利用ASPEN PLUS 软件进行物性估算

合集下载

Aspen plus 化工物性数据和相平衡数据的查询与估算

Aspen plus 化工物性数据和相平衡数据的查询与估算
业 大 学 包 宗 宏
系统数据库
SOLIDS COMBUS
包括3314个固体组分的参数,该 数据库用于固体和电解质应用, 该数据库大部分被INORGANIC替 代了,但它对于电解质应用来说 13 仍然是必要的。
BINARY
1.1 化工物性数据的查询 了解软件数据库的内容与功能,为的是在化工设计过程中 应用。在工艺设计之初,大量时间被用于查找物性数据。化工 模拟软件的普及,为物性数据查找提供了极大的便利。 例1-1.查询硫化氢和硫磺的全部纯组分物性. 为保护环境,工业废气中的硫化氢都采用CLAUS工艺转化 为液态硫磺进行回收。请从ASPEN PLUS 系统数据库中查询 硫化氢和硫磺的全部纯组分物性。
南 京 工 业 大 学 包 宗 宏
3
1.1 化工物性数据的查询 1.1.1从文献中查找 1.1.1.1 中文工具书 ⑴ 化工辞典,王箴主编,化学 工业出版社出版. 最新版本是2000年出的第4版, 共收词16000余条。
南 京 工 业 大 学 包 宗 宏
4
1.1.1从文献中查找 1.1.1.1 中文工具书 ⑵ 石油化工基础数据手册,卢焕章 主编,化学工业出版社1982. 共两篇,第一篇介绍各种化工介质 物理、化学性质和数据的计算方 法;第二篇将387个化合物的各 种数据列成表格.以供查阅。 这些数据包括临界参数,及其在一 定温度、压力范围内的饱和蒸汽 压、汽化热、热容、密度、粘度、 导热系数、表面张力、压缩因子、 偏心因子等16个物理参数。 1993年,化学工业出版社出版了由 马沛生主编的石油化工基础数据 手册续编,包含552个新化合物 的21项物性。
包 宗 宏
11
1.1 化工物性数据的查询 1.1.2从ASPEN PLUS软件数据库中查找 在化工设计过程中,物性数据的查找是耗时最多的工作。 能够熟练地查找数据、判断数据的可靠性是化工专业人员的 基本功之一。 图书馆内关于化工物性数据的专著、手册、图册、教材琳 琅满目,对于新加入化工领域的学生来说,往往无从下手。 而使用大型化工流程模拟软件查找、计算、估算化工物性 数据,则为他们提供一条查找物性数据的快捷通道。 即是使经验丰富的化工工程师,掌握软件的物性数据估算、 计算功能,也会对他们的设计工作提供一个事倍功半的利器, 大大提高工作效率,成为他们设计工作中爱不释手的有力工 具。

在ASPEN PLUS中选用的物性方法

在ASPEN PLUS中选用的物性方法

在ASPEN PLUS中选用的物性方法—Chao-Seader本设计中所选用的两种物质苯、甲苯都为烃类物质,且操作条件为Chao-Seader用来计算烃类混合物对重质烃类用此方法ASPEN PLUS中的塔设备单元操作模块1、DSTWU模块对单一进料两出料精馏塔进行简捷设计计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、给定回流比下的理论板和加料版位置。

已知平衡级数,可以得到回流比;已知回流比,可以得出理论级数。

同时也能得到最佳进料位置和再沸器及冷凝器热负荷。

运用DSTWU能够得到回流比与理论级数关系曲线与表格。

可以利用此单元操作得到严格计算初值。

2、RadFrac模块此模块为严格多级气液分离模型,尤其适用于三相、宽沸程和窄沸程以及液相强非理想系体系,用于精确计算精馏塔、吸收塔(板式塔或填料塔)的分离能力和设备参数。

