2020年贵州省高中数学联赛试题
2020全国高中数学联赛B卷答案及评分标准

2020年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数x 满足()()248log log 2log 4x x x =+,则x = . 答案:128. 解:由条件知24488221121log log 2+log log 4log +log log 2233x x x x x =++=++,解得2log 7x =,故128x =.2. 在平面直角坐标系xOy 中,圆经过点(0,0),(2,4),(3,3),则圆上的点到原点的距离的最大值为 .答案:解:记(2,4),(3,3)A B ,圆经过点,,O A B .注意到90OBA (直线OB与AB 的斜率分别为1和1),故OA 为圆的直径.从而圆上的点到原点O 的距离的最大值为25OA .3. 设集合{}1,2,,20X =,A 是X 的子集,A 的元素个数至少是2,且A 的所有元素可排成连续的正整数,则这样的集合A 的个数为 .答案:190.解:每个满足条件的集合A 可由其最小元素a 与最大元素b 唯一确定,其中,,a b X a b ,这样的(,)a b 的取法共有220C 190种,所以这样的集合A 的个数为190.4. 在三角形ABC 中,4,5,6BC CA AB ,则66sin cos 22AA= .答案:4364. 解:由余弦定理得2222225643cos 22564CA AB BC A CA AB ,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A =22222sincos3sin cos 2222A A A A231sin 4A 21343cos 4464A. 5. 设9元集合{}{}i ,1,2,3A a b a b =+∈,i 是虚数单位.()129,,,z z z α=是A 中所有元素的一个排列,满足129z z z ≤≤≤,则这样的排列α的个数为 .答案:8. 解:由于1i 2i 12i 22i 3i 13i 32i 23i 33i +<+=+<+<+=+<+=+<+, 故 {}{}{}{}1234561i,,2i,12i ,22i,,3i,13i z z z z z z =+=++=+=++,{}{}789,32i,23i ,33i z z z =++=+,由乘法原理知,满足条件的排列α的个数为328=.6. 已知一个正三棱柱的各条棱长均为3,则其外接球的体积为 .答案:2π. 解:如图,设面ABC 和面111A B C 的中心分别为O 和1O ,记线段1OO 的中点为P ,由对称性知,P 为正三棱柱外接球的球心,PA 为外接球的半径.易知POAO ⊥,所以2PA ===,故外接球的体积为34=322⎛⎫ππ ⎪ ⎪⎝⎭.7. 在凸四边形ABCD 中,2BC AD .点P 是四边形ABCD 所在平面上一点,满足202020200PA PB PC PD .设,s t 分别为四边形ABCD 与PAB 的面积,则t s. 答案:3372021. 解:不妨假设2,4AD BC .记,,,M N X Y 分别是,,,AB CD BD AC 的中点,则,,,M X Y N 顺次共线并且1MX XY YN .由于2PAPC PY ,2PBPD PX ,O 1O PC 1B A 1C B 1A故结合条件可知20200PY PX.故点P 在线段XY 上且12021PX.设A 到MN 的距离为h ,由面积公式可知 22PAB ABCD S t PM h PMs S MN h MN113372021232021. 8. 已知首项系数为1的五次多项式()f x 满足:()8,1,2,,5f n n n ==,则()f x 的一次项系数为 .答案:282.解:令()()8g x f x x =−,则()g x 也是一个首项系数为1的五次多项式,且()()80,1,2,,5g n f n n n =−==,故()g x 有5个实数根1,2,,5,所以()(1)(2)(5)g x x x x =−−−,于是()(1)(2)(5)8f x x x x x =−−−+,所以()f x 的一次项系数等于111115!82822345⎛⎫++++⋅+= ⎪⎝⎭.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分) 在椭圆中,A 为长轴的一个端点,B 为短轴的一个端点,12,F F 为两个焦点.若12120AF AF BF BF ,求12tan tan ABF ABF 的值.解:由对称性,设椭圆的方程为22221(0)x y a b a b ,(,0),(0,)A a B b ,12(,0),(,0)F c F c ,其中22ca b .由条件知222221212()()()20AF AF BF BF c a c a c b a b c .…………………4分所以22222230a b c a b ,故3a b ,2cb . …………………8分记O 为坐标原点,则tan 3aABO b,12tan tan 2c OBF OBF b . …………………12分 所以1211tan tan tan ()tan ()ABF ABF ABO OBF ABO OBF323215132132. …………………16分10. (本题满分20分)设正实数,,a b c 满足222494122a b c b c ++=+−,求123a b c++的最小值. 解:由题设条件得 ()()22221323a b c +−+−=, …………………5分 由柯西不等式得()()()2222321322132a b c a b c ⎡⎤+−+−≥+−+−⎣⎦, 即()22339a b c ++−≤,故236a b c ++≤. …………………10分又由柯西不等式得()()212323123a b c a b c ⎛⎫++++≥++ ⎪⎝⎭, 所以12336623a b c a b c++≥≥++, …………………15分当1a b c ===时等号成立.故123a b c++的最小值是6. …………………20分11. (本题满分20分)设数列n a 的通项公式为11515,1,2,225nnna n .证明:存在无穷多个正整数m ,使得41m m a a 是完全平方数. 证明:记121515,22q q ,则12121,1q q q q ,于是121,1,2,5n n na q q n . 所以121,1a a ==.又注意到21(1,2)i i q q i ,有11112121155n n n nn n a a q q q q11221115n nq q q q 221215n n q q , 即21,1,2,n n n a a a n , …………………5分由此易知,数列n a 的每一项都是正整数. 由计算易得44127q q ,故 2323212123211212111155n n nn n na a q q q q212142424412121122115n n n n q q q q q q q q4242441212115nn q q q q4242121715n n q q424212125nn q q221212122115n n n q q a , …………………15分 所以,对任意正整数n ,23211n n a a 都是完全平方数.于是对于正奇数m ,41m m a a 均为完全平方数. …………………20分2020年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分) 如图,,,,,A B C D E是圆上顺次的五点,满足ABC BCD CDE ,点,P Q 分别在线段,AD BE 上,且P 在线段CQ 上.证明:PAQ PEQ .证明:记S 为AD 与BE 的交点,T 为CQ 延长线与圆的交点.注意到ABC BCD CDE ,可设,AB CD所对的圆周角均为,,BC DE 所对的圆周角均为.于是ATQ ATC ,PTE CTE ,PSQ BDA DBE. ……………20分由ATQPSQ 得,,,S A T Q 四点共圆,又由PTE PSQ 得,,,P S T E 四点共圆.所以PAQPTS PEQ . ……………40分 二、(本题满分40分)设集合{}1,2,,19A =.是否存在集合A 的非空子集12,S S ,满足(1)12S S ,12S S A ;(2)12,S S 都至少有4个元素;(3)1S 的所有元素的和等于2S 的所有元素的乘积? 证明你的结论.解:答案是肯定的. 设21,2,,219S x y x y ,, ……………10分 则1219122x y xy +++−−−−=,所以2187xy x y ++=, ……………20分故()()21213751525x y ++==⨯,所以7,12x y是一组解.……………30分 故取123,4,5,6,7,8,10,11,13,14,15,16,17,18,19,1,2,7,12S S ,则这样的12,S S 满足条件. ……………40分注:直接给出例子并验证给40分.三、(本题满分50分) 给定整数2n .设1212,,,,,,,0n na a ab b b ,满足1212n n a a a b b b , 且对任意,(1)i j ijn ,均有i jij a a b b .求12n a a a 的最小值.解:记1212nn Sa a ab b b .由条件知11()(1)i jij i j ni j na ab b n S . ……………10分又222111122n i ji ji i j ni j ni a a n a a a , ……………20分于是222111122221nn ii i ji ji i i j ni j nSa a a a a a nS n .……………40分 注意0S ,故2S n .另一方面,当2(1,2,,)i i a b i n 时,条件满足,且2S n .综上,12n Sa a a 的最小值为2n . ……………50分四、(本题满分50分)设,a b 为不超过12的正整数,满足:存在常数C ,使得9(mod13)nn a b C 对任意正整数n 成立.求所有满足条件的有序数对(,)a b . 解法1:由条件知,对任意正整数n ,有9312(mod13)n n n n a b a b . ①注意到13为素数,,a b 均与13互素,由费马小定理知12121(mod13)a b .因此在①中取12n ,化简得9311(mod13)b a ,故93(mod13)b a . 代入①,得33123(mod13)nn nnnn a a b a b a b ,即3()(1)0(mod13)n n a b a . ②……………20分分两种情况讨论.(i) 若31(mod13)a ,则333121(mod13)b a b b ,又,{1,2,,12}a b ,经检验可知,{1,3,9}a b .此时9(mod13)n n n n a b a b .由条件知332(mod13)a b a b ,从而只能是1a b .经检验,当(,)(1,1)a b 时,对任意正整数n ,9n n a b 模13余2为常数,满足条件. ……………30分(ii) 若31(mod13)a ,则由②知,对任意正整数n ,有(mod13)n n a b .特别地,(mod13)a b ,故ab .所以399(mod13)a b a ,即333(1)(1)0(mod13)a a a ,故31(mod13)a .通过检验1,2,,6(mod13)a ,可知4,10,12a . 经检验,当(,)(4,4),(10,10),(12,12)a b 时,对任意正整数n ,有9933(1())0(mod13)n n n n n a b a a a a ,满足条件.综合(i)、(ii),所求的有序数对(,)a b 为(1,1),(4,4),(10,10),(12,12).……………50分 解法2:由条件知,对任意正整数n ,有92111102()()()(mod13)n n n n n n a b a b a b ,……………10分 化简得11291102(mod13)n n n n n n a b a b a b ,即92()0(mod13)n n a b a b .由于13为素数,,{1,2,,12}a b ,故213()a b ,进而ab .……………20分 因此,当n 变化时,99(1)n n n a b a a 模13的余数为常数. 当910(mod13)a 时,由上式知,n a 模13的余数为常数,特别地,有2(mod13)a a ,故1a . ……………30分当910(mod13)a 时,由费马小定理得121(mod13)a ,故33912()1(mod13)a a a a .通过检验1,2,,6(mod13)a,可知4,10,12a . 综上,所求的有序数对(,)a b 为(1,1),(4,4),(10,10),(12,12). …………50分。
2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析说明:1. 评阅试卷时,请依据本评分标准。
选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。
2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。
一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。
请将正确答案的代表字母填在题后的括号内。
每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1.使关于x 的不等式36x x k -+-≥有解的实数k 的最大值是( ) A .63- B .3 C .63+ D .62.空间四点A 、B 、C 、D 满足,9||,11||,7||,3||====DA CD BC AB 则BD AC ⋅的取值( )A .只有一个B .有二个C .有四个D .有无穷多个6.记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2020个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++二、填空题(本题满分54分,每小题9分) 本题共有6小题,要求直接将答案写在横线上。
7.将关于x 的多项式2019321)(x xx x x x f +-+-+-= 表为关于y 的多项式=)(y g,202019192210y a y a y a y a a +++++ 其中.4-=x y 则=+++2010a a a .8.已知)(x f 是定义在),0(+∞上的减函数,若)143()12(22+-<++a a f a a f 成立,则a 的取值范围是 。
2020年全国高中数学联赛试题及详细解析(3)

