初中竞赛2

合集下载

第九届“睿达杯” 初中生数学能力竞赛(八年级 第二试)试题

第九届“睿达杯” 初中生数学能力竞赛(八年级 第二试)试题

第九届“睿达杯”初中生数学能力竞赛试题卷八年级 第二试 时间120分钟 满分150分一、填空(本大题共18小题20空,每空6分,共120分)1. 计算:2222201720171...331221111++++++++=___2. 已知三角形的三边长均为整数,其中有一条边是3,但不是最短边,这样的三角形有___个3. 如图,AB=BC 1=C 1C 2=C 2C 3=...=C n-1C n =1(n>2),1BC AB ⊥,211C C AC ⊥,322C C AC ⊥,...,n n n C C AC 11--⊥, 则n AC =___.4.如图,在长方形ABCD 中,点E. F 分别在CD 、AB 上,AB=8cm,BC=5cm,将长方形ABCD 沿EF 折叠成如图所示,则整个阴影部分图形的周长为___.5.已知直线y=-2x-2分别与x 轴、y 轴交于A 、B 两点,O 为坐标原点。

在直线x=2上找一点P ,使得ΔPAB 与ΔOAB 面积相等,则符合条件的点P 的坐标为___.6.若锐角三角形中有两边之比为1:2,那么这两边的夹角α的取值范围是___.7.已知m 是整数,方程组⎩⎨⎧=+=-25663my x y x 有正整数,则m 的值为___. 8.满足222)()1()1(y x y x +=-+-的有序数对(x,y )有___ 对。

9.如图,△BEF 的内角∠EBF 平分线BD 与外角∠AEF 的平分线交于点D,过D 作DH ∥BC 分别交EF 、EB 于G 、H 两点。

下列结论:①HD=HB;②∠EFD=∠CFD;③HD=HF;④BH −GF=HG,其中正确的结论是___.10. 若三角形的三条高线的长度分别为6、18、h,其中h 为正整数,则h 的最大值为___.11. 若在有一个为90°的凸n 边形(n 为大于3的自然数)中,最多有M 个内角为锐角,最少有m 个内角为锐角,则M+m=___.12. 如果,32,41,2532≤-≤+=-y x y x 那么xy=___.13. 在ΔABC 中,AB=13,BC=10,CA=29,则ΔABC 的面积为___.14. 多项式6522++-++y x by axy x 的一个因式是x+y-2,则a+b 的值为___.15. 已知ΔABC 的一个顶点为A (4,-2),∠B 被y 轴平分,∠C 被直线y=x 平分,则直线BC 的解析式是___.16. 从1开始的自然数中,把能表示成两个整数的平方差的数从小到大排列成一列,则在这列数中,第2017个数是___.17.如图,在四边形ABCD 中,AD=BD,AD ⊥BD,AC ⊥BC,若CD=1,BC=2,则AC=___ ;四边形ABCD 的面积为___.18.已知关于x 的方程kx+3=221++-x x ,当k=-2时,原方程的解为___.若方程有两个解,则k 的取值范围为___.二、解答题(本大题共2小题,每题15分,共30分)19.如图,已知线段AB=12,点P 为线段AB 上一点,以AP 为边作一正方形APMN ,点Q 在BP 的中垂线上,连接MQ 、PQ ,(1)当AP=3时,求△MPQ 周长的最小值;(2)求△MPQ 的面积的最大值。

