2010高考数学文科试题及答案-全国卷1

合集下载

2010年全国统一高考数学试卷(文科)(全国新课标)

2010年全国统一高考数学试卷(文科)(全国新课标)

2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)第21页(共21页)当且仅当a <﹣2或a ≥时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.10。

2010年高考文科数学试题、答案-全国1

2010年高考文科数学试题、答案-全国1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()UN M ⋂=A.{}1,3B. {}1,5C. {}3,5D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5UM =,{}1,3,5N =,则()U N M ⋂={}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =AB C DA 1B 1C 1D 1 O(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B )3 (C )23(D )39.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)22ACD S AC AD ∆==⨯=,21122ACD S AD CD a ∆==. 所以13133ACD ACD S DD a DO a S ∆∆===,记DD 1与平面AC 1D 所成角为θ,则1sin 3DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos3O OO ODOD∠===(10)设123log2,ln2,5a b c-===则(A)a b c<<(B)b c a<< (C) c a b<< (D) c b a<<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3, b=In2=21log e,而22log3log1e>>,所以a<b,c=125-222log4log3>=>,所以c<a,综上c<a<b.【解析2】a=3log2=321log,b=ln2=21log e, 3221log log2e<<<,32211112log log e<<<;c=12152-=<=,∴c<a<b(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA PB•的最小值为(A) 4-+3-(C) 4-+3-+11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x>,∠APO=α,则∠APB=2α,,sinα=,||||cos2PA PB PA PBα•=⋅=22(12sin)xα-=222(1)1x xx-+=4221x xx-+,令PA PB y•=,则4221x xyx-=+,即42(1)0x y x y-+-=,由2x是实数,所以2[(1)]41()0y y∆=-+-⨯⨯-≥,2610y y++≥,解得3y≤--或3y≥-+.故min()3PA PB•=-+.此时x=【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x xx--•==+-≥【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3(B)3(C)312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2010年全国高考文科数学试题及答案(全国1卷)

2010年全国高考文科数学试题及答案(全国1卷)
(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)
第Ⅱ卷
二填空题:本大题共4小题,每小题5分。
(13)圆心在原点上与直线 相切的圆的方程为-----------。
(14)设函数 为区间 上的图像是连续不断的一条曲线,且恒有 ,可以用随机模拟方法计算由曲线 及直线 , , 所围成部分的面积,先产生两组 每组 个,区间 上的均匀随机数 和 ,由此得到V个点 。再数出其中满足 的点数 ,那么由随机模拟方法可得S的近似值为___________
设等差数列 满足 , 。
(Ⅰ)求 的通项公式;
(Ⅱ)求 的前 项和 及使得 最大的序号 的值。
(18)(本小题满分12分)
如图,已知四棱锥 的底面为等腰梯形, ∥ , ,垂足为 , 是四棱锥的高。
(Ⅰ)证明:平面 平面 ;
(Ⅱ)若 , 60°,求四棱锥 的体积。
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
K2=
(20)(本小题满分12分)
设 , 分别是椭圆E: + =1(0﹤b﹤1)的左、右焦点,过 的直线 与E相交于A、B两点,且 , , 成等差数列。
(Ⅰ)求
(Ⅱ)若直线 的斜率为1,求b的值。
2010年高校招生考试文数(新课标) 试题及答案
一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
(1)D (2) C (3) D (4) A (5) D (6) C

2010高考文科数学试题答案(全国卷1)