可以同时联解物料平衡、能量平衡和相平衡关系,用逐板计算法求解给定塔设备的操作结果3、DISTL模块此模块对单一进料两出料精馏塔进行简捷校核计算。

给定平衡级数、回流比和塔顶产品速率及冷凝器类型(全凝或部分冷凝),可估算出再沸器和冷凝器热负荷。

4、EXTRACT模块此模块为液液萃取模拟计算的严格模型,只用来进行校核计算。

可处理多进料、带侧线以及有加热和冷却单元的各种萃取体系。

分配系数的求取可采取活度系数法、状态方程法或内置温度关联式二元精馏是最为简单的一种精馏操作,其设计和操作计算是多元精馏计算的基础。

二元精馏的设计可采用简捷法和逐板计算法,Aspen Plus则采用Winn-Underwood-Gilliland简捷法进行设计,对应“Colums”中“DSTWU”模块。

由于简捷法的计算误差较大,所以需要用严格精馏模型对设计结果进行验证,采用“Colums”中的“RadFrac”模块。

所以本设计的单元操作也选用RadFrac模块。

基于AspenPlus物性分析计算甲醇水溶液凝固点_刘光明

基于AspenPlus物性分析计算甲醇水溶液凝固点_刘光明

( 2) ( 3) ( 4)
fi = x γ f
1030 收稿日期:2012Email: liuguangming86@ 126. com。 作者简介:刘光明( 1986—) , 男, 硕士, 助理工程师, 主要从事化工工艺设计计算方面的研究, 电话: 15094059079,
· 64·
化学工程 2013 年第 41 卷第 6 期
第 41 卷 第 6 期 2013 年 6 月
化 学 工 程 CHEMICAL ENGINEERING( CHINA)
Vol. 41 No. 6 Jun. 2013
基于 Aspen Plus 物性分析计算甲醇水溶液凝固点
刘光明,王伟鹏
( 西北化工研究院设计所 ,陕西 西安 710054 ) 摘要:探讨了气液固多相平衡的机理 , 利用活度系数法计算各相热力学性质 , 采用 Aspen plus 物性分析计算不同浓 将计算结果与手册值进行比较 , 结果表明: 模拟计算结果与手册值较为接近 , 在工程误差 度的甲醇水溶液凝固点 , 可以用 Aspen plus 物性分析计算甲醇水溶液凝固点 。 允许的范围内, 关键词:Aspen plus; 物性分析; 甲醇水溶液; 凝固点 中图分类号:TQ 026. 5 文献标识码:A 9954 ( 2013 ) 06006303 文章编号:1005DOI:10. 3969 / j. issn. 10059954. 2013. 06. 015
∞ i V T, V, ni
( 16 )
由吉布斯能和焓得到固体混合物的熵 : 1 s Ss ( Hs m = m - Gm ) T 2
( 17 )

RT ] dV - ln Z2 m V ( 7)
物性分析计算凝固点步骤 首先运行 Aspen Plus 软件, 选择运行类别为物性

Aspen plus分析混合物露点、热容、平均分子量的方法

Aspen plus分析混合物露点、热容、平均分子量的方法

Aspen分析混合物露点、热容、平均分子量的方法首先,打开软件,进入物性分析
(1)点“next”图标,进入下一步
(2)此界面继续点“next”
(3)输入各组分物质,后点下一步。

(4)选择计算方法。

选择“PENG-ROB”,点下一步;
(5)出现一个界面,再点下一步
(6)出现如下界面,点确定
(7)出现如下界面,先别急,等下再回来完成此步。

(8)点下面的prop-sets,(因为要分析哪些物性,需要我们自己来设定)
(9)选择new,点OK
(10)选择cpmx等相关物性
CPMX:混合物恒压热容
TDEW:混合物某压力下的露点
MWMX:混合物的平均分子量
(11)选好后,点next,点“new”。

