职高中职数学题库

合集下载

中职高考数学试题及答案

中职高考数学试题及答案

中职高考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 函数y=f(x)=x^2的反函数是?A. f^(-1)(x)=√xB. f^(-1)(x)=x^(1/2)C. f^(-1)(x)=x^(-1)D. f^(-1)(x)=x^(2)答案:A3. 已知向量a=(3,-1),b=(2,2),求向量a与向量b的数量积。

A. 4B. -2C. 6D. 8答案:B4. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x+1D. y=x^2-1答案:B5. 以下哪个不等式的解集是全体实数?A. x^2-4x+4<0B. x^2-2x+1≤0C. x^2+x+1>0D. x^2-x-1=0答案:C6. 已知集合A={1,2,3},B={2,3,4},求A∩B。

A. {1,2}B. {2,3}C. {3,4}D. {1,4}答案:B7. 直线y=2x+3与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (-1, 0)D. (1, 0)答案:B8. 已知等比数列的首项a1=2,公比q=3,求第5项的值。

A. 486B. 81C. 243D. 729答案:D9. 以下哪个函数是周期函数?A. y=ln(x)B. y=x^2C. y=sin(x)D. y=e^x答案:C10. 已知函数f(x)=x^3-3x+1,求f'(x)。

A. 3x^2-3B. x^2-3x+1C. 3x^2-3xD. x^3-3答案:A二、填空题(每题3分,共15分)1. 函数y=f(x)=x^2+2x+1的最小值是________。

答案:02. 已知等差数列的首项a1=5,公差d=3,求第10项的值是________。

答案:323. 已知双曲线x^2/a^2 - y^2/b^2=1的焦点在x轴上,且a=2,b=1,则该双曲线的离心率e是________。

中职数学习题及答案

中职数学习题及答案

第三章:函数一、填空题:(每空2分)1、函数11)(+=x x f 的定义域是 。

2、函数23)(-=x x f 的定义域是 。

3、已知函数23)(-=x x f ,则=)0(f ,=)2(f 。

4、已知函数1)(2-=x x f ,则=)0(f ,=-)2(f 。

5、函数的表示方法有三种,即: 。

6、点()3,1-P 关于x 轴的对称点坐标是 ;点M (2,-3)关于y 轴的对称点坐标是 ;点)3,3(-N 关于原点对称点坐标是 。

7、函数12)(2+=x x f 是 函数;函数x x x f -=3)(是 函数;8、每瓶饮料的单价为2.5元,用解析法表示应付款和购买饮料瓶数之间的函数关系式可以表示为 。

9、常用对数表中,表示对数与对数值之间的关系采用的是 的方法。

二、选择题(每题3分)1、下列各点中,在函数13-=x y 的图像上的点是( )。

A .(1,2) B.(3,4) C.(0,1) D.(5,6)2、函数321-=x y 的定义域为( )。

A .()+∞∞-, B.⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323, C.⎪⎭⎫⎢⎣⎡+∞,23 D. ⎪⎭⎫ ⎝⎛+∞,23 3、下列函数中是奇函数的是( )。

A .3+=x y B.12+=x y C.3x y = D.13+=x y4、函数34+=x y 的单调递增区间是( )。

A .()+∞∞-, B. ()+∞,0 C. ()0,∞- D.[)∞+.05、点P (-2,1)关于x 轴的对称点坐标是( )。

A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)6、点P (-2,1)关于原点O 的对称点坐标是( )。

A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)7、函数x y 32-=的定义域是( )。

A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C. ⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 8、已知函数7)(2-=x x f ,则)3(-f =( )。

中职数学试卷职高一期末

中职数学试卷职高一期末

一、选择题(每题3分,共30分)1. 下列各数中,正数是()。

A. -3B. 0C. 3D. -22. 已知 a > 0,b < 0,那么 a + b 的符号是()。

A. 正B. 负C. 零D. 无法确定3. 若 m = -3,则 |m| 的值是()。

A. 3B. -3C. 0D. 无法确定4. 下列各数中,有理数是()。

A. √2B. πC. 1/3D. √(-1)5. 下列各数中,无理数是()。

A. 2B. 1/2C. √4D. √(-1)6. 若 a、b 是方程x² - 5x + 6 = 0 的两个根,则 a + b 的值是()。

A. 5B. 6C. -5D. -67. 下列函数中,是正比例函数的是()。

A. y = 2x + 3B. y = 3xC. y = 2x²D. y = x³8. 若k ≠ 0,则一次函数 y = kx + b 的图象是一条()。

A. 抛物线B. 双曲线C. 直线D. 圆9. 下列各数中,绝对值最小的是()。

A. -1B. 0C. 1D. -210. 若 a > b,则下列不等式中正确的是()。

A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 1二、填空题(每题5分,共20分)11. 已知 a = -2,b = 3,求 a + b 的值。