2010高考文科数学试题答案(全国卷1)
2-4

2按照《会计档案管理办法》的规定,下列说法正确的是() A会计档案保管期限为 3、 5、10、15、 25 5种 B单位合并后原各单位仍存续的,其会计档案仍应原各单位保管 C企业银行余额调节表、银行对账单和固定资产卡片于固定资产 报废清理后保管5年D我国境内所有会计档案不得携带出境 3下列属会计档案范围的有() A银行对账单B财务收以计划C会计账簿D会计移交清册 4根据《会计档案管理办法》规定,()保管期限为5年 A银行对账单B银行存款调节表C记账凭证D原始凭证 4根据《会计档案管理办法》规定,()保管期限为15年 A总账B明细账C日记账D辅助账 5企业和其他组织的下列会计档案中需要永久保存的有() A会计档案保管清册 B会计档案销毁清册 C会计移交清册 D年度财务报告 3-4
注意:预算、计划、制度等文件不属于会计档案
会计档案的保管
9-3会计档案的归档 会计机构按照归档要求,负责整理立卷,装订成册,编制会计保 管清册,当年 形成后,应当由会计机构编制移交清册,移交 档案部门,无档案部门的应当在会计机构内部指定专人保管。 出纳不能兼管会计档案。 9-4会计档案的保管期限 永久和定期
第九章
会计档案
9-1会计档案:会计凭证、会计账簿和财务会计报告等会计核算专 业材料,是记录和反映单位经济业务的重要历史资料和证据。 9-2会计档案分类: A会计凭证类: 原始凭证、记账凭证、汇总凭证、其它会计凭证 B会计帐簿 :总账、明细帐、日记帐、固定资产卡片、辅助帐簿、 其它会计帐簿 C财务会计报告类:月度、季度、年度财务报告,其它财务会计报 表 D其他会计资料 :银行存款余额调节表、银行对帐单、其它应当 保存的会计核算专业资料、会计档案移交清册、会计档案保管清 册、会计档案销毁清册

2010年高考新课标全国卷_文科数学(含答案)

2010年高考新课标全国卷_文科数学(含答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

2010年高考文科数学试题(全国卷1)

2010年高考文科数学试题(全国卷1)

2010年普通高等学校招生全国统一考试文科数学(必修+选修I)第I卷一、选择题(1)cos300°=(A)(B)(C)(D)(2)设全集U=(1,2,3,4,5),集合M=(1,4),N=(1,3,5),则N (C,M)(A)(1,3)(B)(1,5)(C)(3,5)(D)(4,5)(3)若变量x、y满足约束条件则z=x-2y的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=(A)5 (B)7 (C)6 (D)4(5)(1-x)2(1-)3的展开式中x2的系数是(A)-6 (B)-3 (C)0 (D)3(6)直三棱柱ABC-A1B1C1¬中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于(A)30° (B)45° (C)60° (D)90°(7)已知函数f(x)= .若a≠b,且f(a)=f(b),则a+b的取值范围是(A)(1,+∞)(B)[1,+∞](C)(2,+∞)(D)[2,+∞)(8)已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则• =(A)2 (B)4 (C)6 (D)8(9)正方体ABCD-A1BCD1中,BB1与平面ACD1所成角的余弦值为(A) (B) (C) (D)(10)设a=log3,2,b=ln2,c= ,则(A)a<b<c (B)b<c<a (C)c<a<b (D)c<b<a(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么• 的最小值为(A)-4+ (B)-3+ (C)-4+2 (D)-3+2(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A) (B) (C) (D)2010年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)不等式 >0的解集是 .(14)已知为第一象限的角,sin =,则tan = .(15)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有种.(用数字作答)(16)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且=2 ,则C的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)记等差数列{an}的前n项和为S,设Sx=12,且2a1,a2,a3+1成等比数列,求Sn.(18)(本小题满分12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.(19)(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A—DC—C的大小.(21)(本小题满分12分)已知函数f(x)=3ax4-2(3a+2)x2+4x.(Ⅰ)当a= 时,求f(x)的极值;(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.(22)(本小题满分12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。