出现如下界面,这是刚才第7步出现的界面。

(12)输入各组分的含量。

(虽然单位是kmol/h,我们所模拟的这些参数只需要知道各组分的比例就可以得出了。

不管怎么输,只要比例正确就可以了)
Next
从180度开始,到250度结束,每隔5度计一个点(13)把刚才选择的物性,添加到结果列表中。

(14)运行后,点results,查看结果
(15)结果
注:CPMX:混合物热容。

只要压力、温度、组分含量任意一个改变,此数据就要重算。

TDEW:某压力下的露点。

压力、组分含量任意一个改变,此数据就要重算。

MWMX:混合物平均分子量。

只和组分含量相关。

AspenPlusV84查混合物质的物性使用范例

AspenPlusV84查混合物质的物性使用范例

AspenPlusV84查混合物质的物性使用范例
1、Setup–UnitSet–选择SI(国际单位制)或者“New”新建一个
2、Setup–Specification–Global–Globalunitet选择某个单位–Globaletting–Validphae选择状态
6、Method–Specification–Global–Methodname–选择合适的物性
计算方法,可以在Plu的帮助F1里找到这方面的指导
7、PropertySet–New–EnterID输入参数包的名字–OK–Search
8、上面点击Search之后会打开下面的SearchPhyicalPropertie,
输入想要查找的物性名字,Search,双击完成添加;然后设置单位。

(添
加多个物性时会出现下图2,我做过1个验证,发现一个物性包里包含多
个参数,和一个物性包里只有一个参数,结算结果显示两个物性包里这个
参数是相同的)。

完成后如下图3.
9、有时候Qualifier会显示红色,提示选择合适的物质状态
10、Analyi–选择界面右上方Analyi中的Pure/Binary/Mi某ture,本。

Aspen plus 化工物性数据和相平衡数据的查询与估算

Aspen plus 化工物性数据和相平衡数据的查询与估算
17
南 京 工 业 大 学 包 宗 宏
1.2 纯物质的物性估算 1.2.2 与温度相关的热力学性质 理想气体热容:PCES用用多项式(式1-3)、Benson 方法和 Joback 方法估算,温度范围280-1100K,误差< 2%; 临界温度以下纯组分液体热容和液体焓:PCES用DIPPR、 PPDS、IK-CAPE、NIST等关联式计算; 液体摩尔体积: PCES用带有RKTZRA参数的Rackett模型方程 (式1-5)估算; 液体蒸汽压: 数据库组分用扩展Antoine方程(式1-6)进行估算, 非数据库组分采用Riedel、Li-Ma、Mani三种方法估计; 汽化潜热: 数据库组分用Clausius-Clapeyron 方程和Watson方 程(式1-7)估算,非数据库组分用Vetere、Gani、Ducros、 Li-Ma等化合物官能团贡献方法进行估算,Vetere方法的平 均误差为1.6%,Li-Ma方法平均误差为1.05%。
南 京 工 业 大 学 包 宗 宏
3
1.1 化工物性数据的查询 1.1.1从文献中查找 1.1.1.1 中文工具书 ⑴ 化工辞典,王箴主编,化学 工业出版社出版. 最新版本是2000年出的第4版, 共收词16000余条。
南 京 工 业 大 学 包 宗 宏
4
1.1.1从文献中查找 1.1.1.1 中文工具书 ⑵ 石油化工基础数据手册,卢焕章 主编,化学工业出版社1982. 共两篇,第一篇介绍各种化工介质 物理、化学性质和数据的计算方 法;第二篇将387个化合物的各 种数据列成表格.以供查阅。 这些数据包括临界参数,及其在一 定温度、压力范围内的饱和蒸汽 压、汽化热、热容、密度、粘度、 导热系数、表面张力、压缩因子、 偏心因子等16个物理参数。 1993年,化学工业出版社出版了由 马沛生主编的石油化工基础数据 手册续编,包含552个新化合物 的21项物性。

Aspen Plus对不同应用领域推荐使用的物性计算方法

Aspen Plus对不同应用领域推荐使用的物性计算方法
Steam systems
Coolant
STEAMNBS, STEAM.TA
Application
Recommended Property Methods
Mechanical processing:
Crushing
Grinding
Sieving
Washing
SOLIDS
Hydrometallurgy
ENRTL-HF
Application
Recommended Property Methods
Size reduction crushing, grinding
SOLIDS
Separation and cleaning sieving,
cyclones, precipitation, washing
SOLIDS
Combustion
PR-BM, RKS-BM (combustion databank)
Acid gas absorption with
Methanol (RECTISOL)
NMP (PURISOL)
PRWS, RKSWS, PRMHV2, RKSMHV2, PSRK, SR-POLAR
Primary fractionator
CHAO-SEA, GRAYSON
Light hydrocarbons
Separation train
Quench tower
PENG-ROB, RK-SOAVE
Aromatics
BTX extraction
WILSON, NRTL, UNIQUAC and their ariances
(Substituted) hydrocarbon stripping