12. 若 m = -4,n = 5,求 |m - n| 的值。

13. 下列各数中,正数是()。

14. 下列各数中,无理数是()。

15. 若 a = -3,b = 2,则a² - b² 的值是()。

三、解答题(每题10分,共40分)16. 求解方程:2x - 3 = 5。

17. 已知 a、b 是方程x² - 5x + 6 = 0 的两个根,求 a + b 的值。

职高[中职]数学试题库

职高[中职]数学试题库

职高(中职)数学题库一、选择题:1、集合{1,2,3}的所有子集的个数是............................ ()A、3个B、6个C、7个D、8个2、已知sin cos >0,且cos -tan <0,则角所在的象限是•…()A、第一象限B、第二象限C、第三象限D、第四象限3、不等式4-x2<0的解集是.............................................. ()A、xx 2且x 2B、xx 2或x 2C、x-2 x 2D、xx 24、把42=16改写成对数形式为 .......................................... ()A、10g42= 16B、10g24= 16C、10g化4 = 2D、10g416 = 25、圆心在(2, —1),半径为痣的圆方程是....................... ()A、(x+2)2+ (y—1) 2 = 5B、(x-2)2+ (y+1) 2 = 5C、(x+ 2)2+ (y+1) 2 = 5D、(x-2)2+ (y+1)2=V516、函数y=5cos (2x— 3)的最大值............................. ()A、—B、——C、1D、— 15 57、下列各对数值比较,正确的是 ................................. ()A、33>34B、1.13>1.13.1C、2 2>2 1D、30.3>30.48、下列函数在(一°°, +°°)上是增函数的是................... ()A、y = x2+1B、y= —x2C、y= 3xD、y= sinx9、直线 1I: ax+ 2y+6 = 0 与直线上:x+ (a—1) y+a2—1=0 平行,则a 等于 ........................................................ ()A、2B、— 1C、— 1 或2D、0 或110、已知等差数列{a n},右aI + a2 + a3 = 10 , a4 + a5 + a6 = 10 ,则公差d为 ............................................................ ()A、1B、1C、2D、34 311、六个人排成两排,每排三人,则不同的排法有................... ()A、120 种B、126 种C、240 种D、720 种12、在AABC中,设D为BC边的中点,则向量AD等于............... ()A> AB + AC B、AB — ACC> 1( AB + AC )D> - (AB - AC )2 213、抛物线x2= 4y的焦点坐标 .................................. ()A、(0, 1)B、(0, —1)C、(—1, 0)D、(1, 0)14、二次函数y= — lx2—3x—5的顶点坐标是..................... ()2 2A、(3, 2)B、(—3, -2)C、(—3, 2)D、(3, -2)15、已知直线a//b,b平面M,下列结论中正确的是.................. ()A、a //平面MB、a //平面M或a平面MC、a平面MD、以上都不对16、若人={1、2、3、4}, B={0、2、4、6、},则AB为.............. ()A、{2}B、{0、1、2、3、4、6}C、{2、4、6}D、{2、4}17、下列关系不成立是 .......................................... ()A、a>b a+c>b+cB、a>b ac>bcC、a>b 且b>c a>cD、a>b 且c>d a+c>b+d18、下列函数是偶函数的是 ...................................... ()A、Y=X3B、Y=X2C、Y=SinXD、Y=X+119、斜率为2,在Y轴的截距为1的直线方程为..................... ()A、2X+Y 1=0B、2X Y 1=0C、2X Y+1=0D、2X+Y+1=020、圆X2+Y2+4X=0的圆心坐标和半径分别是.............................. ()A、(2, 0), 2B、(2, 0), 4C、(2, 0), 2D、(2, 0), 421、若一条直线与平面平行,则应符合下列条件中的................ ()A、这条直线与平面内的一条直线不相交B、这条直线与平面内的二条相交直线不相交C、这条直线与平面内的无数条直线都不相交D、这条直线与平面内的任何一条直线都不相交22、2与8的等比中项是......................................... ()A、5B、±6C、4D、乜23、由1、2、3、4、5可以组成没有重复数字的三位数个数为 ........ ()「3 3 3 3A、C 5B、P 二C、5D、3524、函数y sin (2x 6)的周期是.............................. ()A、2B、C、万D、625、把32=9改写成对数形式为.................................... (.............................................................. )A、log 32=9B、log 23=9C、log39=2D、log 93=226、下列关系中,正确的是 ..................................... ()A、{1,2} {1,2, 3,}B、0 6 {1,2, 3}C、©{1,2, 3}D、© = {0}27、下列函数中,偶函数的是 ..........................................A、y = xB、y = x2 + xC、y = log a xD、x4+128、函数y J6 5x x2的定义域为A、(—6,1)B、(—00, — 6) U [1, +00]C、[ — 6,1]D、R 29、下列不等式恒成立的是••・A、a—b>yabB、a b c>yObCC、a2+b2n2abD、/Ob >a+b2 330、AB BC CD DA 等于.............................................. ( )f A> AD B> BD C、AC D、031、log a b中,a、b满足的关系是................................. ( )A、a>0, b>0B、a>0 且a?1, b6RC、a6R, b>0 且b#1D、a>0 且a?1, b>032、数列2,5, 8, 11,…中第20项减去第10项等于................. ( )A、30B、27C、33D、3633、过点(1,0)、(0,1)的直线的倾斜角为........................... ( )A、30B、45C、135D、120 34、异面直线所成角的范围是…A、(0 ,90 )B、(0,万)C、[0, -]D、[0 ,90 ]35、圆心为(1,1),半径为我的圆的方程为........................... ( )A、(x+ 1) 2 (y+1) 2=2B、(x-1) 2 (y-1) 2=2C、x2+y2 = 4D、x2 + 2x+y2 + 2y —6 = 0 36、集合{a, b, c}的所有子集的个数为•一A、5B、6C、7D、837、绝对值不等式|2 - x | < 3的解集是 ...................... ()A、(-1,5)B、(-5,1)C、(- ,-1) U(5,+ )D、(- ,-5) U(1,+ )38、函数y = log a x (0<a<1)及y = a x (a >1)的图象分别经过点.... ( )A、(0 , - 1) , (1 , 0 )B、(- 1 , 0) , (0 ,1)C、(0 , 1) , (1 , 0 )D、(1 ,0),(0 , 1)Word资料.2248、双曲线上2591的焦点坐标为39、给出下列四个函数:①f (x) = -2 x 2 ,②f (x) = x 3- x ,③f (x)=」^,④f (x) =3x+1其中奇函数是 ............................. ()1 xA 、②B 、②④C 、①③D 、④40、已知sin % cos % <0,则角的终边所在的象限是 ............ () A 、第1,2象限B 、第2, 3象限 C 、第2, 4象限 D 、第3, 4象限 41、由数字1,2,3,4,5,6可以组成没有重复数字的3位数的个数是…( )A 、C 3B 、P 63C 、36D 、6342、已知 A={1 , 3, 5, 7} B={2, 3, 4, 5},贝U A B 为 ........... ( )A 、{1, 3, 5, 7}B 、{2, 3, 4, 5}C 、{1, 2, 3, 4, 5, 7}D 、{3, 5}x x43、函数y e 2e ,则此函数为 .................................... ()A 、奇函数B 、偶函数C 、既是奇函数,又是偶函数D 、非奇非偶函数44、经过A(2,3)、B(4, 7)的直线方程为 .......................... ( )A 、2x y 7 0B 、2x y 1 0C 、2x y 1 0D 、x 2y 3 045、等差数列中a 1 2,a 20 40 ,则a § a 46的值为 ......................... ( )A 、100B 、101C 、102D 、10346、a 、b 为任意非零实数且a<b,则下列表达式成立的是•一47、若sina<0 , tana>0 ,贝U a 的终边落在A 、第一象限B 、第二象限C 、第三象限D 、第四象限A 、a 1B 、|a b D 、 (;)a g )bA、(0, 4)B、( 4, 0)C、(布,0)D、(0,南)49、若3m2,则log36的值为......................................... ( )A、mB、3mC、m+1D、m-150、点A(2,1)到直线x 2y 3 0的距离为............................. ( )A、7B、7C、逋D、上35 3 5 5二、填空题:1、已知角的终边上有一点P (3, —4),则cos的值为。