2020年全国高中数学联赛试题及详细解析一、选择题(本题满分36分,每小题6分)1. 已知△ABC ,若对任意R t ∈,AC BC t BA ≥-,则△ABC 一定为A .锐角三角形 B. 钝角三角形 C. 直角三角形 D. 答案不确定 【答案】 ( )2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为A .112x <<B .1, 12x x >≠且 C . 1x > D . 01x << 【答案】( )5. 设()322()log 1f x x x x =+++,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 【答案】 ( ) 6. 数码1232006,,,,a a a a L 中有奇数个9的2020位十进制数12320062a a a a L 的个数为 A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108- 【答案】( )二、填空题(本题满分54分,每小题9分)7. 设x x x x x f 44cos cos sin sin )(+-=,则)(x f 的值域是 。
8. 若对一切θ∈R ,复数(cos )(2sin )i z a a θθ=++-的模不超过2,则实数a 的取值范围为 .9. 已知椭圆221164x y +=的左右焦点分别为1F 与2F ,点P 在直线l :3830x -++=上. 当12F PF ∠取最大值时,比12PF PF 的值为 .10. 底面半径为1cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 11. 方程20062420042005(1)(1)2006xx x x x +++++=L 的实数解的个数为 .12. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 . 三、解答题(本题满分60分,每小题20分)15. 设2()f x x a =+. 记1()()f x f x =,1()(())n n f x f f x -=2,3,n =L ,,{}R (0)2n M a n f =∈≤对所有正整数 ,. 证明:⎥⎦⎤⎢⎣⎡-=41 ,2M .2020年全国高中数学联合竞赛加试试卷 (考试时间:上午10:00—12:00)一、以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于C i (i =0,1)。
2020年全国高中数学联赛试题(A卷)(含解析)