利用ASPEN-PLUS-软件进行物性估算

利用ASPEN-PLUS-软件进行物性估算

利用ASPEN PLUS 软件进行物性估算Aspen Plus 是一款功能十分强大的工艺模拟软件, 对有机化工、无机化工、电化学、石油化工等各领域的各种单元操作均可模拟。

其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。

但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。

此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。

以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。

为了成功估算2MD 的物性, 首先要向AspenPlus 软件提供必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。

以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而进一步计算所需的其它各种物性。

1. 2MD 物性的输入2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。

其分子结构如下:已知的其它物数据: 分子量102.13; 沸点(1atm):110°C; 密度(25°C):0.98kg/m3; 粘度(25°C):0.603cp; 标准生成热(25°C):- 363.02kJ/mol; 标准熵(25°C):303J/(mol·K); 表面张力(25°C):24.93dyn/cm。

因为采用基团贡献法来估算2MD 的物性, 所以在properties 中选用UNIFCA 为计算方法, 然后输入分子结构。

利用aspen plus进行物性参数的估算讲解

利用aspen plus进行物性参数的估算讲解

1 纯组分物性常数的估算1.1、乙基2-乙氧基乙醇物性的输入由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。

已知:最简式:(C6H14O3)分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH)沸点:195℃1.2、具体模拟计算过程乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。

为估计纯组分物性参数,则需1. 在 Data (数据)菜单中选择Properties(性质)2. 在 Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)4. 单击 Pure Component(纯组分)页5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。

具体操作过程如下:1、打开一个新的运行,点击Date/Setup2、在Setup/Specifications-Global页上改变Run Type位property Estimation3、在Components-specifications Selection页上输入乙基2-乙氧基乙醇组分,将其Component ID为DIMER4、在Properties/Molecular Structure -Object Manager上,选择DIMER,然后点Edit5、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构6、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”然后创建一个标量(Scalar)参数TB7、输入DIMER的标准沸点(TB)195℃8、然后转到Properties/Estimation/Set up页上,选择Estimation all missing Parameters9、运行该估算,并检查其结果。

Aspen Plus中查物性的两种方法 方法之一

Aspen Plus中查物性的两种方法 方法之一

Aspen Plus中查物性的两种方法方法之一:1、开始--->程序--->Aspen tech--->Processing Modeling V7.2--->Aspen Properties --->Aspen Properties Database Manager 2、点击确定后--->在左栏选择console root--->aspen physical properties databases V7.2--->APV72--->selected compounds--->find compound 3、输入你要查找的物质,双击,在selected compounds的下一级菜单中会出现你选择的物质。

4、点击properties and parameters--->pure 在右边的view 下面compounds中选择你选择的物质,在databanks选择all 或者指定数据库,在properties中选择all,点击compare然后下面显示的就是该物质的所有物性。

5,最后要说明的是。

大家会在value一列中发现好多加号,单击后,你会有惊奇的发现。

6、建议大家把结果拷贝到excel中去看,这样不容易遗漏什么。

在没有安装Aspen Property 这个模块的情况可以找到上述的两个数据库
方法之二:查看纯组分的物性:填写Component时,点击“Review”。

混合物的物性是比较复杂的。

可以利用Property Analysis中进行物性分析,做物性。

有时候还需要对物性方法中的Routes进行修改。

如何利用Aspen进行物性分析_纯组分,二元相图

如何利用Aspen进行物性分析_纯组分,二元相图

物性分析方法(Property Analysis)在进行一个流程模拟之前,最好先了解一下你所选物系,以及物系中物质的物性和相平衡关系,对所选体系偏离理想体系的程度有个初步的了解,对所选体系热力计算方法有个初步的认识。