职高数学试题及答案

职高数学试题及答案

1.如果log3m+log3n=4,那么m+n的最小值是( )A.4B.4C.9D.182.数列{a n}的通项为a n=2n-1,n∈N*,其前n项和为S n,则使S n>48成立的n的最小值为( )A.7B.8C.9D.103.若不等式|8x+9|<7和不等式ax2+bx-2>0的解集相同,则a、b的值为( )A.a=-8 b=-10B.a=-4 b=-9C.a=-1 b=9D.a=-1 b=24.△ABC中,若c=2a cosB,则△ABC的形状为( )A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形5.在首项为21,公比为的等比数列中,最接近1的项是( )A.第三项B.第四项C.第五项D.第六项6.在等比数列中,,则等于( )A. B. C.或 D.-或-7.△ABC中,已知(a+b+c)(b+c-a)=bx,则A的度数等于( )A.120°B.60°C.150°D.30°8.数列{a n}中,a1=15,3a n+1=3a n-2(n∈N*),则该数列中相邻两项的乘积是负数的是( )A.a21a22B.a22a23C.a23a24D.a24a259.某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )A.1.14B.1.15C.10×(1.16-1)D.11×(1.15-1)10.已知钝角△ABC的最长边为2,其余两边的长为a、b,则集合P={(x,y)|x=a,y=b}所表示的平面图形面积等于( )A.2B.π-2C.4D.4π-211.在R上定义运算,若不等式对任意实数x成立,则( )A.-1<a<1B.0<a<2C.-<a<D.-<a<12.设a>0,b>0,则以下不等式中不恒成立的是( )A. B.C. D.二、填空题(本题共4小题,每小题4分,共16分,请把正确答案写在横线上)13.在△ABC中,已知BC=12,A=60°,B=45°,则AC=____.14.设变量x、y满足约束条件,则z=2x-3y的最大值为____.15.《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使较多的三份之和的是较少的两份之和,则最少1份的个数是____.16.设,则数列{b n}的通项公式为____.三、解答题(本题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题12分)△ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且.(1)求∠B的大小;(2)若a=4,S=5,求b的值.18.(本小题12分)已知等差数列{a n}的前四项和为10,且a2,a3,a7成等比数列.(1)求通项公式a n;(2)设,求数列b n的前n项和.19.(本小题12分)在北京故宫的四个角上各矗立着一座角楼,设线段AB表示角楼的高(如图),在点A(A点不能到达)所在的水平面内取C,D两点(A,C,D不共线),设计一个测量方案,包括:①指出需要测量的数据(请考生自己作图并在图中标出);②用文字和公式写出计算AB的步骤.20.(本小题12分)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).(I)将总费用y表示为x的函数;(II)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.21.(本小题12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?22.(本小题14分)设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为f(n)(n∈N*).(1)求f(1),f(2)的值及f(n)的表达式;(2)记,试比较与的大小;若对于一切的正整数n,总有成立,求实数m的取值范围;(3)设为数列的前n项的和,其中,问是否存在正整数n,t,使成立?若存在,求出正整数n,t;若不存在,说明理由.参考答案1.D2.A3.B4.B5.C6.C7.A8.C9.D 10.B 11.C 12.B13.414.2 15.10 16.17.(1)由(2分),∴2sinAcosB=-sin(B+C)2sinAcosB=-sinA(4分),又0<B<π,∴.(6分)(2)由a=4,S=5有.(9分).(12分)18.(1)由题意知(2分),(4分)所以或.(5分)(2)当时,数列是首项为、公比为8的等比数列,所以.(8分)当时,,所以.(11分)综上,所以.(12分)19.如图.(1)测出∠ADC=α,∠ACD=β及CD的长;在D点测出点B的仰角φ.(4分)(2)在△ACD中,由正弦定理,求出AD.(8分)(3)在△ABD中,AB=ADtanφ.(12分)20.解:(I)设矩形的另一边长为am.则y=45x+180(x-2)+180·2a=225x+360a-360.(3分)由已知,得,(5分)所以.(6分)(II)∵x>0,∴.(8分)∴.当且仅当,即x=24m时,等号成立.(10分) 答:当x=24m时,修建围墙的总费用最小,最小总费用是10440元.(12分)21.解:,设z=x+0.5y,当时,z取最大值7万元.22.(1)f(1)=3,f(2)=6.当x=1时,y取值为1,2,3,…,2n,共有2n个格点,当x=2时,y取值为1,2,3,…,n,共有n个格点,∴f(n)=n+2n=3n.(2分)(2).(4分)当n=1,2时,T n+1≥T n,当n≥3时,,(6分)∴n=1时,T1=9,n=2时,,n≥4时,,∴中的最大值为.(8分)要使对于一切的正整数n恒成立,只需,∴.(9分) (3).(10分)将代入,化简得,.(*)(11分)若t=1时,即,显然n=1.若t>1时式化简为不可能成立.(13分)综上,存在正整数n=1,t=1使成立.(14分)。