2020年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 在等比数列{}n a 中,91313,1a a ,则1log 13a 的值为 .答案:13.解:由等比数列的性质知219913aa a a ,故339121313a a a .所以11log 133a . 2. 在椭圆中,A 为长轴的一个端点,B 为短轴的一个端点,12,F F 为两个焦点.若12120AF AF BF BF ,则12ABF F 的值为. 答案:2. 解:不妨设的方程为22221(0)x y a ba b ,(,0),(0,)A a B b ,1(,0)F c ,2(,0)F c ,其中22ca b .由条件知222221212()()()20AF AF BF BF c a c a c b a b c .所以2221222222AB a b c F F cc. 3. 设0a,函数100()f x xx在区间(0,]a 上的最小值为1m ,在区间[,)a 上的最小值为2m .若122020m m ,则a 的值为 .答案:1或100. 解:注意到()f x 在(0,10]上单调减,在[10,)上单调增.当(0,10]a 时,12(),(10)m f a m f ;当[10,)a 时,12(10),()m f m f a .因此总有12()(10)2020f a f m m ,即100202010120aa,解得1a或100a .4. 设z 为复数.若2iz z 为实数(i 为虚数单位),则3z 的最小值为 .答案. 解法1:设i(,)R z ab a b ,由条件知22222(2)i(2)(1)22Im Im0i (1)i (1)(1)z a b a b ab a b z a b a b a b ,故22a b .从而22223(12)((3))(3)25zab ab,即35z.当2,2a b 时,3z 取到最小值解法2:由2iR z z 及复数除法的几何意义,可知复平面中z 所对应的点在2与i 所对应的点的连线上(i 所对应的点除外),故3z 的最小值即为平面直角坐标系xOy 中的点(3,0)到直线220xy 223252.5. 在ABC 中,6,4AB BC ,边AC 上的中线长为,则66sin cos 22A A 的值为 .答案:211256.解:记M 为AC 的中点,由中线长公式得222242()BM AC AB BC , 可得222(64)4108AC.由余弦定理得2222228647cos 22868CA AB BC A CA AB ,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A= 22222sin cos 3sin cos 2222A A A A231sin 4A213211cos 44256A. 6. 正三棱锥P ABC 的所有棱长均为1,,,L M N 分别为棱,,PA PB PC 的中点,则该正三棱锥的外接球被平面LMN 所截的截面面积为 .答案:3. 解:由条件知平面LMN 与平面ABC 平行,且点P 到平面,LMN ABC 的距离之比为1:2.设H 为正三棱锥P ABC 的面ABC 的中心, PH 与平面LMN 交于点K ,则PH 平面ABC ,PK 平面LMN ,故12PK PH .正三棱锥P ABC 可视为正四面体,设O 为其中心(即外接球球心),则O在PH 上,且由正四面体的性质知14OH PH .结合12PK PH 可知OK OH ,即点O 到平面,LMN ABC 等距.这表明正三棱锥的外接球被平面,LMN ABC 所截得的截面圆大小相等.从而所求截面的面积等于ABC 的外接圆面积,即233AB .7. 设,0a b,满足:关于x 的方程||||x x a b 恰有三个不同的实数解123,,x x x ,且123x x x b ,则a b 的值为 .答案:144. 解:令2at x,则关于t 22a a ttb 恰有三个不同的实数解(1,2,3)2iia t x i .由于()22a af t tt为偶函数,故方程()f t b 的三个实数解关于数轴原点对称分布,从而必有(0)2bf a .以下求方程()2f t a 的实数解.当2at时,22()4222a a f t t t a a t a ,等号成立当且仅当0t ;当2at 时,()f t 单调增,且当58a t 时()2f t a ;当2a t时,()f t 单调减,且当58at 时()2f t a .从而方程()2f t a 恰有三个实数解12355,0,88t a t t a . 由条件知3328a ab x t ,结合2ba 得128a . 于是91448aa b .8. 现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有,i j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有 种.答案:120.解:用{,}i j 表示写有,i j 的卡片.易知这10张卡片恰为{,}i j (15)i j . 考虑“好的”卡片放法.五个盒子一共放有10张卡片,故1号盒至少有3张卡片.能放入1号盒的卡片仅有{1,2},{1,3},{1,4},{1,5}.情况一:这4张卡片都在1号盒中,此时其余每个盒中已经不可能达到4张卡片,故剩下6张卡片无论怎样放都符合要求,有6264种好的放法.情况二:这4张卡片恰有3张在1号盒中,且其余每盒最多仅有2张卡片. 考虑{1,2},{1,3},{1,4}在1号盒,且{1,5}在5号盒的放法数N .卡片{2,3},{2,4},{3,4}的放法有8种可能,其中6种是在2,3,4号的某个盒中放两张,其余2种则是在2,3,4号盒中各放一张.若{2,3},{2,4},{3,4}有两张在一个盒中,不妨设{2,3},{2,4}在2号盒,则{2,5}只能在5号盒,这样5号盒已有{1,5},{2,5},故{3,5},{4,5}分别在3号与4号盒,即{2,5},{3,5},{4,5}的放法唯一;若{2,3},{2,4},{3,4}在2,3,4号盒中各一张,则2,3,4号盒均至多有2张卡片,仅需再使5号盒中不超过2张卡片,即{2,5},{3,5},{4,5}有0张或1张在5号盒中,对应0133C C 4种放法. 因此612414N .由对称性,在情况二下有456N 种好的放法. 综上,好的放法共有6456120种.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分) 在ABC 中,2sin 2A .求cos 2cosBC 的取值范围.解:记cos 2cos fBC . 由条件知4A 或34A . …………………4分当4A 时,34B C ,其中304C,此时 3cos 2cos 4f C C 22sin cos 22C C sin (0,1]4C . …………………8分当34A 时,4B C ,其中04C,此时 cos 2cos 4f C C 232sin cos 22C C 5sin()C , 其中arctan 3. …………………12分 注意到42,,函数()5sin ()g x x 在0,2上单调增,在,24上单调减,又32(0)224g g,52g,故(2,5]f.综上所述,cos 2cos f BC 的取值范围是(0,1](2,5].…………………16分10. (本题满分20分)对正整数n 及实数(0)x x n ,定义[][]1(,)(1{})C {}C x x n n f n x x x ,其中[]x 表示不超过实数x 的最大整数,{}[]x x x .若整数,2m n 满足121,,,123mn f m f m f m n n n,求121,,,mn f n f n f n m m m 的值. 解:对0,1,,1k m ,有111111111,C 1+C C C 2n n n k k k k m m m mi i i i i i n f m k n n n . …………………5分 所以121,,,mn f m f m f m n nn 111101C ,m m n jm j k i i f m kn11100122C C 2m m mk k m m k k n1222121(21)12m mm m n n .……………10分 同理得121,,,mn f n f n f n m m m(21)1n m . 由条件知(21)1123m n ,即(21)124m n ,故(21)124m .又2m ,所以21{3,7,15,31,63,127,}m ,仅当5m 时,2131m 为124的约数,进而有124431n .进而121,,,mn f n f n f n m mm4(21)5174.…………………20分11. (本题满分20分)在平面直角坐标系中,点,,A B C 在双曲线1xy 上,满足ABC 为等腰直角三角形.求ABC 的面积的最小值.解:不妨设等腰直角ABC 的顶点,,A B C 逆时针排列,A 为直角顶点.设(,)ABs t ,则(,)ACt s ,且ABC 的面积222122ABCs t SAB . …………………5分注意到A 在双曲线1xy上,设1,A a a,则11,,,B a s t C a t s a a.由,B C 在双曲线1xy 上,可知11()()1a s t a t s a a,这等价于sat st a , ① tas st a.②由①、②相加,得()0s ta ts a,即2t sa t s. ③由①、②相乘,并利用③,得2222221s t s t at as a st s t a a a 2222224t s t s st st s t st st t s t s s t22222()s t s t . …………………10分所以由基本不等式得2224222222222221()()22()4s t s t s t s t s t s t32222222226122()()43108s t s t s t s t ,④故2210863s t . …………………15分以下取一组满足条件的实数(,,)s t a ,使得2263s t (进而由,,s t a 可确定一个满足条件的ABC ,使得22332ABCs t S).考虑④的取等条件,有222222()s t s t ,即2223s t.不妨要求0st ,结合2263s t ,得3(31),3(31)s t .由①知0a,故由③得tsa ts,其中3131312t s s ,从而有312312a.综上,ABC 的面积的最小值为 …………………20分2020年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,在等腰ABC 中,AB BC ,I 为内心,M 为BI 的中点,P 为边AC 上一点,满足3AP PC ,PI 延长线上一点H 满足MHPH ,Q 为ABC 的外接圆上劣弧AB 的中点.证明:BHQH .证明:取AC 的中点N .由3AP PC ,可知P 为NC 的中点.易知,,B I N 共线,90INC .由I 为ABC 的内心,可知CI 经过点Q ,且QIB IBC ICB ABI ACQ ABI ABQ QBI ,又M 为BI 的中点,所以QM BI .进而||QM CN . ……………10分考虑HMQ 与HIB .由于MH PH ,故90HMQ HMI HIB .又90IHM INP ,故HM NPHI NI,于是 1122HM NP NC MQ MQHI NI NI MI IB.所以HMQ ∽HIB ,得HQMHBI . ……………30分 从而,,,H M B Q 四点共圆.于是有90BHQBMQ ,即BH QH . ……………40分二.(本题满分40分)给定整数3n .设122122,,,,,,,n n a a a b b b 是4n 个非负实数,满足1221220n n a a a b b b , 且对任意1,2,,2i n ,有21i i i i a a b b (这里211222211,,n nna a a ab b ).求122n a a a 的最小值.解:记122122n n Sa a ab b b . 不失一般性,设13212nS T a a a . 当3n时,因为32212113k kk Ta a 2221335511()()()02a a a a a a ,故结合条件可知233221212121133()34k k k k k k S T a a b b S . 又0S ,所以12S .当2(16)i i a b i 时,S 取到最小值12. ……………10分当4n时,一方面有212121211()nnk kkk k k a a b b S .另一方面,若n 为偶数,则22121152337211()()4nk kn n k T a a a a a a a a , 其中第一个不等式是因为15233721()()n n a a a a a a 展开后每一项均非负,且包含2121(1)k k a a k n 这些项,第二个不等式利用了基本不等式.……………20分若n 为奇数,不妨设13a a ,则12121212121311n n k k k kn k k a a a a a a215213723()()4n n T a a a a a a . 从而总有2221211416nk k k T S S a a .又0S ,所以16S . ……………30分 当1234124,0(52),0,16,0(32)i i a a a a a i n b b b i n 时,S 取到最小值16.综上,当3n 时,S 的最小值为12;当4n 时,S 的最小值为16.……………40分三.(本题满分50分)设12121,2,2,3,4,n nn a a a a a n.证明:对整数5n,n a 必有一个模4余1的素因子.证明:记12,12,则易求得nnna .记2nnn b ,则数列{}n b 满足122(3)n nn b b b n. ①因121,3b b 均为整数,故由①及数学归纳法,可知{}n b 每项均为整数.……………10分 由222()22nn nnn ,可知222(1)(1)n n n b a n .② ……………20分当1n 为奇数时,由于1a 为奇数,故由{}n a 的递推式及数学归纳法,可知na 为大于1的奇数,所以n a 有奇素因子p .由②得21(mod )nb p ,故112(1)(mod )p p nbp .又上式表明(,)1n p b ,故由费马小定理得11(mod )pn b p ,从而12(1)1(mod )p p .因2p,故必须12(1)1p ,因此1(mod 4)p . ……………30分 另一方面,对正整数,m n ,若|m n ,设n km ,则(1)(2)(2)(1)()nnmmk m k m m m k m k mna1(212)(212)01(22)(22)0()(),2,()()(),2 1.l im l i m l i mmi l im l i m li mlmmi a k l a kl因2s ss b 为整数(对正整数s ),1为整数,故由上式知n a 等于ma 与一个整数的乘积,从而|m n a a . 因此,若n 有大于1的奇因子m ,则由前面已证得的结论知m a 有素因子1(mod 4)p,而|m n a a ,故|n p a ,即n a 也有模4余1的素因子.……………40分 最后,若n 没有大于1的奇因子,则n 是2的方幂.设2(3)l n l ,因84082417a 有模4余1的素因子17,对于4l,由8|2l 知82|l a a ,从而2la 也有素因子17.证毕. ……………50分四.(本题满分50分)给定凸20边形P .用P 的17条在内部不相交的对角线将P 分割成18个三角形,所得图形称为P 的一个三角剖分图.对P 的任意一个三角剖分图T ,P 的20条边以及添加的17条对角线均称为T 的边.T 的任意10条两两无公共端点的边的集合称为T 的一个完美匹配.当T 取遍P 的所有三角剖分图时,求T 的完美匹配个数的最大值.解:将20边形换成2n 边形,考虑一般的问题. 对凸2n 边形P 的一条对角线,若其两侧各有奇数个P 的顶点,称其为奇弦,否则称为偶弦.首先注意下述基本事实:对P 的任意三角剖分图T ,T 的完美匹配不含奇弦.(*)如果完美匹配中有一条奇弦1e ,因为T 的一个完美匹配给出了P 的顶点集的一个配对划分,而1e 两侧各有奇数个顶点,故该完美匹配中必有T 的另一条边2e ,端点分别在1e 的两侧,又P 是凸多边形,故1e 与2e 在P 的内部相交,这与T 是三角剖分图矛盾. ……………10分记()f T 为T 的完美匹配的个数.设11F =,22F =,对2k ≥,21k k k F F F ++=+,是Fibonacci 数列. 下面对n 归纳证明: 若T 是凸2n 边形的任意一个三角剖分图,则()n f T F ≤.设122n P A A A =是凸2n 边形.从P 的2n 条边中选n 条边构成完美匹配,恰有两种方法,1234212,,,n n A A A A A A −或2345222121,,,,n n n A A A A A A A A −−.当2n =时,凸四边形P 的三角剖分图T 没有偶弦,因此T 的完美匹配只能用P 的边,故2()2f T F ==.当3n =时,凸六边形P 的三角剖分图T 至多有一条偶弦.若T 没有偶弦,同上可知()2f T =.若T 含有偶弦,不妨设是14A A ,选用14A A 的完美匹配是唯一的,另两条边只能是2356,A A A A ,此时()3f T =.总之3()3f T F ≤=.结论在2,3n =时成立.假设4n ≥,且结论在小于n 时均成立.考虑凸2n 边形122n P A A A =的一个三角剖分图T .若T 没有偶弦,则同上可知()2f T =.对于偶弦e ,记e 两侧中P 的顶点个数的较小值为()w e .若T 含有偶弦,取其中一条偶弦e 使()w e 达到最小.设()2w e k =,不妨设e 为221n k A A +,则每个(1,2,,2)i A i k =不能引出偶弦.事实上,假设i j A A 是偶弦,若{22,23,,21}j k k n ∈++−,则i j A A 与e 在P的内部相交,矛盾.若{1,2,,21,2}j k n ∈+,则()2i j w A A k <,与()w e 的最小性矛盾.又由(*)知完美匹配中没有奇弦,故122,,,k A A A 只能与其相邻顶点配对,特别地,1A 只能与2A 或2n A 配对.下面分两种情况.情形1:选用边12A A .则必须选用边34212,,k k A A A A −.注意到221n k A A +的两侧分别有2,222k n k −−个顶点,221222()2n k n k w A A k +−−≥=,而4n ≥,因此5226n k −≥.在凸22n k −边形121222k k n P A A A ++=上,T 的边给出了1P 的三角剖分图1T ,在T 中再选取n k −条边12,,,n k e e e −,与1234212,,,k k A A A A A A −一起构成T 的完美匹配,当且仅当12,,,n k e e e −是1T 的完美匹配.故情形1中的T 的完美匹配个数等于1()f T . ……………20分 情形2:选用边12n A A .则必须选用边23221,,k k A A A A +.在凸222n k −−边形2222321k k n P A A A ++−= 中构造如下的三角剖分图2T :对2221k i j n +≤<≤−,若线段i j A A 是T 的边,则也将其作为2T 的边,由于这些边在内部互不相交,因此可再适当地添加一些2P 的对角线,得到一个2P 的三角剖分图2T ,它包含了T 的所有在顶点222321,,,k k n A A A ++−之间的边.因此每个包含边2123221,,,n k k A A A A A A +的T 的完美匹配,其余的边必定是2T 的完美匹配.故情形2中的T 的完美匹配个数不超过2()f T .由归纳假设得1()n k f T F −≤,21()n k f T F −−≤,结合上面两种情形以及1k ≥,有 1211()()()n k n k n k n f T f T f T F F F F −−−−+≤+≤+=≤.……………40分 下面说明等号可以成立.考虑凸2n 边形122n A A A 的三角剖分图n ∆: 添加对角线222332121442232,,,,,,,n n n n n n n n n A A A A A A A A A A A A A A −−−++.重复前面的论证过程,2()2f ∆=,3()3f ∆=.对n ∆,4n ≥,考虑偶弦3n A A .情形1,用12A A ,由于在凸22n −边形342n A A A 中的三角剖分图恰是1n −∆,此时有1()n f −∆个T 的完美匹配.情形2,用12n A A ,由于在凸24n −边形4521n A A A −中T 的边恰构成三角剖分图2n −∆,不用添加任何对角线,故这一情形下T 的完美匹配个数恰为2()n f −∆ .从而对4n ≥,有 12()()()n n n f f f −−∆=∆+∆.由数学归纳法即得()n n f F ∆=.结论得证.因此,对凸20边形P ,()f T 的最大值等于1089F =.……………50分。
贵州省2020年7月普通高中学业水平考试数学真题(试题+答案详解分离版)