只有这样才能够选择合适的物性计算方法,在得出模拟结果之后,才能保证模拟结果的可信度。

下面做一个CO2/Ar体系物性分析的例子,旨在抛砖引玉,有错误的地方还请读者批评指正。

1.开始设置选择模拟类型(Simulations)为:General with Metric Units,单位制可以根据自身选择的单位体系来定。

选择运行类型(Run Type)为:Property Analysis,当然在其它运行类型中也能够进行物性,不过这个运行类型没有流程图及其它一些要素,是专门为物性分析而设立的运行类型。

图12. Setup参数设置设置Setup中的一些参数,如Title,(这里可以不填写,但是最好还是设置一下,可以方便其它用户对你的模拟进行了解,增加其互通性)Unit,Run Type,其中Unit,Run Type 中的设置相当于第一步中的Simulation,Run Type设置,对于前面已经选择的类型在这里可以看到设置的结果如图2。

当然也可以重新设置。

它好处就是,可以很方便的使用户可以在不建立新模拟的情况下,改变单位制及运行类型。

在Description中可以填写对模拟的一些简单描述,可以在报告(.rep)中输出,可以增加其可读性。

其它的一些选项这里就不做介绍了。

图23. 在Component中定义组分在Component ID中输入CO2,AR即可,对于其它一些常用的物质直接输入其名字或分子式就行。

而对于一些结构复杂的物质可以运用Find来查找。

输入后结果如图3。

图3注:Elec Wizard:电解质向导,可以帮助用户输入电解质。

User Defined:输入用户自定义的组分。

Reorder:重新调整输入物质的顺序。

物性估算模型aspenplus入门

物性估算模型aspenplus入门
第 6 页
关联式参数
物性 ANTOIN 蒸汽压关联式参数 理想气体热容关联式参数 WASTON 关联式参数 RACKETT 液体容积方程关联式 CAVETT 综合方程参数 CAVETT 综合关联式参数 SEALCHASD-HILDEBRNUD 方程参数 标准液体容积方程参数 水溶解度方程参数 AUDRADE 液体年度关联式参数 代号 PLXANT CPIG DHVLWT RKTZRA DHLCAT PLCAVT VLCVT1 VLSTD WATSOL MULAND 参数个数 9 11 5 1 1 4 1 3 5 5
物性估算模型 ASPEN PLUS 入门
汤吉海 2006 年 8 月
第三章
ASPEN PLUS 的物性数据库及其应用
3. 1 基础物性数据库 3. 2 物性预测模型 3. 3 物性估算系统 3. 4 实验数据处理系统(模型参数回归)
第 2 页
3.1 基础物性数据库
A SPEN PLU S 物性数据库的数据包括离子种类 、二元交互参数、离子反应所需数据等。共 含 5000 个纯组分、 40000 个二元交互参 数、 5000 个二元混合物及与 250000 多个混 合物实验数据的 D ETH ERM 数据库接口和与 I nhouse (内部)数据库接口。 系统数据库 用户数据库
第 7 页
功能团参数
物性 UNIFAC 方程功能团的 Q 参数 UNIFAC 方程功能团的 P 参数 UNIFAC 方程功能团的相互作用参数 代号 GMUFQ GMUFP GMUFB
第 8 页
3.2 ASPEN PLUS 的物性方法和模型
类别 详细内容 状态方程模型 活度系数模型 蒸汽压和液体逸度模型 汽化热模型 摩尔体积和密度模型 热容模型 溶解度关联模型 其它 粘度模型 导热系数模型 扩散系数模型 表面张力模型 一般焓和密度模型 煤和焦碳的焓和密度模型