中职升高职数学试题及答案(1--5套)

中职升高职数学试题及答案(1--5套)

中职升高职数学试题及答案(1--5套)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( )A. ()2f x x =B.2()f x x =-C. ()2x f x =D. 2()log f x x = 4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )A.25、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( ) A. 80 C. 26 D. -266、下列向量中与向量(1,2)a =垂直的是( ) A. (1,2)b = B.(1,2)b =- C. (2,1)b = D. (2,1)b =-7、直线10x y -+=的倾斜角的度数是( ) A. 60︒ B. 30︒ C.45︒ D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________10、函数22()log (56)f x x x =--的定义域为_______________________ 11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

中考中职数学试卷及答案

中考中职数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. 3.14159C. √9D. √252. 下列各式中,正确的是()A. 2x + 3y = 5B. 2(x + 3) = 2x + 9C. (2x + 3)² = 4x² + 6x + 9D. (2x - 3)² = 4x² - 6x + 93. 若a > 0,则下列不等式中正确的是()A. a² > 0B. a³ > 0C. a⁴ > 0D. a⁵ > 04. 在直角坐标系中,点A(-2,3)关于原点对称的点是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)5. 若函数f(x) = 2x + 1,则f(-3)的值为()A. -5B. -7C. 5D. 76. 下列各式中,分母有理化的正确方法是()A. √3/√2 √2/√2 = √6/2B. √3/√2 √2/√3 = √6/2C. √3/√2 √3/√3 = 3/2D. √3/√2 √2/√3 = 3/27. 下列各式中,完全平方公式正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²8. 若等腰三角形底边长为4,腰长为5,则该三角形的面积为()A. 10B. 12C. 16D. 209. 下列各式中,勾股定理正确的是()A. a² + b² = c²B. a² + c² = b²C. b² + c² = a²D. a² - b² = c²10. 若x² - 4x + 3 = 0,则x的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若a² = 9,则a的值为_________。

(完整版)中职数学试题集

(完整版)中职数学试题集

沈阳支点教育数学试题集第一章:集合一、填空题1、元素3与集合N之间的关系可以表示为______________________ 。

2、自然数集N与整数集Z之间的关系可以表示为________________________3、用列举法表示小于5的自然数组成的集合:_______________________ 。

4、用列举法表示方程3x 4 2的解集___________________________ o5、用描述法表示不等式2x 6 0的解集_____________________ o&集合N a,b子集有___________ 个,真子集有_______ 个。

7、已知集合A 1,2,3,4,集合B 1,3,5,7,,则A B8、已知集合A 1,3,5,集合B 2,4,6,则A B9、已知集合A x 2 x 2,集合B x0 x 4,则A B _________________________10、____________________________________________________________ 已知全集U 1,2,3,4,5,6,集合 A 1,2,5,则C U A __________________________ 。

二、选择题1、设M a,则下列写法正确的是()oA. B.a M C. a M D.a2、设全集为R,集合A1,5,则C U AA. B. 5, C. , 1 5, D. ,1 5,3、已知A1,4,集合0,5,则AA. 1,5B. 0,4C.0,4D. 1,54、已知A XX 2,则下列写法正确的是A. B. 0 A C. A D.5、设全集U 0,1,2,3,4,5,6,集合A 3,4,5,6,则[U A (1,2,3,4,5,集合 B 4,5,6,7,8,9 ,2、设集合M a,b,c ,试写出M 的所有子集,并指出其中的真子集。