2010年高考数学文科全国卷1答案

2010年高考数学文科全国卷1答案

文科数学(必修+选修Ⅱ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分). 1.集合A ={x -1≤x ≤2},B ={xx <1},则A ∩B =[D](A){x x <1}(B ){x-1≤x ≤2}(C) {x-1≤x ≤1}(D) {x -1≤x <1}2.复数z =1ii在复平面上对应的点位于[A](A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.函数f (x )=2sin x cos x 是 [C] (A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数4.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为s A 和s B ,则[B](A) A x >B x ,s A >s B (B) A x <B x ,s A >s B (C) A x >B x ,s A <s B (D) A x <B x ,s A <s B5.右图是求x 1,x 2,…,x 10的乘积S 的程序框图,图中空白框中应填入的内容为 [D](A)S =S*(n +1) (B )S =S *x n +1(C)S =S *n (D)S =S *x n(A)充分不必要条件(B )必要不充分条件 (C )充要条件 (B )既不充分也不必要条件7.下6.“a >0”是“a >0”的[A]列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是 [C] (A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 8.若某空间几何体的三视图如图所示,则该几何体的体积是[B](A )2 (B )1(C )23(D )139.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为 [C](A )12(B )1 (C )2 (D )410.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为[B](A )y =[10x] (B )y =[310x +] (C )y =[410x +] (D )y =[510x +] 二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分). 11.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43= (1+2+3+4)2,…,根据上述规律,第四个等式.....为13+23+33+43+53=(1+2+3+4+5)2(或152). 12.已知向量a =(2,-1),b =(-1,m ),c =(-1,2)若(a +b )∥c ,则 m = -1 .13.已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = 2 .14.设x ,y 满足约束条件24,1,20,x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则目标函数z =3x -y 的最大值为 5 .15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分) A.(不等式选做题)不等式21x -<3的解集为{}12x x -<<.B.(几何证明选做题)如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3cm ,4cm ,以AC 为直径的圆与AB 交于点D ,则BD =165cm.C.(坐标系与参数方程选做题)参数方程cos ,1sin x y αα=⎧⎨=+⎩(α为参数)化成普通方程为x 2+(y -1)2=1. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 16.(本小题满分12分) 已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n . 解 (Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n . (Ⅱ)由(Ⅰ)知2ma =2n ,由等比数列前n 项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.17.(本小题满分12分)在△ABC 中,已知B=45°,D 是BC 边上的一点, AD=10,AC=14,DC=6,求AB 的长.解 在△ADC 中,AD=10,AC=14,DC=6,由余弦定理得cos ∠2222AD DC AC AD DC +-=10036196121062+-=-⨯⨯,∴∠ADC=120°, ∠ADB=60°在△ABD 中,AD=10, ∠B=45°, ∠ADB=60°,由正弦定理得sin sin AB ADADB B=∠,∴AB=10sin 10sin 60sin sin 45AD ADB B ⨯∠︒===︒18.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形P A ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点. (Ⅰ)证明:EF ∥平面P AD ; (Ⅱ)求三棱锥E —ABC 的体积V. 解 (Ⅰ)在△PBC 中,E ,F 分别是PB ,PC 的中点,∴EF ∥BC . 又BC ∥AD ,∴EF ∥AD , 又∵AD ⊄平面P AD ,E F ⊄平面P AD , ∴EF ∥平面P AD . (Ⅱ)连接AE ,AC,EC ,过E 作EG ∥P A 交AB 于点G ,则BG ⊥平面ABCD ,且EG =12P A .在△P AB 中,AD =AB , P AB °,BP =2,∴AP =AB ,EG =2.∴S △ABC =12AB ·BC =12×,∴V E-AB C =13S △ABC ·EG =13×2=13.19 (本小题满分12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:()估计该校男生的人数;()估计该校学生身高在170~185cm 之间的概率;()从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题(文科)(解析版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题(文科)(解析版)

2010 年普通高等学校招生全国统一考试文科数学参考公式:样本数据 x 1, x 2x n 的标准差锥体体积公式s1( x 1x )2( x 2 x )2( x n x )2V1 s hn3其中 x 为样本平均数 其中 S 为底面面积, h 为高 柱体体积公式球的表面积,体积公式VShS4 R 2,V4 R 3 其中 S 为底面面积, h 为高其中 R 为球的半径 3第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