Aspen plus简介与经济评估中的应用实例

Aspen plus简介与经济评估中的应用实例

VAPOR
LIQUID
OUT I X ER
VAPOR
REA C- O U T REA CTO R E1 VAPOR
REA CT- I N E1 REA CTO R VAPOR
RECY CLE SPLITTER CO MP VAPOR
SEP1 - O U T SEP1 SPLITTER VAPOR
4.Economic Evaluation模块包括Aspen Process Economic Analyzer、 Aspen In-Plant Cost Estimator、Aspen Capital Cost Estimator这三 个组件,对于旧版本的Aspen中,该模块名为Aspen Icarus Process Evaluator(Aspen IPE) 。这个模块除了作为独立的组件使用外, 还在内置Aspen Plus中使用,可用于:1)进行设备的精确尺寸和费 用估算;2)进行初步的机械设计;3)估算购置和安装费用、间接 费用和总投资、完成工程设计-订货-建设的计划日程表和利润率分析。
3 1 5 .8 0 4 6 3 2 9 .3 1 7 3 4 9 7 5 .1 5 1 1 0 9 .1 9 0 2 4 4 3 .2 5 5 1 6 5 .1 7 6 7 8 7 6 3 .7 3 9 8
9 7 0 .5 6 9 4 3 9 3 .3 5 8 9 6 4 7 6 .8 0 5 1 0 9 .1 9 0 2 4 4 3 .2 5 5 1 1 .1 3 5 3 3 0 4 4 .9 3 3 6 7
第一步:将实际的工艺流程转化为软件中的模块流 程(红线为QQ截图临时添加,原料气经压缩换热进入反应,产物冷却后 分离)
应用例子2 –甲醇生产的灵敏度分析

Aspen_Plus推荐使用的物性计算方法

Aspen_Plus推荐使用的物性计算方法

首先要明白什么是物性方法比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,,问如分别下值是多少1.入口物料的密度,汽相分率。

2.换热器的负荷。

3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。

以上的值怎么计算出来好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。

并且汽相分率全为1,即该物料是完全气体。

由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。

在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:=nRT,=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。

简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。

当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。

对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。

按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。

那么应该如何计算呢想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。

好在模拟软件已经帮我做了这一步,这就是物性方法。

对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。

如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。

在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。

利用ASPEN_PLUS_软件进行物性估算

利用ASPEN_PLUS_软件进行物性估算

利用ASPEN PLUS 软件进行物性估算系别:生物与化学工程学院专业:化学工程与工艺班级:091611姓名:***学号:*********指导老师:***利用ASPEN PLUS 软件进行物性估算其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。

但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。

此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。

以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。

正文:Aspen Plus提供一套功能强大的模型分析工具,最大化工艺模型的效益:收敛分析:自动分析和建议优化的撕裂物流、流程收敛方法和计算顺序,即使是巨大的具有多个物流和信息循环的流程,收敛分析非常方便。

calculator models计算模式:包含在线FORTRAN 和Excel 模型界面。

灵敏度分析:非常方便地用表格和图形表示工艺参数随设备规定和操作条件的变化而变化。

案例研究:用不同的输入进行多个计算,比较和分析。

设计规定能力:自动计算操作条件或设备参数,满足规定的性能目标。

数据拟合:将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。

优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。

要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。

以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而10. 水溶液数据库,包括900 种离子,主要用于电解质的应用。

1. 2MD 物性的输入2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。

利用aspen_plus进行物性参数的估算

利用aspen_plus进行物性参数的估算

1 纯组分物性常数的估算1.1、乙基2-乙氧基乙醇物性的输入由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。

已知:最简式:(C6H14O3)分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH)沸点:195℃1.2、具体模拟计算过程乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。

为估计纯组分物性参数,则需1. 在 Data (数据)菜单中选择Properties(性质)2. 在Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)4. 单击 Pure Component(纯组分)页5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。

具体操作过程如下:1、打开一个新的运行,点击Date/Setup2、在Setup/Specifications-Global页上改变Run Type位property Estimation3、在Components-specifications Selection页上输入乙基2-乙氧基乙醇组分,将其Component ID为DIMER4、在Properties/Molecular Structure -Object Manager上,选择DIMER,然后点Edit5、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构6、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”然后创建一个标量(Scalar)参数TB7、输入DIMER的标准沸点(TB)195℃8、然后转到Properties/Estimation/Set up页上,选择Estimation all missing Parameters9、运行该估算,并检查其结果。