3、设集合 A x 1 x 2 , B x0 x 3,求 A B 。

职业高中考试试卷数学

职业高中考试试卷数学

职业高中考试试卷数学职业高中数学考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x + 5 > 10的解集?A. x > 1B. x < 1C. x > -1D. x < -12. 函数f(x) = 3x^2 - 2x + 1的顶点坐标是?A. (1, -2)B. (1, 0)C. (-1, 2)D. (-1, 0)3. 圆的标准方程为(x - a)^2 + (y - b)^2 = r^2,其中(a, b)是圆心坐标,r是半径。

若圆心在(0, 0),半径为1,求圆的方程。

A. x^2 + y^2 = 1B. x^2 + y^2 = 2C. (x - 1)^2 + y^2 = 1D. (x + 1)^2 + y^2 = 14. 若sinθ = 3/5,且θ在第一象限,求cosθ的值。

A. 4/5B. -4/5C. 3/5D. -3/55. 已知等差数列的前三项分别为3, 7, 11,求第10项的值。

A. 33B. 31C. 29D. 276. 已知三角形ABC的三边长分别为3, 4, 5,求三角形的面积。

A. 6B. 9C. 12D. 157. 抛物线y = ax^2 + bx + c的焦点坐标为(0, -1),求a的值。

A. 1/4B. 1/2C. 2D. 48. 函数y = ln(x)的定义域是?A. x > 0B. x < 0C. x ≥ 0D. x ≤ 09. 已知向量\( \vec{a} \)和\( \vec{b} \)的夹角为90度,求它们的点积。

A. 0B. 1C. -1D. 不确定10. 一个圆的内接矩形的对角线长度为10,求该圆的直径。

A. 5B. 7.07C. 10D. 14.14二、填空题(每题4分,共20分)11. 计算\( 2^3 + 4 \times 5 - 3 \)的结果是______。

12. 已知\( \sin 45° = \frac{\sqrt{2}}{2} \),求\( \cos 45° \)的值。

职高中职数学基础模块(上册)题库完整

职高中职数学基础模块(上册)题库完整

职⾼中职数学基础模块(上册)题库完整集合测试题⼀选择题:本⼤题共12⼩题,每⼩题4分,共48分。

在每⼩题给出的四个选项中只有⼀项是符合题⽬要求,把正确选项写在表格中。

1.给出四个结论:①{1,2,3,1}是由4个元素组成的集合②集合{1}表⽰仅由⼀个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④集合{⼤于3的⽆理数}是⼀个有限集其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最⼤的正数B.最⼩的整数C. 平⽅等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( );A.{0,1,2,3,4}B.φC.{0,3}D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ?D.N M ?7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( ); A.B B A = B.φ=B A C.B A ? D.B A ?8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<B.{}42≤≤x xC.{}42<,6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件② x≠2是022≠--x x 的必要条件③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满⾜条件的集合M M ,4,3,2,12,1??( ). A.1个 B.2个 C.3个 D.4个⼆填空题:本⼤题共6⼩题,每⼩题4分,共24分. 把答案填在题中横线上.1.⽤列举法表⽰集合{}=<<-∈42x Z x ; 2.⽤描述法表⽰集合{}=10,8,6,4,2 ; 3.{m,n }的真⼦集共3个,它们是 ;4.如果⼀个集合恰由5个元素组成,它的真⼦集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的条件.三解答题:本⼤题共4⼩题,每⼩题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且数a 组成的集合M.⾼职班数学《不等式》测试题班级座号分数⼀.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表⽰为___ ______ ;3. | x3|>1解集的区间表⽰为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩B = ,A∪B = .5.不等式x2>2 x的解集为_______ _____;不等式2x2 -3x-2<0的解集为________________.6. 当X 时,代数式 + 2x + x 2) 有意义.+ 2x + x 2)⼆.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。

中职数学练习题.pdf

中职数学练习题.pdf

m2复习题1一、选择题:每小题7分,共84分。

1.若5,3,1,3,2,1BA ,则BA ()A.1B.3,1 C.5,2 D.5,3,2,1 2.若2m,集合1|x x A ,则有()A.A mB.A mC.A mD.Am 3.集合b a A,cb B,,则BA A.ba, B.cb , C.cb a ,, Dca, 4.不等式51x的解集为()A.5,5 B.6,4 C.6,4 D.,64, 5.若5,3,1,5,4,3,2,1AU ,则AC U ()A. B4,2 C.5,3,1 D.5,4,3,2,1 6.若02:;1:2x x q x p 则p 是q 的()条件A.充分非必要 B.必要非充分 C.充分 D.非充分非必要7.不等式02322x x的解集是()A.),21(2, B.,321, C.21,2 D.2,21 8.集合3|,4,3,2,1xx BA ,则BA ()A.3|x x B.3,2,1 C.31|x x D.4,3,2 9.若2,1,2,3mB A,且A B,则m()A. 1B.1 C.1 D.以上均不对10.若无实数根的方程关于03|mx m A 2xx ,B 集合如图所示,则B A ( )A. B.,49 C.2,D.492, 11.不等式02b ax x的解集为3,1,则ba ,的值分别为( )A.1,3 B.2,3C.2,-3D.3,-112.集合13|,1|2x x B xx A,则下列结论正确的是( )A.AB A B.A B A C.RB A D.BC A C R R二、填空题:每小题7分,共42分 13.3,1,3|B xN x A ,则BA 。