( 1)已知集合 Ax x 2, x R, B x x 4, x Z ,则A B()( A )0,2 ( B )0,2 (C ) 0,2 (D )0,1,2解析: A x | 2 x 2 , B {0,1,2} , A B 0,1,2 ,选 D命题意图:本题考查集合的运算及不等式解法( 2) a ,b 为平面向量,已知 a=( 4,3),2a+b=( 3,18),则 a ,b 夹角的余弦值等于()(A )8(B )8 (C )16( D )16 65656565a b16 解析: a(4,3), b ( 5,12),cosa,ba b 65,选 C命题意图:本题考查向量数量积运算与夹角( 3)已知复数 z3 i,则 z =()(13i)2(A)1(B )1(C )1( D )242解析: z3 i 3 i4 3 4i3 i, z a 2b 21 ,选 B(1 3i )2 2 2 3i 1642命题意图:本题考查复数的代数运算及模的定义( 4)曲线 y x 32x 1在点( 1,0 )处的切线方程为()(A ) y x 1(B ) yx 1( C ) y2x 2( D ) y2x 2解析: y '3x 2 2, k1, 切线方程为 y x 1,选 A( 5)中心在原点, 焦点在 x 轴上的双曲线的一条渐近线经过点( 4,2 ),则它的离心率为 ( )(A ) 6(B )5( C )6 ( D )52 2解析:由双曲线的几何性质可得b 1即 a2b , e2c 2a2b25,e5 ,选 Da2a 2a 242命题意图:本题考查双曲线的几何性质( 6)如图,质点 p 在半径为 2 的圆周上逆时针运动,其初始位置为p 0 ( 2 ,2 ),角速度为 1,那么点 p 到 x 轴距离 d 关于时间 t 的函数图像大致为()解析:法一:排除法取点 t 0时 , d 2 , 排除 A 、 D ,又当点 P 刚从 t=0 开始运动, d 是关于 t 的减函数,所以排除 B ,选 C法二:构建关系式x 轴非负半轴到 OP 的角t ,由三角函数的定义可知4 y p 2sin( t) ,所以 d 2sin( t ),选 C44命题意图:考察三角函数的定义及图像(7) 设长方体的长、 宽、高分别为 2a 、a 、a, 其顶点都在一个球面上, 则该球的表面积为 ( )( A )3 a 2 ( B ) 6 a 2 (C ) 12 a 2 (D ) 24 a 2( 8) 解析:球心在长方体对角线交点处,球半径R 为对角线长一半6a 长方体中,由对角线定理知对角线长为6a , R2球表面积 S 4 R 2 6 a 2 ,选 B命题意图:本题以球与多面体的接切为载体考查球的表面积公式( 8)如果执行右面的框图,输入 N=5,则输出的数等于()(A ) 5(B )4(C )6(D )54556 解析:S111 1122 3 3 44 5 561(1 1) (1 1) (1 1) (11) (1 1)5所以选 D命题意图:以算法为背景考察裂项相消求和(9) 设偶函数 f(x) 满足 f(x)=2x-4 (x0),则x f x 2 0 =()( A)x x2或 x 4( B)x x0或 x 4( C)x x0或 x 6( D)x x2或 x 2解析:当x 0时,由 f ( x) 2x40得x 2 又 f ( x)为偶函数, f ( x)0时 x2或x 2f (x 2) 0x 2 2或x 22,即 x4或 x 0 ,选B 命题意图:利用函数性质解不等式( 10)若cosa = -4, a 是第三象限的角,则sin(a) =()54(A)- 7 2(B)7 2(C)-2( D)2 10101010解析: a 是第三象限的角,sin a 1 cos 235则sin( a)2cos72 (sin),选 A4210命题意图:本题考查同角三角函数关系及和角正弦公式( 11)已知ABCD的三个顶点为A( -1 ,2),B(3,4),C( 4, -2 ),点( x,y)在ABCD 的内部,则z=2x-5y 的取值范围是()(A)(-14 , 16)( B)(-14 , 20)( C)(-12 , 18)( D)(-12 , 20)解析:当直线 z=2x-5y过点 B 时,z min14当直线 z=2x-5y过点 D( 0,-4 )时,z max20所以 z=2x-5y 的取值范围为(-14 , 20),选 B点 D 的坐标亦可利用AB DC求得,进一步做出可行域命题意图:本题考查线性规划lg x ,0x10( 12)已知函数 f(x)= 1 x6, x10若 a, b, c 均不相等,2且 f(a)= f(b)= f(c),则 abc 的取值范围是()( A)(1, 10)( B) (5 , 6)( C) (10 , 12)( D)(20 , 24)解析: a,b,c 互不相等,不妨设a b c由f (a) f (b), 得lg a lg b,即 ab=1abc c ,显然 10 c 12所以选 C命题意图:考察数形结合思想,利用图像处理函数与方程问题第Ⅱ卷本卷包括必考题和选考题两部分。