基于ASPENPLUS软件的加氢换热器混合进料热物性计算

基于ASPENPLUS软件的加氢换热器混合进料热物性计算

!化工装备技术 ∀ 第 31卷 第 2期 2010年
25
图 5 一阶优化目标函数变化规律曲线
3 结语 在传统结构设计 的基础上, 利 用有限元程序
ANSYS提供 的参 数化 设 计语 言 APDL及优 化 模块
OPT 对冷高压分离器球壳与筒体不连续段的结构尺 寸进行优化设计, 优化后可使不连续区应力集中系 数最小, 为高压容器此类不连续区的安全运行提供 了必要的保障。
A SPEN PLU S 软 件 [ 3~ 4]ocess Eng ineering) , 是基于序贯模块法的稳态过 程模拟软件, 具有工 业上最适用而 完备的物性系 统, 还提供了几十种用于计算传递物性和热力学性 质模型的方法。鉴于此, 笔者采用 ASPEN PLUS软 件, 对加氢换热器混合进料的液相和气相的物性进 行计算, 以期获得一种用于计算特殊工况下混合物 料热物理性质的新方法, 为进行加氢换热器的传热
参考文献
[ 1] 顾红芳 煤油 空气混 合物两 相流相 变与无 相变换 热和压
降特性的研究 [ D ] 西安: 西安交通大学, 2000
[ 2] 杨传波 制冷系统含 油量对制 冷压缩 机工作 性能影 响的理 论分析和实验研究 [ D] 西安: 西安交通大学, 2004
[ 3] 屈一新 化工过程数值模拟及软件 [ M ] 北京: 化学工业
杂。低压时所用的液相热力学函数 ( 如活度系数 ) 与压力无关的假设不再成立; 简单的二项维里式也 不足以表达蒸汽的性质。笔者选用 ASPEN 提供的 Chao- Seader物性方法, 该方法可适用于 各类烃, 如烷烃、烯烃、芳烃和环烷烃, 并可用于含氢气的 烃类混合物 [ 5~ 6] 。
用 Chao - Seader法计算高压气液平衡 的平衡 常数为

基于AspenPlus物性分析计算甲醇水溶液凝固点_刘光明

基于AspenPlus物性分析计算甲醇水溶液凝固点_刘光明
, s , f* 分别为组分 i 在混合物温度下液 i 相和固 相 中 逸 度。 对 于 溶 剂, 液相逸度可以用式
l
s
式中: H i
* , s
E, s 为在温度 T 下的纯组分固体焓; H m 为 E, s
度系数; f i
* , l
过剩固体焓; 过剩固体焓 H m 通过式 ( 14 ) 与活度系 数关联:
[1 ]
现生产故障或者设计失败, 造成不必要的损失。 虽然在手册中可以查到很多种类的不同浓度的 溶液凝固点, 但如果能用化工模拟软件 Aspen Plus 去查询想要的数据将会更加方便和实用 。本文以甲 醇水溶液为例, 利用 Aspen Plus 物性分析估算不同 浓度的甲醇水溶液在 100 kPa 下的凝固点, 从而为 。 溶液凝固点计算提供一个思路 1 气液固多相平衡机理
[2 ]
分析, 定义全局及组分; 由于水及甲醇均为极性物系, [ 3 ] Sets 因此选择的物性方法为 NRTL 模型 , 在 Prop里面新建一个物性集并命名, 也可使用默认代号, 选 TFREEZ , Aspen Plus 择物性 在 物性中有多个凝固点 FREEZER 等, 参数如 FREEZEPT, 但这二者均是指 out temperatures 也即 石油混合组分凝固点, 与 freezeTFREEZ 有很大区别。建立一个物性分析, 定义起始 压强 100 kPa, 变量为甲醇的质量分数, 温度 - 200 ℃ , 数值为 0—1, 增量为 0. 1, 在 Tabulate 中将我们新建 Aspen 物性中推荐的求 的物性集选中并导出。另外, 固体逸度( PHIS) 路径( Route) 为 PHIS06, 该路径使用 的默认模型为 PHS0LIQ, 该模型是根据液体逸度和固 体熔化热求取固体逸度, 而固体熔化热则是由基准温 度计算得到, 基准温度则是由物性 TFREEZ 规定。对 于液相系统, 在主要物性选项中选择同样的液相逸度 模型也即 PHIL06 计算液相的逸度。该项的设置是在 Advanced—Routes 树下, 新建一个 Routes 并命名, 选 择物性名称为 PHIS, 规定固体路径为 PHIS06, 液体路 径为 PHIL06, 同时更改物性方法 NRTL 的默认 PHIS 路径为新建的路径名称, 如图 1—2 所示。运行 Aspen Properties, 可以在物性分析中查看结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用ASPEN PLUS 软件进行物性估算
Aspen Plus 是一款功能十分强大的工艺模拟软件, 对有机化工、无机化工、电化学、石油化工等各领域的各种单元操作均可模拟。