14.不等式x x42的解集为。

15.设R U,集合1|x x A,则AC U。

16.若,01:;1:x x q x p 则q 是p 的条件(必要,充分,充要)。

17.若82)(2x xx f ,在0)(x f 时,x 的取值范围是。

职校数学试题及答案

职校数学试题及答案

职校数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -5答案:C2. 函数y=x^2+2x+1的顶点坐标是?A. (-1, 0)B. (1, 0)C. (-1, 2)D. (1, 2)答案:C3. 以下哪个选项是等差数列?A. 2, 4, 6, 8B. 2, 4, 8, 16C. 3, 6, 9, 12D. 1, 2, 4, 8答案:A4. 圆的面积公式是?A. πr^2B. 2πrC. πrD. πr^35. 以下哪个是二次函数?A. y = 3x + 2B. y = x^2 - 4x + 4C. y = x^3 + 2x^2 - 5D. y = 5答案:B6. 以下哪个是不等式?A. x + 3 = 7B. x^2 - 4x + 3 > 0C. 2x - 5D. y = 2x答案:B7. 以下哪个是复数?A. 3 + 4iB. -2C. √2D. 0.5答案:A8. 以下哪个是三角函数?A. sin(x)B. log(x)C. tan(x)D. exp(x)答案:A9. 以下哪个是向量?B. 2x + 3C. √3D. π答案:A10. 以下哪个是矩阵?A. [1, 2; 3, 4]B. 2x + 3C. (3, 4)D. √2答案:A二、填空题(每题4分,共20分)11. 圆的周长公式是 ________。

答案:2πr12. 等差数列的通项公式是 ________。

答案:a_n = a_1 + (n-1)d13. 函数y=f(x)的反函数表示为 ________。

答案:f^(-1)(x)14. 二项式定理的展开式中,(x+y)^n的第r+1项是 ________。

答案:C(n, r) * x^(n-r) * y^r15. 向量(a, b)与(c, d)的点积是 ________。

答案:ac + bd三、解答题(每题10分,共50分)16. 解方程:2x - 3 = 7。

职高(中职)数学(基础模块)上册题库

职高(中职)数学(基础模块)上册题库

中职数学 集合测试题一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ⊂D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( );A.B B A =B.φ=B AC.B A ⊃D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x x D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合{}=<<-∈42x Z x ; 2.用描述法表示集合{}=10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.高职班数学 《不等式》测试题班级 座号 姓名 分数一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x3|>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2-3x -2<0的解集为________________.6. 当X 时,代数式 有意义.二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。

中职升高职数学试题及答案(1--5套)

中职升高职数学试题及答案(1--5套)

中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)1、设集合,,,则()A. B. C. D.2、命题甲:,命题乙:,甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D既不充分又不必要条件3、下列各函数中偶函数为()A. B. C. D.4、若,,则的值为()A. B. C. D.5、已知等数比列,首项,公比,则前4项和等于()A. 80B.81C. 26D. -266、下列向量中与向量垂直的是()A. B. C. D. 7、直线的倾斜角的度数是( )A. B. C. D.8、如果直线和直线没有公共点,那么与()A. 共面B.平行C. 是异面直线 D可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在中,已知AC=8,AB=3,则BC的长为_________________10、函数的定义域为_______________________11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、的展开式中含的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 B A B C A D C D二、填空题(本大题共4小题,每小题4分,共16分)9. 710. ,也可以写成或11.12. 84中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)1、设全集,,,则等于()A. B. C. D.2、设命题甲:,命题乙:,甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D既不充分又不必要条件3、设,下列不等式正确的是()A. B. C. D.4、若,是第二象限角,则的值为()A. B. C. D.5、下列直线中与平行的是()A. B. C. D.6、一条直线和两条异面直线中的一条平行,则它与另一条直线的位置关系是()A. 平行B.相交C. 异面D.相交或异面7、下列函数中,定义域为R的函数是()A. B. C. D.8、抛物线的准线方程为()A. B. C. D.二、填空题(本大题共4小题,每小题4分,共16分)9、若向量,且,则等于___________________10、一名教师与4名学生随机站成一排,教师恰好站在中间位置的概率为____________11、已知数列为等比数列,,,则________________12、直二面角内一点S,S到两个半平面的距离分别是3和4,则S到的距离为_________________参考答案中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

职高数学练习题推荐

职高数学练习题推荐

职高数学练习题推荐一、代数部分1. 计算下列各式:(1) 3x 5 + 2x^2 4x + 7(2) (4x 3)(2x + 5)(3) (a + b)^2 (a b)^22. 解下列方程:(1) 2x 5 = 3(x + 1)(2) 5x^2 3x 2 = 0(3) |x 2| = 33. 化简下列分式:(1) $\frac{2x^2 4x}{x^2 2x}$(2) $\frac{x^2 9}{x^2 + 6x + 9}$二、几何部分1. 已知三角形ABC中,AB=5,BC=8,AC=10,求三角形ABC的面积。

2. 在直角坐标系中,点A(2,3)到直线y=2x+1的距离是多少?3. 证明:等腰三角形的底角相等。

三、概率与统计部分1. 从1到100的整数中随机抽取一个数,求这个数是3的倍数的概率。

2. 已知一组数据的平均数为50,方差为25,求这组数据中大于60的数的概率。

3. 某班有50名学生,其中男生30名,女生20名。

随机抽取5名学生,求至少有3名女生的概率。

四、函数与极限部分1. 求下列函数的定义域:(1) $f(x) = \sqrt{x^2 4}$(2) $g(x) = \frac{1}{x 3}$2. 已知函数$f(x) = 2x^3 3x^2 + x 1$,求$f'(x)$。