贵州省2020年7月普通高中学业水平考试数学试卷注意事项:1.本试卷分为选择题和非选择题两部分,本试卷共6页,共43道题,满分150分。
考试用时120分钟。
2.答卷前,考试务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号填写在答题卡上。
将条形码横贴在答题卡“考试条码区”。
3.选择题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
所有题目答案不能答在试卷上。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体体积公式:V Sh =;锥体体积公式:13V Sh =(S 为底面面积,h 为高)。
第Ⅰ卷(第Ⅰ卷包括35个小题,每小题3分,共计105分)一、选择题:每小题给出的四个选项中,只有一项是符合题意的。
1.已知集合{}{}2,3,2,1,3A B ==--,则A B =A.{}1,2,3- B.{}2,2- C.{}1,3- D.{}32.sin 30︒=A.22 B.22- C.12 D.32-3.已知,,a b c 成等比数列,且4,2a b ==,则c =A.1B.2C.3D.44.已知向量()()2,1,1,1==a b ,则+=a b A.()4,3 B.()3,2 C.()0,0 D.()0,15.函数()5f x x =-的定义域是A.()2,-+∞B.()2,0-C.[)5,+∞D.(]0,16.下图是由6个边长为1的正方形组成的矩形,在该矩形内随机取一点P ,则点P 取自阴影部分的概率为A.14 B.12C.25D.277.函数cos 2y x =的周期是A.π B.3πC.5πD.7π8.某公司甲、乙、丙三个工种共有员工400人,人数比依次为5:2:1,现用分层抽样的方法从这400人中抽取16人参加社区志愿者活动,则丙工种被抽取的人数为A.8B.6C.5D.29.函数x y a =(0a >,且1a ≠)的图象过定点A.()0,2 B.()1,1 C.()0,1 D.()0,010.5log 25的值是A.-1B.0C.1D.211.过点()0,0O 和点()1,7A 的直线的斜率为A.-1B.3C.5D.712.如图,正方体1111ABCD A B C D -中,异面直线1A B 与11D C 所成的角为A.30︒B.45︒C.60︒D.90︒13.如图是6名工人在一天中生产某种零件数量的茎叶图,则这6名工人这一天生产这种零件的平均数为A.16B.15C.14D.1314.如图,三棱锥P ABC -中,111,,A B C 分别是棱,,PA PB PC 的中点.若直线PC 与平面ABC 所成的角为60︒,则直线PC 与平面111A B C 所成的角为A.90︒B.60︒C.45︒D.30︒15.已知()f x 是定义在R 上的偶函数.若()50f =,则()5f -=A.3B.2C.0D.-216.已知0213,3,3a b c ===,则,,a b c 的大小关系为A.c a b << B.b c a << C.c b a << D.a c b<<17.ABC ∆三内角,,A B C 所对应的边分别是,,a b c .若90,4C a b =︒==,则B =A.90︒B.60C.45︒D.30︒18.下列函数中,在区间()1,3上为增函数的是A.1y x =B.12x y ⎛⎫= ⎪⎝⎭C.2y x =-D.y x=19.已知直线12:3,:1l y x l y kx ==+.若12l l ⊥,则k 的值为A.13- B.0 C.2 D.420.如图,在长方体1111ABCD A B C D -中,14,2AB AD AA ===,则1BD =A.6B.7C.10D.1121.函数()25f x x =-的零点所在的区间是A.()2,1--B.()1,2C.()2,3D.()3,422.已知直线:40l x y +-=与两坐标轴分别交于,A B 两点,O 为坐标原点,则OAB ∆的面积为A.16B.12C.8D.423.已知向量()()4,2,,2x =-=a b .若⊥a b ,则x =A.-3B.-2C.2D.124.已知ABC ∆的三边分别是,,a b c .若1,2,5a b c ===,则ABC ∆的形状为A.锐角三角形B.直角三角形C.钝角三角形D.不能确定25.新冠疫情防控期间,贵州省通过开播“阳光校园 空中黔课”,实现“离校不离教,停课不停学”,根据某班50名学生平均每天收看“空中黔课”的时间,得到如图所示的频率分布直方图。
2020全国高中数学联赛贵州省预赛(答案)

2020年全国高中数学联赛 贵州省预赛试题(参考答案)本试卷共18题,满分150分,考试时间150分钟一.选择题(每小题6分,本大题共30分,其中第1,2,3题为单项选择题,第4,5题为多项选择题)。
1.已知i 是虚数单位,则2020(i)1kk k =⋅=∑A .10101010i --B .10101010i +C .10101010i -+D .10101010i - 解:设2320192020i 2i 3i 2019i2020i S =+++++ ,则23420202021i i 2i 3i 2019i 2020i S =+++++两式相减,得2320202021i i i i i 2020i S S -=++++-20202021i(1i )2020i 2021i 1i-=-=--故2020i10101010i 1i S =-=--,即20201(i )10101010i k k k =⋅=-∑.2.设3ln2lg3log 2,,a b c ===,则,,a b c 的大小关系是 A .a c b >> B .a b c >> C .b c a >> D .c a b >>解:因为3ln 2log 2ln 2ln 3c a ==<=,2lg91b =<,32log 41c c b =>⇒>, 所以a c b >>.3.点,,A B C 均位于单位圆上,且||AB = ,则AB AC的最大值为A 32+ B . C D .3由已知,可设1(10)(cos sin )(02π)22,,,,, ≤≤A B C θθθ⎛⎫- ⎪ ⎪⎝⎭,则333((cos 1sin )cos 22222,,AB AC θθθθ=+=++π33322θ⎛⎫=++ ⎪⎝⎭.所以,AB AC 32+.4.在正方体1111ABCD A B C D -中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点,则以下叙述正确的是A .异面直线1AC 与1B F 所成的角是定值; B .直线1A F 与平面11B CD 所成的角是定值;C .三棱锥1B A EF -的体积是定值;D .二面角1E BF A --为定值.解: (1)因为1AC ⊥面11B CD ,而1B F ⊂面11B CD ,所以11AC B F ⊥,即异面直线1AC 与1B F所成的角恒为90,所以A 正确;(2)因为1A 到面11B CD 的距离为定值,而1A F 的长度有变化,故直线1A F 与平面11B CD 所成的角不为定值,所以B 不正确; (3)因为1Δ1311锥锥A EB B-A EF F -A EB V V S d ==⋅,而Δ1A EB 面积为定值,1∥CD 面1A EB ,故d 为 定值,即三棱锥1B A EF -的体积是定值,所以C 正确;(4)二面角1E BF A --即为面EBF 与面11A BCD 所成的角,而面11A BCD 的法向量为定值,面EBF 的法向量有变化,故二面角1E BF A --不为定值,所以D 不正确. 综上所得,真命题为A ,C .5.已知函数()sin cos ||f x x x =,则以下叙述正确的是 ( ) A .若12()()||||f x f x =,则12π ()x x k k =+∈Z B .()f x 的最小正周期为πC .()f x 在ππ44⎡⎤-⎢⎥⎣⎦,上为增函数 D .()f x 的图像关于ππ()2x k k =+∈Z 对称易知,()sin cos ||f x x x =为奇函数,而0x >时,1πsin 20221π3π()sin cos sin 222213πsin 22π.22, ≤,, ≤,, ≤≤x x f x x x x x x x ⎧<⎪⎪⎪==-<⎨⎪⎪⎪⎩由()f x 的图像知,A 不正确;最小正周期为2π,故B 不正确;显然C ,D 是正确的.二.填空题(每小题6分,本大题共60分)。
2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。
2020年全国高中数学联赛试题简析,附试卷真题、答案

第9题 考察基本的三角恒等式的记忆和使用,有一定的计算量,相较于往年一试
第一道解答题来说难度持平或者略有上升。 第 10 题
虽然的定义比较复杂,但是经过适当的分组之后仍然是比较常规的恒等变 形,本题难度不大,但是需要细心的计算,否则容易算错或者得不出答案。 第 11 题
较为常规的解析几何试题,思路是容易想到的,计算量相比于 2018 年的 那一道题来说也小许多,难度上放在高考中也不为过,只是一试的时间相对紧 张,考生不一定有时间来做本题。
论都知道的学生来说本题是加试中最难的题,总体难度中档偏难。
考试真题
一试:
二试
参考答案
一试:
二试
数情形的处理只要知道递推数列的一个基本结论,和二次剩余之后就能够做出
来,奇数情形相对困难一些,需要观察数列的前若干项找出规律,当然也没有
比偶数情形难太多,总体难度中档偏难。
组合、通过试一些常见的剖分可以猜到结果,因此归纳的方法是可以猜到
的,但是具体细节仍然具有一定的难度,对于准备充分,二三两题涉及到的结
二试
总评
本次二试难度相对平均,难度下限和上限都有所收拢,没有特别突 出的难题或者特别水的题目,对具备一定实力的考生来说能够着手处理 的题目变多了,但是对于实力尚弱的考生来说二试拿分变难了。
几何、较为简示性,
没有卡手的地方,是加试最简单的一道题,但是比 2019 年高联的几何题要难
2020 年全国高中数学联赛试题简析,试卷真题、答案
一试 总评
本次一试大部分的题目都不难,但是整体计算量偏大,对考生的计 算能力进行了考察,此外,能否在有限的时间内对试题进行取舍,保证 自己会做的题目的正确率,在本次考试中也非常重要。
一、填空题
2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析2020年全国高中数学联赛试题及详细解析说明:1.评阅试卷时,请依据本评分标准。
选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
2.如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。
一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A、B、C、D四个结论,其中有且仅有一个是正确的。
请将正确答案的代表字母填在题后的括号内。
每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1.使关于 x 的不等式 x - 3 + 6 - x ≥ k 有解的实数 k 的最大值是()。
A。
6 - 3B。
3C。
6 + 3D。
62.空间四点 A、B、C、D 满足 |AB| = 3,|BC| = 7,|CD| = 11,|DA| = 9,则 AC·BD 的取值()。
A。
只有一个B。
有两个C。
有四个D。
有无穷多个6.记集合 T = {1.2.3.4.5.6},M = {ai | ai ∈ T。
i = 1.2.3.4.},将 M 中的元素按从大到小的顺序排列,则第 2020 个数是()。
A。
2 + 3 + 4 +。
+ 5563B。
2 + 3 + 4 +。
+ xxxxxxxC。
2 + 3 + 4 +。
+ xxxxxxxx7D。
2 + 3 + 4 +。
+二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
7.将关于 x 的多项式 f(x) = 1 - x + x^2 - x^3 +。
- x^2319 + x^20 表为关于 y 的多项式 g(y) = a + a1y + a2y^2 +。
+ a19y^19 + a20y^20,其中 y = x - 4,则 a + a1 +。
2020年贵州省贵阳市关岭民中高三数学文联考试题含解析