其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。

但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。

此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。

以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。

为了成功估算2MD 的物性, 首先要向AspenPlus 软件提供必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。

以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而进一步计算所需的其它各种物性。

1. 2MD 物性的输入
2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。

其分子结构如下:
已知的其它物数据: 分子量102.13; 沸点(1atm):110°C; 密度(25°C):0.98kg/m3; 粘度(25°C):0.603cp; 标准生成热(25°C):- 363.02kJ/mol; 标准熵(25°
C):303J/(mol〃K); 表面张力(25°C):24.93dyn/cm。

因为采用基团贡献法来估算2MD 的物性, 所以在properties 中选用UNIFCA 为计算方法, 然后输入分子结构。

自定义新物质2MD 后, 在Molecular Structure Object Manager
区中选定2MD, 再点Edit;在General 标签中依次输入各原子间的化学键, 也可以在Functional Group 标签或Formula 标签中输入分子结构( 如图1) 。

图1
输入已知的物性常数: 在左侧的数据浏览区点Properties\Parameters\Pure Component, 点New\OK 生成新的输入表单USRDEF- 1, 输入相应的scalar parameters。

输入相应的实验数据: 在左侧的数据浏览区点Properties\Data, 点New按钮生成新的输入表单; 在新的输入表单中将数据分别填入相应的Setup 和Data 输入标签。

最后在Setup 标签中选Estimate all missing parameters。

2 工艺流程及条件的输入
整个低浓度1,3- 丙二醇分离过程由加成反应、逆流萃取、萃取剂精馏、2MD 精馏、水解、1,3- 丙二醇精馏组成, 具体流程( 如图2) 。

反应器B- 1 中1,3- 丙二醇与乙醛反应为可逆反应, 把实验得出的经验动力学方程输入Reactions,包括指前因子、活化能等, 并输入反应器体积、温度; 反应器B- 2 为水解反应, 同样输入经验动力学方程、反应器体积和温度。

图2
这样就定义好了所有需要的输入值, 再定义好各单元操作模块的输入后, 即可进行工艺模拟计算。

3 物性估算和流程计算结果
估算得到2MD 的沸点为110.4℃, 与实验得出的沸点110℃非常接近, 可以满足设计计算的需要。

同时估算得到2MD 的扩展安托尼蒸汽压因子( Extended Antoine vapor pressure) ,从而可以在没有汽- 液平衡数据的条件下, 进行2MD 的精馏计算。

由于有关的物性是估算出来的, 可能与实际值有些出入, 对计算的结果应做进一步分析, 或与已知的结果做比较, 以验证物性估算的可靠性。

模拟计算结果: 发酵液进料中含有1,3- 丙二醇5%( 质量分数) , 经过反应、萃取、精馏、水解、精馏等过程, 可以达到纯度99.9%以上。

1,3- 丙二醇的进料流量为98.7kmol/h, 出料流量为97.4kmol/h, 收率可达98.7%以上。

4 结论
通过2MD 物性估算, 可以得到未知的物性数据, 这样就能对整个工艺流程进行模拟计算。

从低
浓度的1,3- 丙二醇通过反应、萃取、精馏、水解等过程, 得到高浓度的1,3- 丙二醇, 从而得到理想的工艺条件和数据结果。

对于Aspen 软件中没有物性的物质, 物性估算不失为一种可行的方法, 在无法购买商用物性数据
库的情况下, 利用Aspen 软件本身的物性估算与已知的实验数据校验后, 其可靠性有一定的保证, 计算精度完全可以满足工程设计的需要。

相关文档
最新文档