等时,才有k=k' =1③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:•/ DE // BC ,•••△ ABC ADE ;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”;③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADEA(双A型)例2、如图,E、F分别是△ ABC的边BC上的点,DE // AB,DF // AC , 求证:△ ABC DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

相似三角形的定义和判定方法

相似三角形的定义和判定方法

相似三角形的定义和判定方法相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。

相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。

下面将依次介绍相似三角形的定义和判定方法。

1. 相似三角形的定义相似三角形的定义是指两个三角形的对应角度相等,且对应的边长成比例。

具体而言,对于三角形ABC和DEF来说,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,则称三角形ABC与三角形DEF相似。

2. 角-角-角(AAA)相似定理角-角-角(AAA)相似定理是指如果两个三角形的对应角度相等,则这两个三角形是相似的。

根据该定理,如果∠A=∠D,∠B=∠E,∠C=∠F,则可以判定三角形ABC与三角形DEF是相似的。

3. 边-边-边(SSS)相似定理边-边-边(SSS)相似定理是指如果两个三角形的对应边长成比例,则这两个三角形是相似的。

根据该定理,如果AB/DE=BC/EF=AC/DF,则可以判定三角形ABC与三角形DEF是相似的。

4. 边-角-边(SAS)相似定理边-角-边(SAS)相似定理是指如果两个三角形的两条边分别成比例,且夹角相等,则这两个三角形是相似的。

根据该定理,如果AB/DE=AC/DF,且∠A=∠D,则可以判定三角形ABC与三角形DEF是相似的。

总结:相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。

相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。

通过这些判定方法,我们可以确定两个三角形是否相似,并且进一步分析它们的性质和关系。

相似三角形在几何学中具有重要的应用,可以用于解决各种问题,如比例求解、测距等。

以上是关于相似三角形的定义和判定方法的介绍。

相似三角形的几何性质和应用领域涉及广泛,深入理解和掌握相似三角形的定义和判定方法可以为几何学的研究和实际问题的解决提供有力的工具和方法。

相似三角形的判定公式

相似三角形的判定公式

相似三角形的判定公式
相似三角形的判定公式为:AA(角角)、SAS(边角边)、SSS(边边边)、HL等等。

相似三角形是指对应角相等,对应边成比例的两个三角形。

相似三角形判定定理
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(简叙为:两角对应相等,两个三角形相似。

)(AA)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)(SAS)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。

(简叙为:三边对应成比例,两个三角形相似。

)(SSS)
4.两三角形三边对应平行,则两三角形相似。

(简叙为:三边对应平行,两个三角形相似。

)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

(简叙为:斜边与直角边对应成比例,两个直角三角形相似。

)(HL)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。

相似三角形的性质与判定

相似三角形的性质与判定

相似三角形的性质与判定相似三角形是初中数学中一个重要的概念,理解相似三角形的性质和判定方法对于解题和应用数学非常有帮助。

本文将介绍相似三角形的性质,并讨论如何判定两个三角形是否相似。

一、相似三角形的性质1. 边长比例:两个三角形相似的充分必要条件是它们对应边长之比相等。

设两个三角形分别为ABC和DEF,若满足以下条件,则可判断它们为相似三角形:AB/DE = BC/EF = AC/DF2. 角度相等:两个三角形相似的另一个重要性质是它们对应角度相等。

即若三角形ABC和DEF满足以下条件,则可以判断它们为相似三角形:∠A = ∠D, ∠B = ∠E, ∠C = ∠F3. 高度比例:相似三角形的高度之比等于对应边长之比。

假设ABC 和DEF为相似三角形,且BC和EF为对应边,h1和h2为它们的高度,则有以下关系:h1/h2 = BC/EF二、相似三角形的判定方法1. AA(角-角)判定法:若两个三角形的两个角相等,则这两个三角形相似。