2020年贵州省贵阳市关岭民中高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合A={},集合B={},则=A.(3,) B.[3,) C.(,1][3,) D.(,1)(3,)参考答案:B2. 已知集合,,则()A. B. C. D.参考答案:B,,所以, 选B.3. 双曲线的实轴长是(A)2(B)(C)4(D)参考答案:C本题主要考查双曲线的标准方程和简单几何性质,属简单题.双曲线方程可变为,所以,。
故选C.4. 如果执行如图程序框图,那么输出的()A.2450B.2500C.2550D.2652参考答案:C5. 设全集U={1,2,3,4},集合S={l,3},T={4},则(S)T等于(A){2,4} (B){4} (C)(D){1,3,4}参考答案:A略6. 已知某几何体的三视图如图所示,则该几何体的外接球体积为()A.B.C.32πD.8π参考答案:B【考点】球的体积和表面积;简单空间图形的三视图.【分析】由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于一个长,宽,高分别为,,2的长方体的外接球,计算出球的半径,代入球的体积公式,可得答案.【解答】解:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于一个长,宽,高分别为,,2的长方体的外接球,故外接球的半径R==,故球的体积V==,故选B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7. 下列各句中,没有语病的一项是A.演讲是以口语(讲)为主,以体态语(演)为辅的一种表达方式,是人们用来交流思想、感情.表达主张、见解的一种手段。
B.中共中央政治局委员刘延东同志充分肯定了全国广大教师和教育工作者取得的成绩高度评价了师德标兵在抗震救灾中作出的贡献。
C.12月26日,从省新农村建设办公室传来好消息:明年,我省各级政府投入新农村建设资金总量将达17亿元,集中抓好8000个自然村“五新一好”为主要内容的新农村建设。
2020年全国高中数学联合竞赛一试试题及答案(A卷)

2020年全国高中数学联合竞赛 一试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)[解] 因240x ax --=有两个实根 12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a ,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A .24181 B .26681 C .27481 D .670243[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为 22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==,4520(4)()()9981P ξ===, 2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=. [解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=. 4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A .764 cm 3或586 cm 3B .764 cm 3C .586 cm 3或564 cm 3D .586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解. 若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为( B )A .1B .2C .3D .4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩ 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A .(0,)+∞ B. C. D.)+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A C B C B B C B C++=++ sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得11,2211.22q q q ⎧<<⎪⎪⎨⎪><-⎪⎩或q <<11(,)22. 二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则a b += 5 . [解] 由题意知12()(1)nn n n f x a x aaa b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如 ||||******** 表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”. “每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,则通项n a =112(1)nn n -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n .11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+.答12图1答12图 2[解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=, 6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=, 即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为46则该小球永远不可能接触到的容器内壁的面积是723.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因 11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则222211(3)22PP PO OP r r r =-=-=. 考虑小球与正四面体的一个面(不妨取为PAB )相 切时的情况,易知小球在面PAB 上最靠近边的 切点的轨迹仍为正三角形,记为1P EF ,如答 12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 226PM PP MPP r r =⋅==, 故小 三角形的边长1226PE PA PM a r =-=-.答13图小球与面PAB 不能接触到的部分的面积 为(如答12图2中阴影部分) 1PAB P EF S S ∆∆-223(26))a a r =--23263ar r =-. 又1r =,6a =124363183PAB PEF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为723 三、解答题(本题满分60分,每小题20分) 13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+.[证] ()f x 的图象与直线y kx = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解12108x x x +-1086222x x x ++-864444x x x ++-642x x x ++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,22(0x x >. …15分所以2x >,即x <x >.故原不等式解集为51(,()2--∞+∞. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+. …5分 即6422232262133122(1)2(1)x x x x x x x x +<+++++=+++, )1(2)1()1(2)1(232232+++<+x x x x , …10分 令3()2g t t t =+,则不等式为221()(1)g g x x<+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x<+, …15分即222()10x x +->,解得2x >(2x <舍去),故原不等式解集为51(,()2--∞+∞. …20分题15图 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,0022001()y b x b y b x-+=-+ , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=, 同理有2000(2)20x c y c x -+-=. …10分所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-. 因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--2448≥=.当20(2)4x -=时,上式取等号,此时004,x y ==±.因此PBC S ∆的最小值为8. …20分。
2020年全国高中数学联赛试题及详细解析(2)

2020年全国高中数学联赛试题及详细解析一.选择题(本题满分36分,每小题6分)1.设锐角θ使关于x 的方程x 2+4x cos θ+cos θ=0有重根,则θ的弧度数为 ( )A .π6B .π12或5π12C .π6或5π12D .π122.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ≠∅,则b 的取值范围是 ( )A .[-62,62]B .(-62,62)C .(-233,233]D .[-233,233] 3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 4.设点O 在∆ABC 的内部,且有→OA +2→OB +3→OC =→0,则∆ABC 的面积与∆AOC 的面积的比为( )A .2B .32C .3D .538.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;9.如图,正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1—A 1的度数是 ;10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ; 11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ;二试题一.(本题满分50分)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.二.(本题满分50分)在平面直角坐标系XOY 中,y 轴正半轴上的点列{A n }与曲线y=2x (x ≥0)上的点列{B n }满足|OA n |=|OB n |=1n,直线A n B n 在x 轴上的截距为a n ,点B n 的横坐标为b n ,n ∈N*.⑴ 证明a n >a n +1>4,n ∈N*;⑵ 证明有n 0∈N *,使得对∀n >n 0,都有b 2b 1+b 3b 2+…+b n b n -1+b n +1b n<n -2020. 三.(本题满分50分)对于整数n ≥4,求出最小的整数f (n ),使得对于任何正整数m ,集合{m ,m +1,…,m+n -1}的任一个f (n )元子集中,均至少有3个两两互素的元素.EFBCDAGHK2020年全国高中数学联赛试卷第一试一.选择题(本题满分36分,每小题6分)1.设锐角θ使关于x 的方程x 2+4x cos θ+cot θ=0有重根,则θ的弧度数为 ( )A.π6 B .π12或5π12 C .π6或5π12 D .π12【答案】B【解析】由方程有重根,故14∆=4cos 2θ-cot θ=0,∵ 0<θ<π2,⇒2sin2θ=1,⇒θ=π12或5π12.选B .3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 【答案】C【解析】令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),⇒x ∈[2,4),选C .4.设点O 在∆ABC 的内部,且有→OA +2→OB +3→OC =→0,则∆ABC 的面积与∆AOC 的面积的比为( )A .2B .32C .3D .53【答案】C【解析】如图,设∆AOC=S ,则∆OC 1D=3S ,∆OB 1D=∆OB 1C 1=3S ,∆AOB=∆OBD=1.5S .∆OBC=0.5S ,⇒∆ABC=3S .选C .5.设三位数n=¯¯¯abc ,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则S B 11OABC这样的三位数n 有( )A .45个B .81个C .165个D .216个6.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263二.填空题(本题满分54分,每小题9分) 7.在平面直角坐标系xOy 中,函数f (x )=a sin ax +cos ax (a >0)在一个最小正周期长的区间上的图像与函数g (x )= a 2+1的图像所围成的封闭图形的面积是 ;【答案】2 aa 2+1.【解析】f (x )= a 2+1sin(ax +ϕ),周期=2πa,取长为2πa,宽为2a 2+1的矩形,由对称性知,面积之半即为所求.故填2πaa 2+1.又解:∫ϕ1ϕ0a 2+1[1-sin(ax +ϕ)]dx=a 2+1a ∫π20(1-sin t )dt=2p aa 2+1.8.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;【答案】x+1【解析】令x=y=0,得,f (1)=1-1-0+2,⇒f (1)=2.令y=1,得f (x +1)=2f (x )-2-x +2,即f (x +1)=2f (x )-x .①又,f (yx +1)=f (y )f (x )-f (x )-y +2,令y=1代入,得f (x +1)=2f (x )-f (x )-1+2,即f (x +1)=f (x )+1.②比较①、②得,f (x )=x +1.10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ;【答案】14(p +1)2.【解析】设k 2-pk=n ,则(k -p2)2-n 2=p 24,⇒(2k -p +2n )(2k -p -2n )=p 2,⇒k=14(p +1)2.11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;【答案】13(2n +2-n -3).【解析】1a n+1= 2 a n+13,⇒令b n=1a n+13,得b0=23,b n=2b n-1,⇒b n=23⨯2n.即1a n=2n+1-13,⇒n∑i=01a i=13(2n+2-n-3).12.在平面直角坐标系xOy中,给定两点M(-1,2)和N(1,4),点P在x轴上移动,当∠MPN取最大值时,点P的横坐标为;【答案】1【解析】当∠MPN最大时,⊙MNP与x轴相切于点P(否则⊙MNP与x轴交于PQ,则线段PQ上的点P'使∠MP'N更大).于是,延长NM交x轴于K(-3,0),有KM·KN=KP2,⇒KP=4.P(1,0),(-7,0),但(1,0)处⊙MNP的半径小,从而点P的横坐标=1.三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数的和大于2n,则算过关.问:⑴某人在这项游戏中最多能过几关?⑵他连过前三关的概率是多少?14.在平面直角坐标系xOy中,给定三点A(0,43),B(-1,0),C(1,0),点P到直线BC的距离是该点到直线AB、AC距离的等比中项.⑴求点P的轨迹方程;⑵若直线L经过∆ABC的内心(设为D),且与P点轨迹恰好有3个公共点,求L的斜率k的取值范围.【解析】⑴设点P的坐标为(x,y),MNPKOxy(b ) k=0时,直线y=12与圆④切于点(0,12),与双曲线⑤交于(±582,12),即k=0满足要求.(c ) k=±12时,直线⑥与圆只有1个公共点,与双曲线⑤也至多有1个公共点,故舍去.(c ) k ≠0时,k ≠12时,直线⑥与圆有2个公共点,以⑥代入⑤得:(8-17k 2)x 2-5kx -254=0.当8-17k 2=0或(5k )2-25(8-17k 2)=0,即得k=±23417与k=±22.∴ 所求k 值的取值范围为{0,±23417,±22}.15.已知α,β是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )= 2x -t x 2+1的定义域为[α,β].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,π2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364.【解析】⑴ α+β=t ,αβ=-14.故α<0,β>0.当x 1,x 2∈[α,β]时,∴ f '(x )= 2(x 2+1)-2x (2x -t )(x 2+1)2=-2(x 2-xt )+2(x 2+1)2.而当x ∈[α,β]时,x 2-xt <0,于是f '(x )>0,即f (x )在[α,β]上单调增.∴g(t)=2β-t β2+1-2α-tα2+1=(2β-t)(α2+1)-(2α-t)(β2+1)(α2+1)(β2+1)=(β-α)[t(α+β)-2αβ+2]α2β2+α2+β2+1=t2+1(t2+52)t2+2516=8t2+1(2t2+5)16t2+25二试题一.(本题满分50分)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.二.(本题满分50分)在平面直角坐标系XOY 中,y 轴正半轴上的点列{A n }与曲线y=2x(x ≥0)上的点列{B n }满足|OA n |=|OB n |=1n,直线A n B n 在x 轴上的截距为a n ,点B n 的横坐标为b n ,n ∈N*.⑴ 证明a n >a n +1>4,n ∈N*;⑵ 证明有n 0∈N*,使得对∀n >n 0,都有b 2b 1+b 3b 2+…+b n b n -1+b n +1b n<n -2020. 【解析】⑴ 点A n (0,1n ),B n (b n ,2b n )⇒由|OA n |=|OB n |,⇒b n 2+2b n =(1n)2,⇒b n =1+(1n)2-1(b n >0).∴ 0<b n <12n 2.且b n 递减,⇒n 2b n =n (n 2+1-n )= n n 2+1+n=11+(1n)2+1单调增.∴ 0<n b n <12.⇒令t n =1n b n>2且t n 单调减.由截距式方程知,b n a n +2b n1n=1,(1-2n 2b n =n 2b n 2)∴ a n =b n 1-n 2b n =b n (1+n 2b n )1-2n 2b n =1+n 2b n n 2b n =(1n b n )2+2(1n b n)=t n 2+2t n =(t n +22)2-12≥(2+22)2-12=4. 且由于t n 单调减,知a n 单调减,即a n >a n+1>4成立.亦可由1n 2b n=b n +2.1n b n=b n +2,得 a n =b n +2+2b n +2,.∴ 由b n 递减知a n 递减,且a n >0+2+2⨯2=4.三.(本题满分50分)对于整数n ≥4,求出最小的整数f (n ),使得对于任何正整数m ,集合{m ,m +1,…,m+n -1}的任一个f (n )元子集中,均至少有3个两两互素的元素.【解析】⑴ 当n ≥4时,对集合M (m ,n )={m ,m +1,…,m+n -1},当m 为奇数时,m ,m +1,m +2互质,当m 为偶数时,m +1,m +2,m +3互质.即M 的子集M 中存在3个两两互质的元素,故f (n )存在且f (n )≤n . ①取集合T n ={t |2|t 或3|t ,t ≤n +1},则T 为M (2,n )={2,3,…,n +1}的一个子集,且其中任3个数无不能两两互质.故f (n )≥card (T )+1.但card(T )=[n+12]+[n+13]-[n+16].故f (n )≥[n+12]+[n+13]-[n+16]+1. ②由①与②得,f (4)=4,f (5)=5.5≤f (6)≤6,6≤f (7)≤7,7≤f (8)≤8,8≤f (9)≤9. 现计算f (6),取M={m ,m +1,…,m +5},若取其中任意5个数,当这5个数中有3个奇数时,这3个奇数互质;当这3个数中有3个偶数k ,k +2,k +4(k ≡0(mod 2))时,其中至多有1个被5整除,必有1个被3整除,故至少有1个不能被3与5整除,此数与另两个。
2020年全国高中数学联合竞赛二试试题卷(高联二试含答案及评分标准)