(完整word)2010高考全国一卷文科数学

(完整word)2010高考全国一卷文科数学

2010年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他考试标号,在试题卷上作答无........效.。

3.第I卷12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A、B互斥,那么球的表面公式P(A+B)=P(A)+P(B) S=4πR2如果事件A、B相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径一、选择题(1)cos300°=(A)32-(B)12-(C)12(D)32(2)设全集U=(1,2,3,4,5),集合M=(1,4),N=(1,3,5),则 =(A)(1,3)(B)(1,5)(C)(3,5)(D)(4,5)(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为(A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(A )(B)7 (C)6(D)4(5)(1-x )2(1)3的展开式中x 2的系数是(A)-6 (B )-3 (C)0 (D)3(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于(A )30° (B)45° (C)60° (D)90°(7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则1PF ·2PF =(A )2 (B)4 (C)6 (D)8(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为(A)(B) (C) 23(D) (10)设a =log 3,2,b =ln2,c =125-,则 (A )a <b <c (B)b <c <a(C)c <a <b (D)c <b <a (11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA u u u r ·PB u u u r 的最小值为(A )-(B )-(C )-(D )-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为(A(B)(C)(D)2010年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

2010年全国统一高考数学试卷(文科)(全国卷一)及答案

2010年全国统一高考数学试卷(文科)(全国卷一)及答案

2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=()A.B.﹣ C.D.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.14.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.36.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.89.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是.14.(5分)已知α为第二象限的角,,则tan2α=.15.(5分)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.19.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•大纲版Ⅰ)cos300°=()A.B.﹣ C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选C.2.(5分)(2010•大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选C3.(5分)(2010•大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.4.(5分)(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.5.(5分)(2010•大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选A6.(5分)(2010•大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选C.7.(5分)(2010•大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f (b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选:C.(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:,整理得线性规划表达式为:,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=﹣x+z,即求函数的截距最值.根据导数定义,函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.8.(5分)(2010•大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|•|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选B.9.(5分)(2010•大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选D.10.(5分)(2010•大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选C.11.(5分)(2010•大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB 为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关于x的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选D.12.(5分)(2010•大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.【分析】四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则有,当直径通过AB与CD的中点时,,故.故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•大纲版Ⅰ)不等式的解集是{x|﹣2<x<﹣1,或x>2} .【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解.【解答】解::,数轴标根得:{x|﹣2<x<﹣1,或x>2}故答案为:{x|﹣2<x<﹣1,或x>2}14.(5分)(2010•大纲版Ⅰ)已知α为第二象限的角,,则tan2α=.【分析】先求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:因为α为第二象限的角,又,所以,,∴故答案为:﹣15.(5分)(2010•大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种.(用数字作答)【分析】由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.【解答】解:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.所以不同的选法共有C31C42+C32C41=18+12=30种.故答案为:3016.(5分)(2010•大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.三、解答题(共6小题,满分70分)17.(10分)(2010•大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).18.(12分)(2010•大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A ﹣)=sin(B+),进而根据A,B的范围,求得A﹣和B+的关系,进而求得A+B=,则C的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=19.(12分)(2010•大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【分析】(1)投到该杂志的1篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4篇稿件中,至少有2篇被录用的对立事件是0篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4篇稿件有1篇或0篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4篇稿件中,至少有2篇被录用的概率是0.5248.20.(12分)(2010•大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB ∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.【分析】(Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG,根据二面角平面角的定义可知∠AFG是二面角A﹣DE﹣C的平面角,然后在三角形AGF中求出二面角A﹣DE﹣C的大小.【解答】解:(Ⅰ)连接BD,取DC的中点G,连接BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD,所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB=,DE=EB=所以SE=2EB(Ⅱ)由SA=,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1.故△ADE为等腰三角形.取ED中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG是二面角A﹣DE﹣C的平面角.连接AG,AG=,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C的大小为120°.21.(12分)(2010•大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.【分析】先求函数的极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,则x=﹣1或x=1,经验证x=﹣1和x=1为极值点,即f(1)=﹣2为极小值,f(﹣1)=2为极大值.又因为f(﹣3)=﹣18,f(3)=18,所以函数f(x)的最大值为18,最小值为﹣18.22.(12分)(2010•大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD 和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(Ⅱ)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(Ⅰ)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,∴k1=k2,∴点F在直线BD上.(Ⅱ)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,∴m2=,m=±.y2﹣y1==4=,∴k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,∴4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.∴半径r=,∴△BDK的内切圆M的方程为(x﹣)2+y2=.。