即若∠A = ∠D,∠B = ∠E,可判断三角形ABC与DEF相似。

2. SAS(边-角-边)判定法:若两个三角形的两个对应边的比例相等,并且这两个边夹角相等,则这两个三角形相似。

假设AB/DE =BC/EF,∠B = ∠E,可判断三角形ABC与DEF相似。

3. SSS(边-边-边)判定法:若两个三角形的三个对应边的比例相等,则这两个三角形相似。

即若AB/DE = BC/EF = AC/DF,可判断三角形ABC与DEF相似。

三、相似三角形的应用1. 测量高度:利用相似三角形的性质,可以测量高度。

例如,根据两个相似三角形的高度比例,可以利用已知的高度和对应的边长,求解未知高度的长度。

2. 图形放缩:相似三角形的性质使得我们能够进行图形的缩放。

通过改变相似三角形的边长比例,可以将图形按照一定的比例进行放大或缩小。

3. 建模与设计:相似三角形的应用还可以用于建模和设计。

例如,在设计模型中,可以利用相似三角形的概念,按照一定的比例来缩放和调整图形的形状。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。

二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。

相似三角形的性质与判定

相似三角形的性质与判定

相似三角形的性质与判定相似三角形是指具有相等对应角度的三角形,它们的对应边长之比也相等。

相似三角形不仅在几何学中具有重要意义,而且在实际生活中应用广泛。

本文将介绍相似三角形的性质及其判定方法。

一、相似三角形的性质1. 相似三角形的对应角度相等:对于两个三角形ABC和DEF,若∠A=∠D、∠B=∠E、∠C=∠F,则可以判断这两个三角形相似。

2. 相似三角形的对应边长比相等:对于两个相似三角形ABC与DEF,若AB/DE = AC/DF = BC/EF,则可以判断这两个三角形相似。

二、判定相似三角形的方法1. AA判定法(角-角判定法):如果两个三角形的两个角分别对应相等(即两个角的对应边平行),则可以判断这两个三角形相似。

例如,已知两个三角形ABC与DEF,已知∠A = ∠D,∠C = ∠F,并且∠B与∠E不相等,但∠B与∠E之间没有已知的关系。

根据AA判定法,可以得出结论这两个三角形相似。

2. SAS判定法(边-角-边判定法):如果两个三角形的一个角和两边分别相等,则可以判断这两个三角形相似。

例如,已知两个三角形ABC与DEF,已知∠A = ∠D,并且AB/DE = AC/DF。

根据SAS判定法,可以得出结论这两个三角形相似。

3. SSS判定法(边-边-边判定法):如果两个三角形的三条边的比例相等,则可以判断这两个三角形相似。

例如,已知两个三角形ABC与DEF,已知AB/DE = BC/EF =AC/DF。

根据SSS判定法,可以得出结论这两个三角形相似。

4. RHS判定法(直角边-斜边-直角边判定法):如果两个直角三角形的一个直角边和斜边的比例相等,则可以判断这两个三角形相似。

例如,已知两个直角三角形ABC与DEF,已知∠C = ∠F = 90°,并且AB/DE = AC/DF。

根据RHS判定法,可以得出结论这两个三角形相似。

三、实际应用相似三角形的性质及判定方法在实际生活中有广泛的应用。

相似三角形分类整理(超全)

相似三角形分类整理(超全)