2020全国高中数学联赛二试一、如图,在等腰三角形ABC 中,AB=BC ,I 为内心,M 为BI 的中点,P 为边AC 上的一点,满足AP=3PC ,PI 延长线上一点H 满足MH ⊥PH ,Q 为△ABC 的外接圆上劣弧AB 的中点,证明:BH ⊥QH二、给定整数n ≥3,设1232122,,...,,,,...,n n a a a a b b b 是4n 个非负实数,满足122122......0n n a a a b b b ++=+++>,且对任意1,2,...,2i n =,有21i i i i a a b b ++≥+,(这里211222211,,n n n a a a a b b +++===), 求122...n a a a +++的最小值。
三、设12121,2,2,3,4,...n n n a a a a a n −−===+=证明:对整数5,n n a ≥必有一个模4余1的素因子 四、给定凸20边形P ,用P 的17条在内部不相交的对角线将P 分割成18个三角形,所得图形成为P 的一个三角形剖分图。
对P 的任意一个三角剖分图T ,P 的20条边以及添加的17条对角线均称为T 的边,T 的任意10条两两无公共端点的边的集合称为T 的一个完美匹配。
当T 取遍P 的所有三角剖分图时,求T 的完美匹配个数的最大值。
B2020年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,在等腰ABC 中,AB BC ,I 为内心,M 为BI 的中点,P 为边AC 上一点,满足3AP PC ,PI 延长线上一点H 满足MHPH ,Q 为ABC 的外接圆上劣弧AB 的中点.证明:BHQH .证明:取AC 的中点N .由3AP PC ,可知P 为NC 的中点.易知,,B I N 共线,90INC .由I 为ABC 的内心,可知CI 经过点Q ,且QIB IBC ICB ABI ACQ ABI ABQ QBI ,又M 为BI 的中点,所以QM BI .进而||QM CN . ……………10分考虑HMQ 与HIB .由于MH PH ,故90HMQ HMI HIB .又90IHM INP ,故HM NPHI NI,于是 1122HM NP NC MQ MQHI NI NI MI IB.所以HMQ ∽HIB ,得HQMHBI . ……………30分 从而,,,H M B Q 四点共圆.于是有90BHQBMQ ,即BH QH . ……………40分二.(本题满分40分)给定整数3n .设122122,,,,,,,n n a a a b b b 是4n 个非负实数,满足1221220n n a a a b b b , 且对任意1,2,,2i n ,有21i i i i a a b b (这里211222211,,n nna a a ab b ).求122n a a a 的最小值.解:记122122n n Sa a ab b b . 不失一般性,设13212nS T a a a . 当3n时,因为32212113k kk Ta a 2221335511()()()02a a a a a a ,故结合条件可知233221212121133()34k k k k k k S T a a b b S . 又0S ,所以12S .当2(16)i i a b i 时,S 取到最小值12. ……………10分当4n时,一方面有212121211()nnk kkk k k a a b b S .另一方面,若n 为偶数,则22121152337211()()4nk kn n k T a a a a a a a a , 其中第一个不等式是因为15233721()()n n a a a a a a 展开后每一项均非负,且包含2121(1)k k a a k n 这些项,第二个不等式利用了基本不等式.……………20分若n 为奇数,不妨设13a a ,则12121212121311n n k k k kn k k a a a a a a215213723()()4n n T a a a a a a . 从而总有2221211416nk k k T S S a a .又0S ,所以16S . ……………30分 当1234124,0(52),0,16,0(32)i i a a a a a i n b b b i n 时,S 取到最小值16.综上,当3n 时,S 的最小值为12;当4n 时,S 的最小值为16.……………40分。
2020年贵州省贵阳市第二中学高一数学文联考试题含解析

2020年贵州省贵阳市第二中学高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,则与的大小关系是()A. B. C. D .与的值有关参考答案:A略2. 已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),则f(6)的值为()A.﹣1 B.0 C.1 D.2参考答案:B【考点】奇函数.【分析】利用奇函数的性质f(0)=0及条件f(x+2)=﹣f(x)即可求出f(6).【解答】解:因为f(x+2)=﹣f(x),所以f(6)=﹣f(4)=f(2)=﹣f(0),又f(x)是定义在R上的奇函数,所以f(0)=0,所以f(6)=0,故选B.3. 已知函数则()A.1 B.3 C.5 D.7参考答案:C,,故答案为C。
4. 等腰三角形ABC的直观图是()A.①②B.②③C.②④D.③④参考答案:D【考点】LB:平面图形的直观图.【分析】根据斜二测画法,讨论∠x′O′y′=45°和∠x′O′y′=135°时,得出等腰三角形的直观图即可.【解答】解:由直观图画法可知,当∠x′O′y′=45°时,等腰三角形的直观图是④;当∠x′O′y′=135°时,等腰三角形的直观图是③,综上,等腰三角形ABC的直观图可能是③④.故选:D.【点评】本题考查了斜二测法画直观图的应用问题,也考查作图与识图能力,是基础题目.5. 函数y=sinx和y=tanx的图象在[﹣2π,2π]上交点的个数为()A.3 B.5 C.7 D.9参考答案:B【考点】正弦函数的图象;正切函数的图象.【分析】法一;直接作出函数y=sinx和y=tanx在[0,2π]上的图象,观察可得交点个数,即可.法二:直接解方程,求出方程在[﹣2π,2π]上解的个数即可.【解答】解:方法一:图象法,在同一坐标系内画y=sinx与y=tanx在[0,2π]上的图象,由图知函数y=sinx和y=tanx的图象在[﹣2π,2π]上共有5个交点,故选B.方法二:解方程sinx=tanx,即tanx(cosx﹣1)=0,∴tanx=0或cosx=1,∵x∈[﹣2π,2π],∴x=0,±π,±2π,故有5个解,故选B.6. 向量,,则A.∥B.⊥C.与的夹角为60°D.与的夹角为30°参考答案:B7. 已知函数,为偶函数,且当时,.记.给出下列关于函数的说法:①当时,;②函数为奇函数;③函数在上为增函数;④函数的最小值为,无最大值.其中正确的是A.①②④ B.①③④ C.①③ D.②④参考答案:B8. 函数的图像大致为( ).A B C D参考答案:A9. 已知,则三者的大小关系是()。
2020年贵州省贵阳市清镇流长苗族中学高三数学文联考试题含解析