2010年高考文科数学试题(全国卷1)

2010年高考文科数学试题(全国卷1)
2010年高考文科数学试题全国卷I
本试卷适用地区:河北河南山西广西
一、选择题:本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
第1题
纠错
第2题
纠错
第3题
纠错
第17题
第18题
纠错
第19题
纠错
第20题
纠错
第21题
纠错
第22题
纠错
第4题
纠错
第5题
纠错第6题Leabharlann 纠错第7题纠错
第8题
纠错
第9题
纠错
第10题
纠错
第11题
纠错
第12题
纠错
二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中横线上。
二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中横线上。
第13题
纠错
第14题
纠错
第15题
纠错
第16题
纠错
三、解答题:本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。

2010年全国高考文科数学试题及答案-全国1完美版)

2010年全国高考文科数学试题及答案-全国1完美版)

(2)设全集 U = {1, 2, 3, 4, 5 } ,集合 M = {1, 4} , N = {1, 3, 5} ,则 N ∩ ðU M = A. {1, 3} B.
(
)
{1, 5}
C.
{3,5}
D.
{4, 5}
2.C【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】 ð } , N = {1, 3, 5} ,则 N ∩ ðU M = {1, 3, 5} ∩ { 2,3,5} = {3,5} U M = {2, 3, 5
中国校长网资源频道


中国校长网
【解析】 (1 − x) 4 (1 −
1 3 ⎛ ⎞ 2 x ) = (1 − 4 x + 6 x − 4 x − x ) ⎜1 − 3 x + 3 x − x 2 ⎟ ⎝ ⎠ 3 2 3 4
x 2 的系数是 -12+6=-6
(D)
[2, +∞)
1 ≥ 2 , 从而错选 D,这也 a
7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做 本小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+b= a + 是命题者的用苦良心之处. 【解析 1】因为 f(a)=f(b),所以|lga|=|lgb|, 所以 a=b(舍去),或 b =
【解析 2 】 a= log 3 2=
1 2
c= 5

=
1 1 1 < = ,∴c<a<b 5 4 2 ��� � ��� �
(11)已知圆 O 的半径为 1,PA、PB 为该圆的两条切线,A、B 为两切点,那么 PA • PB 的 最小值为 (A) −4 +

2010高考数学文科真题带答案

2010高考数学文科真题带答案

2010年普通高等学校招生全国统一考试数学文试题(辽宁卷,解析版)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U C A =(A ){}1,3(B ){}3,7,9 (C ){}3,5,9(D ){}3,9解析:选D. 在集合U 中,去掉1,5,7,剩下的元素构成.U C A (2)设,a b 为实数,若复数121ii a bi+=++,则 (A )31,22a b == (B )3,1a b ==(C )13,22a b == (D )1,3a b == 解析:选A. 1231122i a bi i i ++==++,因此31,22a b ==.(3)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =(A )3(B )4(C )5(D )6解析:选B. 两式相减得, 3433a a a =-,44334,4a a a q a =∴==. (4)已知0a >,函数2()f x ax bx c =++,若0x 满足关于x 的方程20ax b +=,则下列选项的命题中为假命题的是(A )0,()()x R f x f x ∃∈≤ (B )0,()()x R f x f x ∃∈≥ (C ) 0,()()x R f x f x ∀∈≤ (D )0,()()x R f x f x ∀∈≥ 解析:选C.函数()f x 的最小值是0()()2bf f x a-= 等价于0,()()x R f x f x ∀∈≥,所以命题C 错误.(5)如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于(A )720 (B ) 360 (C ) 240 (D ) 120 解析:选B.13456360.p =⨯⨯⨯⨯= (6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是 (A )23 (B ) 43 (C ) 32(D ) 3 解析:选C.由已知,周期243,.32T ππωω==∴=(7)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF =(A )43 (B ) 8 (C ) 83 (D ) 16 解析:选B.利用抛物线定义,易证PAF ∆为正三角形,则4||8sin30PF ︒==(8)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于(A )222()a b a b -⋅ (B )222()a b a b +⋅(C )2221()2a b a b -⋅ (D )2221()2a b a b +⋅解析:选 C.2222111()||||sin ,||||1cos ,||||1222||||OABa b S a b a b a b a b a b a b ∆⋅=<>=-<>=- 2221()2a b a b =-⋅(9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A )2 (B )3 (C )312+ (D )512+ 解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b一条渐近线斜率为:ba ,直线FB 的斜率为:bc -,()1b b a c∴⋅-=-,2b ac ∴=220c a ac --=,解得512c e a +==. (10)设25abm ==,且112a b+=,则m = (A )10 (B )10 (C )20 (D )100 解析:选A.211log 2log 5log 102,10,m m m m a b+=+==∴=又0,10.m m >∴= (11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ= (12)已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 (A)[0,4π) (B)[,)42ππ (C ) 3(,]24ππ (D) 3[,)4ππ 解析:选D.2441212x x x xxe y e e e e'=-=-++++,12,10xx e y e '+≥∴-≤<,即1tan 0α-≤<,3[,)4παπ∴∈ 第Ⅱ卷本试卷包括必考题和选考题两部分。