nih的相似比,当且仅当它们全等时,才有e an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定: 判定定理(1):两角对应相等,两三角形相似. 判定定理(2):两边对应成比例且夹角相等,两三角形相似. 判定定理(3):三边对应成比例,两三角形相似.温馨提示: ①有平行线时,用上节学习的预备定理; ②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.例1.如图三角形ABC 中,点E 为BC 的中点,过点E 作一条直线交AB 于D 点,与AC 的延长线将于F 点,且FD=3ED ,求证:AF=3CF2、直角三角形相似的判定: 斜边和一条直角边对应成比例,两直角三角形相似.温馨提示: ①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似; ②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛. ③如图,可简单记为:在Rt △ABC 中,CD ⊥AB ,则△ABC ∽△CBD ∽△ACD .直角三角形的身射影定理:AC 2=AD*ABCD 2=AD*BDBC 2=BD*ABgnihtlt he i rb ee an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o例5. 如图,Rt ABC 中,CD 为斜边AB 上的高,E 为CD 的中点,AE 的延长线交BC ∆于F ,FG AB 于G ,求证:FG =CF BF ⊥2∙四、作中线例6 如图,中,AB ⊥AC ,AE ⊥BC 于E ,D 在AC 边上,若BD=DC=EC=1,求ABC ∆AC 。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。

22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

三角形相似的判定方法6种

三角形相似的判定方法6种

三角形相似的判定方法6种相似三角形是初中数学中的一个非常重要的知识点,它也是历年中考的热点内容,通常考查以下三个部分:一是考查相似三角形的判定;二是考查利用相似三角形的性质解题;三是考查与相似三角形有关的综合内容。

以上试题的考查既能体现开放探究性,又能注重知识之间的综合性。

首先我们帮助学生突破相似三角形判定这个难点。

三角形相似的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形比值与比的概念比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1判定方法证两个相似三角形应该把表示对应顶点的`字母写在对应的位置上。

如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。

知道了定义那么我们接下来就看看,三角形相似的判定的6种方法。

方法一(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。

(这是相似三角形判定的定理,是以下判定方法证明的基础。

这个引理的证明方法需要平行线与线段成比例的证明)方法二如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

方法三如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似方法四如果两个三角形的三组对应边成比例,那么这两个三角形相似方法五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形三个基本型Z型A型反A型方法六两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。

一定相似的三角形1、两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)2、两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。

)3、两个等边三角形(两个等边三角形,三角都是60度,且边边相等,所以相似)4、直角三角形中由斜边的高形成的三个三角形(母子三角形)。

三角形相似的判定方法6种

三角形相似的判定方法6种

三角形相似的判定方法6种三角形相似是几何学中的一个重要概念,它描述了两个三角形形状相同,大小可能不同的关系。

判断两个三角形是否相似,主要依靠六种判定方法,它们分别是:AA相似、SSS相似、SAS相似、ASA相似、AAS相似以及HL相似(仅限于直角三角形)。

本文将详细阐述这六种判定方法,并辅以例题和图形说明,力求全面、深入地讲解三角形相似的判定。

一、 AA相似(角角相似)如果两个三角形的两个角对应相等,那么这两个三角形相似。

这是最常用的相似判定方法,其简洁性使其在解题中应用广泛。

原理:两个角对应相等,则第三个角也必然相等(因为三角形内角和为180°)。

三个角对应相等,保证了两个三角形的形状完全一致,从而判定它们相似。

图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果∠A = ∠A’ 且∠B = ∠B’,则△ABC ∽△A’B’C’。

例题1:已知△ABC中,∠A = 60°,∠B = 80°;△DEF中,∠D = 60°,∠E = 80°。

判断△ABC与△DEF是否相似,并说明理由。

解答:因为∠A = ∠D = 60°,∠B = ∠E = 80°,根据AA相似判定定理,△ABC ∽△DEF。

二、 SSS相似(边边边相似)如果两个三角形的对应边成比例,那么这两个三角形相似。

这是基于比例关系的相似判定方法。

原理:对应边成比例意味着两个三角形形状相同,只是大小不同。

比例关系保证了三角形的形状不变,从而判定它们相似。

图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果AB/A’B’ = BC/B’C’ = AC/A’C’,则△ABC ∽△A’B’C’。

例题2:已知△ABC的三边长分别为6cm、8cm、10cm;△DEF的三边长分别为3cm、4cm、5cm。

(完整版)相似三角形证明技巧(整理)