2020年贵州省贵阳市清镇流长苗族中学高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 给定命题:函数和函数的图象关于原点对称;命题:当时,函数取得极小值.下列说法正确的是()A、是假命题B、是假命题C、是真命题D、是真命题参考答案:B略2. 已知函数是R上的偶函数,对都有成立,当,且时,都有<0,给出下列命题:(1);(2)直线是函数图象的一条对称轴;(3)函数在上有四个零点;(4)其中所有正确的命题为()A.(2)(3)(4)B. (1)(2)(3)C. (1)(2)(4)D.(1)(2)(3)(4)参考答案:C略3. 等比数列的前n项和为,则实数a的值是()A.-3 B.3 C.-1 D.1参考答案:B4. 已知O为坐标原点,F是双曲线的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y 轴交于点E,直线BM与y轴交于点N,若|OE|=2|ON|,则Γ的离心率为()A. 3B. 2C.D.参考答案:A∵PF⊥x轴,∴设M(-c,t),则A(-a,0),B(a,0),AE的斜率k=,则AE的方程为y=(x+a),令x=0,则y=,即E(0,),BN的斜率,则BN的方程为,令x=0,则y=,即N(0,),∵|OE|=2|ON|,∴2||=||,即=,则2(c-a)=a+c,即c=3a,则离心率e==3,故选:A.5. 已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为( )A、y=±x (B)y=±x (C)y=±x (D)y=±x参考答案:C6. 若集合,,则(A)(B)(C)(D)参考答案:B考点:集合的运算因为故答案为:B7. 《九章算术》“竹九节”问题:现有一根九节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为()A.升B.升 C.升D.1升参考答案:A试题分析:依题意,解得,故.8. 设定义在上的函数若关于的方程有5个不同的实数根,则的取值范围为()A.B.(﹣∞,﹣1) C.(1,+∞)D.(﹣∞,﹣2)∪(﹣2,﹣1)参考答案:【知识点】函数与方程的综合运用;根的存在性及根的个数判断. B9【答案解析】D 解析:∵题中原方程f2(x)+af(x)+b=0有且只有5个不同实数解,∴即要求对应于f(x)等于某个常数有3个不同实数解,∴故先根据题意作出f(x)的简图:由图可知,只有当f(x)=1时,它有三个根.故关于x的方程f2(x)+af(x)+b=0中,有:1+a+b=0,b=﹣1﹣a,且当f(x)=k,k>0且k≠1时,关于x的方程f2(x)+af(x)+b=0有5个不同实数解,∴k2+ak﹣1﹣a=0,a=﹣1﹣k,∵k>0且k≠1,∴a∈(﹣∞,﹣2)∪(﹣2,﹣1)故选D.【思路点拨】题中原方程f2(x)+af(x)+b=0有且只有5个不同实数解,即要求对应于f(x)=某个常数有3个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=1时,它有三个根.且当f(x)=k,k>0且k≠1时,关于x的方程f2(x)+af(x)+b=0有5个不同实数解,据此即可求得实数a的取值范围.9. 已知双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于,则双曲线的方程是()A. B. C.D.参考答案:D∵椭圆的端点为,离心率为,∴双曲线的离心率为,依题意双曲线的实半轴,∴,,故选D.10. 已知函数,在同一坐标系中画出其中两个函数在第一象限内的图象,其中正确的是()参考答案:答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 如图,是圆外一点,过引圆的两条割线、,,,则_________.参考答案:212. 已知集合则.参考答案:{-1}13. 若有穷数列满足,就称该数列为“相邻等和数列”,已知各项都为正整数的数列{a n}是项数为8的“相邻等和数列”,且,则满足条件的数列{a n}有个.参考答案:4设,由题意知,,,.∵数列各项都为正整数,∴,则满足条件的数列有4个.14. 已知命题“若,则”,则命题及其逆命题、否命题、逆否命题中,正确命题的个数是▲.参考答案:2略15. 在四面体S﹣ABC中,SA⊥平面ABC,∠ABC=90°,SA=AC=2,AB=1,则该四面体的外接球的表面积为.参考答案:8π【考点】球的体积和表面积;球内接多面体.【分析】由题意,SC的中点为球心,计算三棱锥S﹣ABC的外接球的半径,由此可求三棱锥S﹣ABC的外接球的表面积.【解答】解:由题意,SC的中点为球心,∵SA⊥平面ABC,SA=AC=2,∴SC=2,∴球的半径为,∴该四面体的外接球的表面积为4π?2=8π.故答案为:8π.16. 给出下列四个命题:①如果命题“?p”与命题“p或q”都是真命题,那么命题q一定是真命题;②命题“若a=0,则a?b=0”的否命题是:“若a≠0,则a?b≠0”;③“”是“θ=30°”的充分不必要条件;④?x0∈(1,2),使得成立;其中正确命题的序号为.参考答案:①、②、④【考点】命题的否定;四种命题的真假关系.【专题】压轴题.【分析】逐一对四个命题的真假进行判断,即可得出答案.【解答】解:①若命题“?p”为真命题,则p为假命题又∵命题“p或q”是真命题,那么命题q一定是真命题②若a=0,则a?b=0”的否命题是:“若a≠0,则a?b≠0也正确.③“”?“θ=30°”为假命题;“θ=30°”?“”为真命题∴”是“θ=30°”的必要不充分条件;故③错误.④将x0=1代入:成立将x0=2代入:成立由于函数y=在(1,2)上是连续的故函数y=在(1,2)上存在零点故?x0∈(1,2),使得成立;故④正确故答案为:①、②、④【点评】判断含有逻辑连接词“或”“且”“非”的命题的真假:①必须弄清构成它的命题的真假;②弄清结构形式;③由真值表判断真假.17. 如果不等式组表示的平面区域是一个直角三角形,则k=_________.参考答案:0或三、解答题:本大题共5小题,共72分。
2020年贵州省贵阳市育英中学高二数学文联考试题含解析

2020年贵州省贵阳市育英中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若曲线在点P处的切线的斜率等于3,则点P的坐标为()A.或B.或C.或D.或参考答案:C2. 已知函数f(x)=3x3-ax2+x-5在区间[1,2]上单调递减,则a的取值范围是()A. B.(-∞,5)∪C.[5,+∞) D.参考答案:D3. 已知:p:x<k,q:≤1,如果p是q的充分不必要条件,则k的取值范围是A. B. C. (-∞,—1) D.参考答案:D4. 下列关于基本的逻辑结构说法正确的是()A.一个算法一定含有顺序结构; B.一个算法一定含有选择结构;C.一个算法一定含有循环结构;D. 以上都不对.参考答案:A略5. 设定点F1(0,-2)、F2(0,2),动点P满足条件,则点P的轨迹是()A.椭圆B.线段C.不存在D.椭圆或线段参考答案:D略6. 已知,分别为直线,的方向向量(,不重合),,分别为平面,的法向量(,不重合),则下列说法中:①;②;③;④,其中正确的有()个A.1 B.2 C.3 D.4参考答案:D∵,分别为直线,的方向向量(,不重合),∴,;∵,分别为平面,的法向量(,不重合),垂直同一平面的两直线平行∴,法向量夹角与二面角的平面角相等或互补∴,故选:D7. 在△ABC中,AB=,AC=2,若O是△ABC内部一点,且满足,则等于()A. B. C.D.参考答案:C略8. 函数的定义域是()A.B.C.D.参考答案:D9. 如图,F1,F2是椭圆与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则双曲线C2的渐近线方程是()A.B.C.y=±x D.y=±x参考答案:B【考点】椭圆的简单性质.【分析】由题意可知:AF1|+|AF2|=2a=4,丨AF1丨2+丨AF2丨2=丨F1F2丨2,则丨AF1丨=2﹣,丨AF2丨=2+,由双曲线的定义可知:2a′=|AF2|﹣|AF1|,c′=,b2=c2﹣a2=1,则双曲线C2的渐近线方程y=±x.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴丨AF1丨2+丨AF2丨2=丨F1F2丨2,即x2+y2=(2c)2=12,②由①②得,解得:x=2﹣,y=2+,设双曲线C2的实轴长为2a′,焦距为2c′,则2a′=|AF2|﹣|AF1|=y﹣x=2,a=,2c′=2,则c=,b2=c2﹣a2=1,双曲线C2的渐近线方程y=±x=±x,故选B.10. 椭圆上一点M到焦点的距离为2,N为的中点,为原点,则( )A. 2B. 4C.6 D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 过抛物线X2=2py(p>0)的焦点作斜率为1的直线与该抛物线交与A,B两点,A,B在x轴上的正射影分别为C,D,若梯形的面积为则p=______参考答案:2略12. 过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOB的面积为.参考答案:【考点】抛物线的简单性质.【分析】设∠AFx=θ(0<θ<π,利用|AF|=3,可得点A 到准线l :x=﹣1的距离为3,从而cos θ=,进而可求|BF|,|AB|,由此可求AOB 的面积. 【解答】解:设∠AFx=θ(0<θ<π)及|BF|=m , ∵|AF|=3,∴点A 到准线l :x=﹣1的距离为3 ∴2+3cosθ=3 ∴cosθ=,∵m=2+mcos(π﹣θ) ∴∴△AOB 的面积为S=×|OF|×|AB|×sinθ=故答案为:.13. 若,则实数m= .参考答案:2 由题得, 所以,∴m=2. 故填2.14. 已知,则a 的值为 .参考答案:15. 已知三棱锥中,,,,,,则三棱锥的外接球的表面积为__________. 参考答案:16. 已知A(3,0),B(0,4),直线AB 上一动点P(x,y),则xy 的最大值是___________.参考答案:3略17. 求函数y=x 3-3x 2+x 的图象上过原点的切线方程___________ 参考答案:三、 解答题:本大题共5小题,共72分。
贵州省贵阳市宏志中学2020年高三数学理联考试题含解析

贵州省贵阳市宏志中学2020年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若函数在区间上单调递减,则取值范围是 ( )A. B. C. D .参考答案:C略2. 在△ABC中,已知∠A=30°,AB=3,BC=2,则△ABC的形状是()A.钝角三角形B.锐角三角形C.直角三角形D.不能确定参考答案:D由正弦定理可得,在△ABC中,,则,所以可能为锐角或钝角3. 过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°则该截面的面积是A.πB. 2π C.3πD.参考答案:答案:A解析:过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则截面圆的半径是R=1,该截面的面积是π,选A.4. 在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠?”的逆命题、否命题、逆否命题中结论成立的是( )A.都真B.都假C.否命题真D.逆否命题真参考答案:D略5. 把函数的图象向左平()个单位,得到一个偶函数,则的最小值为()A. B. C. D.参考答案:D6. 过双曲线的左焦点,作圆的切线,切点为,延长交双曲线右支于点,若,则双曲线的离心率为A.B.C.D.参考答案:C略7. 已知双曲线与圆交于A、B、C、D 四点,若四边形ABCD是正方形,则双曲线的离心率是(▲ )(A)(B)(C)(D)参考答案:A8. 已知“0<t<m(m>0)”是“函数f(x)=﹣x2﹣tx+3t在区间(0,2)上只有一个零点”的充分不必要条件,则m的取值范围是()A.(0,2)B.(0,2] C.(0,4)D.(0,4]参考答案:考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先根据函数f(x)解析式求出该函数在(0,2)上存在零点时t的取值范围:0<t<4,所以由0<t<m(m>0)是f(x)在(0,2)上存在一个零点的充分不必要条件,得到:0<m<4.解答:解:对于函数f(x)=﹣x2﹣tx+3t,在区间(0,2)上只有一个零点时,只能△=t2+12t>0,即t<﹣12,或t>0;此时,f(0)f(2)=3t(t﹣4)<0,解得0<t<4;∵0<t<m(m>0)是函数f(x)在(0,2)上只有一个零点的充分不必要条件;∴0<m<4.故选C.点评:考查函数零点的概念,二次函数图象和x轴交点的情况和判别式△的关系,充分条件,必要条件,充分不必要条件的概念.9. 已知,把数列的各项排列成如下的三角形状,记表示第行的第个数,则=A. B. C.D.参考答案:A前9行共有项,所以为数列中的第项,所以,选A.10. 已知集合A={(x,y)|y=lgx},B={(x,y)|x=a},若A∩B=,则实数a的取值范围是( ).A. a<1B. a≤1C.a<0 D. a≤0参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 函数y=|x2﹣1|的图象与函数y=x+k的图象交点恰为3个,则实数k= .参考答案:1或【考点】根的存在性及根的个数判断.【专题】计算题;作图题;函数的性质及应用.【分析】作出函数y=|x2﹣1|的图象与函数y=x+k的图象,由图象求实数k的值.【解答】解:作出函数y=|x2﹣1|的图象与函数y=x+k的图象如下图:当过点(﹣1,0)时,成立,此时,k=﹣1;当x∈(﹣1,1)时,y=1﹣x2,y'=﹣2x=1,解得x=﹣,此时,切点为(﹣,),=+k,则k=.故答案为:1或.【点评】本题考查了学生的作图能力,属于基础题.12. 已知向量,若参考答案:【知识点】平面向量共线(平行)的坐标表示.F2解析:∵,∴,由,得.解得:.故答案为:.【思路点拨】由向量的坐标加法运算求得的坐标,再由向量共线的坐标表示列式求解的值.13. 下列命题中的假命题是.(把所有假命题的序号都填上)①,;②,;③,;④,参考答案:②14. 若在区域内任取一点P,则点P恰好在单位圆内的概率为参考答案:15. (不等式选做题)已知不等式(x+y)( + )≥9对任意正实数x,y恒成立,则正实数a的最小值为_____.参考答案:16. (极坐标与参数方程)在极坐标系中,曲线和的方程分别为和.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,则曲线和交点的直角坐标为_____________参考答案:【知识点】点的极坐标和直角坐标的互化.N3解析:曲线C1的方程化为直角坐标方程为,C2的方程即 y=1,由,求得,∴曲线C1和C2交点的直角坐标为,故答案为:.【思路点拨】把极坐标方程化为直角坐标方程,再把两条曲线的直角坐标方程联立方程组,求得两条曲线的交点坐标.17. 直线与圆相交于、两点且,则__________________参考答案:圆的圆心为,半径。
2020年贵州省贵阳市第二十中学高一数学理联考试题含解析