3. 计算极限$\lim_{x \to 0} \frac{\sin x}{x}$。

五、综合应用题1. 一辆汽车以60km/h的速度行驶,行驶过程中突然遇到紧急情况,需要立即刹车。

已知刹车过程中,汽车的平均加速度为5m/s^2,求汽车在停止前行驶的距离。

2. 某企业生产一种产品,固定成本为10000元,每生产一件产品的变动成本为200元。

已知该产品的市场价格为500元,求该企业至少生产多少件产品才能盈利。

3. 在一个长方体水池中,长、宽、高分别为10m、8m、6m。

现将水池装满水,然后将一个体积为24m^3的实心球放入水池中,求球没入水中的体积。

(完整版)中职数学练习题详解

(完整版)中职数学练习题详解

复习题1一、选择题:每小题7分,共84分。

1.若A 1,2,3,B 1,3,5,则A B ()A. 1B. 1,3C. 2,5D. 1,2,3,52.若m 2,集合A x | x 1 ,则有()A. m AB. m AC. m AD. m A3.集合A a, b B b, c,则A BA. a,bB. b,cC. a,b,c D a,c4.不等式x 1 5的解集为()A. 5,5B. 4,6C. 4,6D.,4 6,5.若U 1,2,3,4,5,A 1,3,5,则C d A ()A. B 2,4 C.1,3,5 D.1,23456.若P:X 1;q:2x x 2 0则p是q的()条件A.充分非必要B.必要非充分C.充分D.非充分非必要7.不等式2x 3x 2 0的解集是()A.2 (丄,)B. , 1 32 21 1 cC. 2,—D. -,22 28. 集合A 1,2,3,4 , B x | x 3 则A B ()A.x|x 3 B. 1,2,3 C. x|1 x 3 D. 2,3,49. 若A 23, 2,1 , B m ,且B A,则m ()A.1 B. 1 C. 1 D. 以上均不对10. 若A m |关于x的方程x23x m 0无头数根,1 _ ■■口住人4m冏v-A B / \0 2 = B集合如图所小,则尺D ()9 c 9A B. 一, C.D. 2,4 411. 不等式 2x ax b 0的解集为1,3,则a,b的值分别为()A. 1,3B. 2,3C.2,-3D.3 ,-112. 集合A x| x21, B x| x31,则下列结论正确的是()A.A B A B. ABAC. A B RD.C R A C R B、填空题:每小题7分,共4 2分13. A X N |x 3,B 1,3,则A B14. 不等式X24x的解集为。

15. 设U R,集合A 20. ( 12分)解不等式组:2x 1 3x 1 1x -2 3C U A16. 若p: X 充分,充要)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