(完整版)相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

《相似三角形的判定》 知识清单

《相似三角形的判定》 知识清单

《相似三角形的判定》知识清单相似三角形是初中数学中的重要内容,它在解决几何问题和实际应用中都有着广泛的用途。

下面为大家梳理相似三角形的判定相关知识。

一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。

相似三角形对应边的比值叫做相似比。

二、相似三角形的判定方法1、两角分别相等的两个三角形相似这是判定相似三角形最常用的方法之一。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B=∠B',那么三角形 ABC 相似于三角形 A'B'C'。

2、两边成比例且夹角相等的两个三角形相似当两个三角形两组对应边的比相等,并且它们所夹的角相等时,这两个三角形相似。

比如,在三角形 ABC 和三角形 A'B'C'中,如果\(\frac{AB}{A'B'}=\frac{AC}{A'C'}\),且∠A =∠A',那么三角形 ABC 相似于三角形 A'B'C'。

3、三边成比例的两个三角形相似如果两个三角形的三条边对应成比例,那么这两个三角形相似。

假设在三角形 ABC 和三角形 A'B'C'中,\(\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}\),则三角形 ABC 相似于三角形 A'B'C'。

三、相似三角形判定的应用1、证明两个三角形相似在几何证明题中,常常需要通过上述判定方法来证明两个三角形相似,从而得出相关的角相等或边成比例的结论。

2、求解未知边的长度当已知两个相似三角形的相似比和其中一些边的长度时,可以通过相似三角形对应边成比例的性质来求解未知边的长度。

相似三角形判定知识梳理

相似三角形判定知识梳理

C1、相似三角形的定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2、定理:平行于三角形的一边的直线和和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

3、相似三角形的传递性:如果△ABC ∽ △A 1B 1C 1,△A 1B 1C 1 ∽ △A 2B 2C 2,那么△ABC ∽ △A 2B 2C 2。

4、相似三角形的判定方法:(1)根据定义:对应角相等,对应边成比例的三角形相似。

(2)根据平行线:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

(3)判定定理1:两角对应相等的两个三角形相似。

(4)判定定理2:两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:三边对应成比例,两三角形相似。

(6)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

全等与相似的类比:相似三角形常见的图形① 平行线型 常见的有如下两种,DE ∥BC ,则△ADE ∽△ABC② 相交线型 常见的有如下四种情形,如图,已知∠1=∠B ,则由公共角∠A 得, △ADE ∽△ABC如下左图,已知∠1=∠B ,则由公共角∠A 得,△ADC ∽△ACB 如下右图,已知∠B=∠D ,则由对顶角∠1=∠2得,△ADE ∽△ABC③旋转型已知∠BAD=∠CAE,∠B=∠D,则△ADE∽△ABC,下图为常见的基本图形.④母子型已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD.解决相似三角形问题,关键是要善于从复杂的图形中分解出(构造出)上述基本图形.(3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB.(4)当AD AE或AD·AB=AC·AE时,△ADE∽△ACB.(3)(4)相似三角形的常见图形及其变换:B CC。