2020年贵州省贵阳市第二十中学高一数学理联考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若实数x 满足log2x =2+sin θ,则|x +1|+|x -10|的值等于 ( ) A.2x -9B.9-2xC.11D.9参考答案:C 略2. 设x 、y 满足约束条件,则z=2x ﹣y 的最大值为( ).D3. 是第二象限角,为其终边上一点,,则的值为(---) A . B . C . D .参考答案:D 略4. 已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.则该几何体的体积为( )(A )48 (B )64 (C )96 (D )192参考答案: B 略5. 已知点P (sin,cos )落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.B.C. D.参考答案: D略6. 以线段AB :x +y -2=0(0≤x≤2)为直径的圆的标准方程为( )A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8参考答案:B7. 在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则等于( ) A .B .C .D .参考答案:A8. 函数的定义域为( )A.B.C.D.参考答案:B9. 下列关系式中正确的是()A. B.C.D.参考答案:C略10. 下列函数中,的最小值为4的是()A.B.C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 函数是定义在上的增函数,其中且,已知无零点,设函数,则对于有以下四个说法:①定义域是;②是偶函数;③最小值是0;④在定义域内单调递增.其中正确的有____________(填入你认为正确的所有序号)k&s#5u参考答案:①②略12. 幂函数在时为减函数,则==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年贵州省高中数学联赛试题
第Ⅰ卷(共60分)
一、选择题:每小题6分,本大题共30分.
1.小王在word 文档中设计好一张4A 规格的表格,根据要求,这种规格的表格需要设计1000张,小王欲使用“复制——粘贴”(用鼠标选中表格,右键点击“复制”,然后在本word 文档中“粘贴”)的办法满足要求.请问:小王需要使用“复制——粘贴”的次数至少为( ) A .9次 B .10次 C .11次 D .12次
2.
已知一双曲线的两条渐近线方程为0x -=
0y +=,则它的离心率是( ) A
.
1
3.在空间直角坐标系中,已知(0,0,0)O ,(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则到面OAB 、面OBC 、面OAC 、
面ABC 的距离相等的点的个数是( )
A .1
B .4
C .5
D .无穷多
4.
若圆柱被一平面所截,其截面椭圆的离心率为3,则此截面与圆柱底面所成的锐二面角是( )
A .
1arcsin
3 B .1arccos 3 C .2arcsin 3 D .2
arccos
3
5.已知等差数列
{}n a 及{}n b ,设12n n A a a a =++⋅⋅⋅+,12n n B b b b =++⋅⋅⋅+,若对*n N ∀∈,有
3553n n A n B n +=+,则10
6a b =
( )
A .35
33 B .3129 C .17599 D .15587
二、填空题(每小题6分,本大题共60分)
6.已知O 为ABC ∆所在平面上一定点,动点P 满足(
)
AB AC OP OA AB
AC
λ=++
,其[0,)λ∈+∞,则P 点
的轨迹为 .
7.牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手.这四人中有以下情况:①最佳选手的孪
生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是 .
8.方程组2226()6x y xy x y ⎧+=⎨
+=-⎩
的实数解为 .
9.如图,在ABD ∆中,点C 在AD 上,
2ABC π
∠=
,
6DBC π
∠=
,1AB CD ==,则AC = .
10.
函数
z 的最小值是 . 11.若边长为6的正ABC ∆的三个顶点到平面α的距离分别为1,2,3,则ABC ∆的重心G 到平面α的距离为 . 12.若实数a 使得不等式
2
22x a x a a -+-≥对任意实数x 恒成立,则实数a 的取值范围 .
13.若方程
(0,1)x a x a a =>≠有两个不等实根,则实数a 的取值范围是 . 14.顺次连结圆22
9x y +=与双曲线3xy =的交点,得到一个凸四边形.则此凸四边形的面积为 .
15.函数2(5)sin 1(010)y x x x π=--≤≤的所有零点之和等于 .
三、解答题(每小题15分,本大题共60分)
16.
已知函数
3y x =. 17.已知椭圆C :22
2
21(0)x y a b a b +=>>
的离心率
e =,直线21y x =-与C 交于A 、B
两点,且AB =
(1)求椭圆C 的方程;
(2)过点(2,0)M 的直线l (斜率不为零)与椭圆C 交于不同的两点E 、F (E 在点F 、M
之间),记
OME
OMF S S λ∆∆=
,求λ的取值范围.
18.证明:(1)1111112
212221k k k k ++++⋅⋅⋅+<++-(2,)n n N ≥∈; (2)分别以1,12,13,…,1n ,…为边长的正方形能互不重叠地全部放入一个边长为3
2的正方形内.
19.已知梯形ABCD ,边CD 、AB 分别为上、下底,且90ADC ∠=,对角线AC BD ⊥,过D 作DE BC ⊥于点E .
(1)证明:2
2
AC CD AB CD =+⋅;
(2)证明:22
AE AC CD
BE AC CD ⋅=-
.
参考答案
一、选择题
1-5: BACBB
二、填空题
6. BAC ∠的角平分线
7. 牛得亨先生的女儿
8. 13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩
240,,,233⎧⎫
⎨⎬⎩⎭
12. 33,22⎡⎤-⎢⎥⎣⎦ 13. 11e
a e <<
14. 60
三、解答题
16.解:令1u x =-
,则
33y u =+,则1u ≥,
u t =-≥,则
min
01t u <≤=,且11
()2u t t =+.
当0u >时,3111()3()22y t t t t t =++++-2
3
t t =++,
由于01t <≤,故函数单调递减,所以1236y ≥++=.
当0u <时,3111()3()22y t t t
t t =-++++-
1
233t t =-++≤-
(当且仅当2t =
,即44x -=时取等号)
所以函数的值域为
(,3[6,)-∞-+∞.
17.解:(1
)由
2e =
得a ==,所以椭圆的方程为222
220x y b +-=,
由22222021x y b y x ⎧+-=⎨=-⎩得
2298(22)0x x b -+-=, 所以
26436(22)b ∆=--,
由
AB =
9=,即21b =, 所以椭圆C 的方程为2
21
2x y +=.
(2)设l :2x my =+,且
11(,)
E x y 、
22(,)
F x y ,
由222202x y x my ⎧+-=⎨=+⎩得
22(2)420m y my +++=, 所以由0∆>解得
2
2m >,且12242m y y m +=-
+,12
22
2y y m ⋅=+①
由
12
1
21
2OME
OMF
OM y S S OM y λ∆∆⨯⨯=
=⨯⨯得,12
y y λ=②
由①②得2222
211(1)884m m m λλ+==++,
所以
2118(1)4λλ<<+
,解得03λ<<+,且1λ≠. 18.证明:(1)11111
2
212221k
k k k ++++⋅⋅⋅+++-2111212222
k k
k k k k <++⋅⋅⋅+==个
.
(2)由(1)知,11111
12
212221k k k k ++++⋅⋅⋅+<++-, 故以边长为12k ,121k +,122k +,…,1121k +-的正方形可以并排放入底为1,高为12k
的矩形内,而不重
叠.
取2,3,4k =,…,即得底分别为
22311122121++⋅⋅⋅++-,33411122121++⋅⋅⋅++-,
44511122121++⋅⋅⋅++-,高分别为212,312,412,…的一系列矩形,
这些矩形的底小于1,高的和为
223411(1)11122lim 122212
n x →∞-+++⋅⋅⋅=-
111lim (1)222n x →∞=-<. 因此,以1,12,13,…,1n ,…为边长的正方形中,除了边长为1,12,1
3的正方形外,其余的正方形全部可以放入底为1,高为1
2的矩形中(如图阴影部分).
而边长为1,12,13的三个正方形显然可以放入底为3
2,高为1的矩形内(如图).
19.证明:如图.
(1)由于90ADC ∠=,故2
2
2
AC CD AD =+.
因为对角线AC BD ⊥,所以90DCA BDC ADB ∠=-∠=∠.
而90ADC BAD ∠==∠,则ACD BDA ∆∆,故2AD AB
AD AB CD
CD AD =⇒=⋅.
因此,有2
2
AC CD AB CD =+⋅.
(2)由于90ADC ∠=,故2
2
2
AC CD AD -=,
所以222
AC CD AC CD AC CD
AD ⋅⋅=-AC CD AC
AB CD AB ⋅==⋅. 因为180BAD DEB ∠+∠=,
所以A 、B 、E 、D 四点共圆,故AEB ADB ∠=∠
.
由于90BAC CAD ADB ∠=-∠=∠, 且AEB BAC ∠=∠,EBA ABC ∠=∠,
则ABE
CBA ∆∆,故AE CA
BE AB =
.
所以22
AE AC CD
BE AC CD ⋅=-.。