职高(中职)数学题库一、选择题:1、集合{1,2,3}的所有子集的个数是……………………………………( )A 、3个B 、6个C 、7个D 、8个2、已知sin α·cos α>0,且cos α·tan α<0,则角α所在的象限是…( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、不等式4-x 2<0的解集是………………………………………………( )A 、{}22-<>x x x 且B 、{}22-<>x x x 或C 、{}22<<x x -D 、{}2±<x x4、把42=16改写成对数形式为……………………………………………( )A 、log 42=16B 、log 24=16C 、log 164=2D 、log 416=25、圆心在(2,-1),半径为5的圆方程是………………………………( )A 、(x +2)2+(y -1)2=5B 、(x -2)2+(y +1)2=5C 、(x +2)2+(y +1)2=5D 、(x -2)2+(y +1)2=56、函数y =51cos (2x -3)的最大值……………………………………( )A 、51B 、-51 C 、1 D 、-17、下列各对数值比较,正确的是…………………………………………( )A 、33>34B 、1.13>1.13.1C 、2-2>2-1D 、30.3>30.48、下列函数在(-∞,+∞)上是增函数的是…………………………( )A 、y =x 2+1B 、y =-x 2C 、y =3xD 、y =sinx9、直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +a 2-1=0平行,则a等于………………………………………………………………………( )A 、2B 、-1C 、-1或2D 、0或110、已知等差数列{a n },若a 1+a 2+a 3=10,a 4+a 5+a 6=10,则公差d 为……………………………………………………………………………( )A 、41B 、31C 、2D 、311、六个人排成两排,每排三人,则不同的排法有………………………() A 、120种 B 、126种 C 、240种 D 、720种12、在△ABC 中,设D 为BC 边的中点,则向量AD 等于………………() A 、AB +AC B 、AB -ACC 、21(AB +AC )D 、21(AB -AC )13、抛物线x 2=4y 的焦点坐标……………………………………………() A 、(0,1) B 、(0,-1) C 、(-1,0) D 、(1,0)14、二次函数y =-21x 2-3x -25的顶点坐标是…………………………() A 、(3,2) B 、(-3,-2) C 、(-3,2) D 、(3,-2)15、已知直线a ∥b ,b ⊂平面M ,下列结论中正确的是…………………() A 、a ∥平面M B 、a ∥平面M 或a ⊂平面MC 、a ⊂平面MD 、以上都不对16、若A={1、2、3、4},B={0、2、4、6、},则A B 为………………() A 、{2} B 、{0、1、2、3、4、6} C 、{2、4、6} D 、{2、4}17、下列关系不成立是……………………………………………………() A 、a>b ⇔a+c>b+c B 、a>b ⇔ac>bcC 、a>b 且b>c ⇔a>cD 、a>b 且c>d ⇔a+c>b+d18、下列函数是偶函数的是………………………………………………()A 、Y=X 3B 、Y=X 2C 、Y=SinXD 、Y=X+119、斜率为2,在Y 轴的截距为-1的直线方程为………………………( )A 、2X+Y -1=0B 、2X -Y -1=0C 、2X -Y+1=0D 、2X+Y+1=020、圆X 2+Y 2+4X=0的圆心坐标和半径分别是……………………………( )A 、(-2,0),2B 、(-2,0),4C 、(2,0),2D 、(2,0),421、若一条直线与平面平行,则应符合下列条件中的………………( )A 、这条直线与平面的一条直线不相交B 、这条直线与平面的二条相交直线不相交C 、这条直线与平面的无数条直线都不相交D 、这条直线与平面的任何一条直线都不相交22、2与8的等比中项是……………………………………………………( )A 、5B 、±16C 、4D 、±423、由1、2、3、4、5可以组成没有重复数字的三位数个数为………( )A 、B 、C 、53D 、33 24、函数 的周期是……………………………………( )A 、2πB 、πC 、D 、6π 25、把32=9改写成对数形式为……………………………………………( )A 、log 32=9B 、log 23=9C 、log 39=2D 、log 93=226、下列关系中,正确的是………………………………………………( )A 、{1,2}∈{1,2,3,}B 、φ∈{1,2,3}53C 53P 2π)62(sin y π+=xC 、 φ⊂{1,2,3}D 、 φ={0}27、下列函数中,偶函数的是………………………………………………( )A 、y =xB 、y =x 2+xC 、y =log a xD 、x 4+128、函数256x x y --=的定义域为………………………………………( )A 、(-6,1)B 、(-∞,-6)∪[1,+∞]C 、[-6,1]D 、R29、下列不等式恒成立的是………………………………………………( )A 、2b a +≥abB 、3c b a ++≥3abc C 、a 2+b 2≥2ab D 、ab >a +b 30、DA CD BC AB +++等于………………………………………………( )A 、ADB 、BDC 、ACD 、031、log a b 中,a 、b 满足的关系是………………………………………() A 、a >0,b >0 B 、a >0且a ≠1,b ∈RC 、a ∈R ,b >0且b ≠1D 、a >0且a ≠1,b >032、数列2,5,8,11,…中第20项减去第10项等于……………………() A 、30 B 、27 C 、33 D 、3633、过点(1,0)、(0,1)的直线的倾斜角为………………………………() A 、30° B 、45° C 、135° D 、120°34、异面直线所成角的围是……………………………………………() A 、(0°,90°) B 、(0,2π) C 、[0,2π] D 、[0°,90°]35、圆心为(1,1),半径为2的圆的方程为………………………………( )A 、(x +1)2(y +1)2=2B 、(x -1)2(y -1)2=2C 、x 2+y 2=4D 、x 2+2x +y 2+2y -6=036、集合{a,b,c}的所有子集的个数为………………………() A 、5 B 、6 C 、7 D 、837、绝对值不等式|2 – x | < 3的解集是……………………………() A 、(-1,5) B 、(-5,1) C 、(-∞,-1)∪(5,+∞) D 、(-∞,-5)∪(1,+∞)38、 函数y = log a x (0<a<1) 及y = a x (a >1)的图象分别经过点……( )A 、(0 , - 1) , (1 , 0 )B 、(- 1 , 0) , (0 ,1)C 、(0 , 1) , (1 , 0 )D 、(1 ,0),(0 , 1)39、给出下列四个函数:①f (x )= -2 x 2 , ②f (x )= x 3 – x ,③f (x )=211x +,④f (x )=3x+1其中奇函数是………………………………( )A 、②B 、②④C 、①③D 、④40、已知sin αcos α<0, 则角的终边所在的象限是………………() A 、第1,2象限 B 、第2,3象限 C 、第2,4象限 D 、第3,4象限41、由数字1,2,3,4,5,6可以组成没有重复数字的3位数的个数是…( )A 、36CB 、36PC 、63D 、3642、已知A={1,3,5,7} B={2,3,4,5},则B A 为…………………( )A 、{1,3,5,7}B 、{2,3,4,5}C 、{1,2,3,4,5,7}D 、{3,5}43、函数2xx e e y --=,则此函数为………………………………………( ) A 、奇函数 B 、偶函数C 、既是奇函数,又是偶函数D 、非奇非偶函数44、经过A (2,3)、B (4,7)的直线方程为………………………………( )A 、072=-+y xB 、012=+-y xC 、012=--y xD 、032=+-y x45、等差数列中21=a ,4020=a ,则465a a +的值为……………………( )A 、100B 、101C 、102D 、10346、a 、b 为任意非零实数且a<b ,则下列表达式成立的是…………( )A 、1<b aB 、b a <C 、b a 11>D 、b a )31()31(>47、若sina<0,tana>0 ,则a 的终边落在………………………………( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限48、双曲线192522=-y x 的焦点坐标为………………………………………( ) A 、(0,4±) B 、(4±,0) C 、(34±,0) D 、(0,34±)49、若23=m ,则6log 3的值为………………………………………………( )A 、mB 、3mC 、m+1D 、m-150、点A (2,1)到直线032=++y x 的距离为………………………………( )A 、57B 、37C 、557 D 、 537 二、填空题:1、已知角α的终边上有一点P (3,-4),则cos α的值为 。

2、已知等比数列{a n }中,a 1=2,a 2=22,则a 6等于 。

3、过A (2,0),B (-1,3)两点的直线方程为 。

4、sin12°cos48°+cos12°sin48°= 。

相关文档
最新文档