相似与全等三角形的判定知识点总结

相似与全等三角形的判定知识点总结

相似与全等三角形的判定知识点总结三角形是几何学中重要的图形之一,而相似与全等三角形的判定是研究三角形性质的基础。

本文将总结与介绍相似与全等三角形的判定知识点,帮助读者更好地理解和运用这些概念。

一、相似三角形的判定相似三角形指的是具有相同形状但可能不同大小的三角形。

相似三角形的判定有以下几种方法:1. AA判定法(角对应相等判定法):如果两个三角形的两个角分别相等,那么这两个三角形是相似的。

即如果∠A1=∠A2,且∠B1=∠B2,则△ABC∼△A'B'C'。

2. SSS判定法(边对应成比例判定法):如果两个三角形的三条边分别成比例,那么这两个三角形是相似的。

即如果AB/A'B' = BC/B'C' = AC/A'C',则△ABC∼△A'B'C'。

3. SAS判定法(边角边对应成比例判定法):如果两个三角形的两边成比例且夹角相等(或互补),那么这两个三角形是相似的。

即如果AB/A'B' = BC/B'C',且∠A=∠A',则△ABC∼△A'B'C'。

4. 轴心距判定法:如果两个三角形的对应顶点到两条平行轴的距离成比例,那么这两个三角形是相似的。

二、全等三角形的判定全等三角形指的是形状完全相同的三角形,包括边长和角度都相等。

全等三角形的判定有以下几种方法:1. SSS判定法(边对应相等判定法):如果两个三角形的三条边分别相等,那么这两个三角形是全等的。

即如果AB=A'B',BC=B'C',AC=A'C',则△ABC≌△A'B'C'。

2. SAS判定法(边角边对应相等判定法):如果两个三角形的两边和夹角分别相等,那么这两个三角形是全等的。

即如果AB=A'B',BC=B'C',且∠A=∠A',则△ABC≌△A'B'C'。

相似三角形的判定方法

相似三角形的判定方法

AD BC (E )图4相似三角形的判定方法 定义法 对应角相等,对应边成比例的三角形相似 判定定理① 平行于三角形一边的直线和其他两条相交,所构成的三角形与原三角形相似 判定定理② 如果三角形的三组对应边相等,那么这两个三角形相似 判定定理③ 如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似判定定理④ 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似特殊情况:第一:顶角(或底角)相等的两个等腰三角形相似。

第二:腰和底对应成比例的两个等腰三角形相似。

第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。

例如图1,D 、E 分别是△ABC 的边BA ,CA 延长线上的点,DE ∥BC 。

(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由;(3)写出三组成比例的线段。

(1)(2) 。

理由是: (3)变形一:把上图中的直线DE 向平行于BC 方向移动到如力的位置,变为图2,回答上面的问题。

(1) (2)(3)变形二:移动线段DE ,使∠AED =∠B ,变为图3,回答上面的问题。

(1) (2)(3)。

变形三:继续移动线段DE ,使E 点与C 点重合,并保持∠AED =∠B ,变为图4,回答上面的问题。

把上面结论中的字母E 改为C ,上面的结论成立吗?(1) (2) (3)其中AC 2=AD ·AB 吗?理由是B CAE D图1 A DE B C 图2 ADEB C 图3FADEBC变形四:特殊地,当AC ⊥BC ,CD ⊥AB 时,变为图5,回答上面的问题。

对应点没有变,上述结论仍成立吗?理由是:课堂练习1.如图,△ABC ∽△AED, 其中DE ∥BC ,写出对应边的比例式. ∠ADE =70° ∠DAE =50°写出对应相等的角。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

简单说成:两边对应成比例且夹角相等,两三角形相似.例1、△ABC 中,点D 在AB 上,如果AC 2=AD •AB ,那么△ACD 与△ABC 相似吗?说说你的理由.例2、如图,点C 、D 在线段AB 上,△PCD 是等边三角形。

(1)当AC 、CD 、DB 满足怎样的关系时,△ACP ∽△PDB ? (2)当△ACP ∽△PDB 时,求∠APB 的度数。

判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。

简单说成:三边对应成比例,两三角形相似.ABCDE F第4题不相似,请说明理由。

,求出相似比;如果它们相似吗?如果相似,和如图在正方形网格上有222111A C B A C B ∆∆强调:①有平行线时,用预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等. 2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.例1、已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP =3PC ,Q 是CD 的中点.求证:△ADQ ∽△QCP .例2、如图,AB ⊥BD,CD ⊥BD,P 为BD 上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P 点在BD 上由B 点向D 点运动时,PB 的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、如图AD ⊥AB 于D ,CE ⊥AB 于E 交AB 于F ,则图中相似三角形的对数有 对。