2010年普通高等学校招生全国统一考试(新课标全国卷)(文科数学)

2010年普通高等学校招生全国统一考试(新课标全国卷)(文科数学)

2010年普通高等学校招生全国新课标统一考试文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22~24题为选考题,其他题为必考题.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x | |x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}2.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-16653.已知复数z =3+i (1-3i )2,则|z |=( ) A.14 B.12C .1D .2 4.曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +25.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B.5C.62D.526.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )7.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 28.如果执行右面的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.569.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}10.若cos α=-45,α是第三象限的角,则sin(α+π4)=( ) A .-7210 B.7210 C .-210 D.21011.已知▱ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在▱ABCD 的内部,则z =2x -5y 的取值范围是( )A .(-14,16)B .(-14,20)C .(-12,18)D .(-12,20)12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12) D .(20,24)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.圆心在原点且与直线x +y -2=0相切的圆的方程为________.14.设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为________.15.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________.(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱16.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面PAC ⊥平面PBD ;(2)若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )性别 是否需要志愿者 男 女 需要 40 30 不需要 160 270 P (K 2≥k ) 0.050 0.010 0.001k 3.841 6.635 10.82820.(本小题满分12分)设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求|AB|;(2)若直线l的斜率为1,求b的值.21.(本小题满分12分)设函数f(x)=x(e x-1)-ax2.(1)若a=12,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧 AC = BD,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α, y=t sin , (t 为参数),圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)当坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满10分)选修4-5:不等式选讲设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()UN M ⋂=A.{}1,3B. {}1,5C. {}3,5D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5UM =,{}1,3,5N =,则()U N M ⋂={}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =AB C DA 1B 1C 1D 1 O(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B )3 (C )23(D )39.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)22ACD S AC AD ∆==⨯=,21122ACD S AD CD a ∆==. 所以13133ACD ACD S DD a DO a S ∆∆===,记DD 1与平面AC 1D 所成角为θ,则1sin 3DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos3O OO ODOD∠===(10)设123log2,ln2,5a b c-===则(A)a b c<<(B)b c a<< (C) c a b<< (D) c b a<<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3, b=In2=21log e,而22log3log1e>>,所以a<b,c=125-222log4log3>=>,所以c<a,综上c<a<b.【解析2】a=3log2=321log,b=ln2=21log e, 3221log log2e<<<,32211112log log e<<<;c=12152-=<=,∴c<a<b(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA PB•的最小值为(A) 4-+3-(C) 4-+3-+11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x>,∠APO=α,则∠APB=2α,,sinα=||||cos2PA PB PA PBα•=⋅=22(12sin)xα-=222(1)1x xx-+=4221x xx-+,令PA PB y•=,则4221x xyx-=+,即42(1)0x y x y-+-=,由2x是实数,所以2[(1)]41()0y y∆=-+-⨯⨯-≥,2610y y++≥,解得3y≤--或3y≥-+.故min()3PA PB•=-+此时x=【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x xx--•==+-≥【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3(B)3(C)312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

相关文档
最新文档