例4、已知:AD 是Rt △ABC 中∠A 的平分线,∠C =90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD (2)ND 2=NC ·NB①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相EFA BC似三角形”,其应用较为广泛.(直角三角形被斜边上的高分成的两个直三角形的与原三角形相似)③如图,可简单记为:在Rt △ABC 中,CD ⊥AB ,则△ABC ∽△CBD ∽△ACD . ④补充射影定理。

特殊情况:第一:顶角(或底角)相等的两个等腰三角形相似。

第二:腰和底对应成比例的两个等腰三角形相似。

第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。

类型 斜三角形 直角三角形全等三角形的判定 SAS SSS AAS (ASA ) HL 相似三角形 的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.(3)对应字母要写在对应的位置上,可直接得出对应边,对应角。

2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:A BCDEABCD A BCA BCD EDABCE(1)“平行线型”相似三角形,基本图形见前图.“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A旋转某一角度而形成的.从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形.练习:1、如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据。

2、如图27-2-1-12,在大小为4×4的正方形方格中,△ABC的顶点A,B,C在单位正方形的顶点上,请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(相似比不为1),且点A1,B1,C1都在单位正方形的顶点上.图27-2-1-121、寻找相似三角形的个数例1、(吉林)将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中所有点、线都在同一平面内,回答下列问题:(1)图中共有多少个三角形?把它们一一写出来;(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.如图,△ABC 中,点D 、E 分别在边AB 、AC 上,连接并延长DE 交BC 的延长线于点F ,连接DC 、BE ,若∠BDE +∠BCE =180°。

⑴写出图中3对相似三角形(注意:不得添加字母和线)⑵请在你所找出的相似三角形中选取1对,说明它们相似的理由。

1、如图,在正方形网格上有6个三角形:①ABC ∆,②BCD ∆,③BDE ∆,④BFG ∆,⑤FGH ∆,⑥EFK ∆,其中②-⑥中与①相似的是 。

2、画符合要求的相似三角形 例1、(上海)在大小为4×4的正方形方格中,△ABC 的顶点A 、B 、C 在单位正方形的顶点上,请在图中画出一个△A 1B 1C 1,使得△A 1B 1C 1∽△ABC(相似比不为1),且点A 1、B 1、C 1都在单位正方形的顶点上.FE DB AC3、相似三角形的判定例1、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有相似三角形,并证明.例2、如图,在△ABC中,DF经过△ABC的重心G,且DF∥AB ,DE∥AC,连接EF,如果BC=5,AC=2AB.求证:△DEF∽△ABC4、直角三角形中相似的判定例1、如图,△ABC中,∠BAC=90°,AD⊥BC于D,DE为AC的中线,延长线交AB的延长于F,求证:AB·AF=AC·DF。

例2、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。

求证:EB·DF=AE·DB5、相似三角形的综合运用例1、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB CB AFEDG的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.例2、如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:.例3、如图,在正方形ABCD中,M、N分别是AB、BC上的点,BM=BN,BP⊥MC于点P.求证:PN⊥PD.6、相似三角形中辅助线的添加(1)、作垂线3. 如图从证:AB⋅AB CFDE(2)例1、于F,FG⊥(3)、作中线例1、 如图,ABC ∆中,AB ⊥AC ,AE ⊥BC 于E ,D 在AC 边上,若BD=DC=EC=1,求AC 。

练习:1、ABC ∆中,︒=∠90ACB ,AC=BC ,P 是AB 上一点,Q 是PC 上一点(不是中点),MN 过Q 且MN ⊥CP ,交AC 、BC 于M 、N ,求证:CN CM PB PA ::=。

2、. 如图,中,,,那么吗?试说明∆ABC AB AC BD AC BC CA CD =⊥=⋅22理由?3.(2009年湖北武汉)如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E .(1)求证:ABF COE △∽△;(2)当O 为AC 边中点,2AC AB=时,如图2,求OF OE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出OF OE 的值.B BA A CO EDD E C O F 图1图2 F。

相关文档
最新文档