初中数学竞赛资料第二辑专题13 三角形的基本知识

初中数学竞赛资料第二辑专题13 三角形的基本知识

专题13三角形的基本知识阅读与思考三角形是最基本的几何图形,是研究复杂几何图形的基础,许多几何问题都可转化为三角形的问题来解.三角形基本知识主要包括三角形基本概念、三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段和角度的计算、图形的计数等方面有广泛的应用.解与三角形的基本知识相关的问题时,常用到数形结合及分类讨论法,即用代数方法解几何计算题及简单的证明题,对三角形按边或按角进行恰当分类.应熟悉以下基本图形:例题与求解【例1】在△ABC中,∠A=50°,高BE,CF交于O,则∠BOC=________.(“东方航空杯”——上海市竞赛试题)解题思路:因三角形的高不一定在三角形内部,故应注意符合题设条件的图形多样性.【例2】等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形底边的长为()A.17cmB.5cmC.5cm或17cmD.无法确定(北京市竞赛试题)解题思路:中线所分两部分不等的原因在于等腰三角形的腰与底的不等,应分情况讨论.【例3】如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC =140°,∠BGC =110°,求∠A 的大小.(“希望杯”邀请赛试题)解题思路:运用凹四边形的性质计算.【例4】在△ABC 中,三个内角的度数均为正数,且∠A <∠B <∠C ,4∠C =7∠A ,求∠B 的度数.(北京市竞赛试题)解题思路:把∠A ,∠C 用∠B 的代数式表示,建立关于∠B 的不等式组,这是解本题的突破口.【例5】(1)周长为30,各边长互不相等且都是整数的三角形共有多少个?(2)现有长为150cm 的铁丝,要截成)2(>n n 小段,每段的长不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值.此时有几种方法将该铁丝截成满足条件的n 段.(江苏省竞赛试题)解题思路:对于(1),不妨设三角形三边为a ,b ,c ,且c b a <<,由条件及三角形三边关系定理可确定c 的取值范围,从而可以确定整数c 的值.对于(2),因n 段之和为定值150cm ,故欲使n 尽可能的大,必须使每段的长度尽可能的小.这样依题意可构造一个数列.【例6】在三角形纸片内有2008个点,连同三角形纸片的3个顶点,共有2011个点,在这些点中,没有三点在一条直线上.问:以这2011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?(天津市竞赛试题)解题思路:本题的解题关键是找到规律:三角形内角每增加1个内点,就增加了2个三角形和3条边.能力训练A 级1.设a ,b ,c 是△ABC 的三边,化简c b a c b a --+++=____________.2.三角形的三边分别为3,a 21-,8,则a 的取值范围是__________.3.已知一个三角形三个外角度数比为2:3:4,这个三角形是_______(按角分类)三角形.4.如图,∠A +∠B +∠C +∠D +∠E 的度数为____________.(“缙云杯“试题)(第4题)(第5题)(第6题)5.如图,已知AB ∥CD ,GM ,HM 分别是∠AGH ,∠CHG 的角平分线,那么∠GMH =_________.(第7题)(第9题)6.如图,△ABC 中,两外角平分线交于点E ,则∠BEC 等于()A .)90(21A ∠-︒B .A ∠+︒2190C .)180(21A ∠-︒D .A ∠-︒211807.如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =21(∠BAC -∠C );④∠BGH =∠ABE +∠C .其中正确的是()A .①②③B .①③④C .①②③D .①②③④8.已知三角形的每条边长的数值都是2001的质因数,那么这样的不同的三角形共有()A .6个B .7个C .8个D .9个9.如图,将纸片△ABC 沿着DE 折叠压平,则()A .∠A =∠1+∠2B .∠A =21(∠1+∠2)C .∠A =31(∠1+∠2)D .∠A =41(∠1+∠2)(北京市竞赛试题)10.一个三角形的周长是偶数,其中的两条边分别是4和1997,则满足上述条件的三角形的个数是()A .1个B .3个C .5个D .7个(北京市竞赛试题)11.如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.(河南省竞赛试题)12.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°.(1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .图1图213.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.(1)证明:AB +AE >DB +DE ;(2)证明:AB +AC >DB +DC ;(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论;(4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.(加拿大埃蒙德顿市竞赛试题)B 级1.已知三角形的三条边长均为整数,其中有一条边长是4,但不是最短边,这样的三角形的个数有_______个.(“祖冲之杯”邀请赛试题)2.以三角形的3个顶点和它内部的9个点共12个点为顶点能把原三角形分割成______个没有公共部分的小三角形.3.△ABC 中,∠A 是最小角,∠B 是最大角,且有2∠B =5∠A ,若∠B 的最大值是 m ,最小值是 n ,则=+n m ___________.(上海市竞赛试题)4.如图,若∠CGE =α,则∠A +∠B +∠C +∠D +∠E +∠F =_______.(山东省竞赛试题)(第4题)(第5题)5.如图,在△ABC 中,∠A =96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A 点,BC A 1∠与CD A 1∠的平分线相交于2A 点,依此类推,BC A 4∠与CD A 4∠的平分线相交于5A 点,则5A ∠的大小是()A .3°B .5°C .8°D .19.2°6.四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB ,∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是()①∠EPF =100°;②∠ADC +∠ABC =160°;③∠PEB +∠PFC +∠EPF =136°;④∠PEB +∠PFC =136°.A .①②③B .②③④C .①③④D .①②③④7.三角形的三角内角分别为α,β,γ,且γβα≥≥,βα2=,则β的取值范围是()A . 4536≤≤βB . 6045≤≤βC . 9060≤≤βD .3245≤≤β(重庆市竞赛试题)8.已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有()A .4个B .5个C .6个D .7个(山东省竞赛试题)9.不等边△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.(第三十二届美国邀请赛试题)10.设m ,n ,p 均为自然数,满足p n m ≤≤且15=++p n m ,试问以m ,n ,p 为三边长的三角形有多少个?11.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角的度数的41,求满足此条件的所有锐角三角形的度数.(汉城国际数学邀请赛试题)12.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-2,-2).(1)求△BCD 的面积;(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交y 轴于P ,交BC 于Q .求证:∠CPQ =∠CQP ;(3)如图3,若∠ADC =∠DAC ,点B 在x 轴正半轴上运动,∠ACB 的平分线交直线AD 于E ,DF ∥AC交y 轴于F ,FM 平分∠DFC 交DE 于M ,EDMF BCF ∠∠-∠2的值是否发生变化?证明你的结论.图1图2图313.如图1,),0(m A ,)0,(n B .且m ,n 满足0)42(32≤-+-n m .图1图2(1)求A ,B 的坐标;(2)C 为y 轴正半轴上一动点,D 为△BCO 中∠BCO 的外角平分线与∠COB 的平分线的交点,问是否存在点C ,使∠D =41∠COB .若存在,求C 点坐标;(3)如图2,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,∠CAB 和∠CEB 平分线交于F ,点C 在运动过程中FECO ABO ∠∠+∠的值是否发生变化?若不变求其值;若变化,求其范围.专题13三角形的基本知识例1130°或50°例2B例380°提示:∠A=2∠BGC-∠BDC例4设∠C=x°,则∠A=(47 x)°,∠B=180°-∠C-∠A=180°-117 x°由∠A<∠B<∠C,得47x<180-117x<x.解得70<x<84.∵47x是整数,∴x=77.故∠C=77°,则∠A=44°,∠B=180°-77°-44°=59°.例5(1)不妨设a<b<c,则由30a b ca b c+=-⎧⎨+>⎩,得10<c<15.∵c是整数,∴c=11,12,13,14.当c=11时,b=10,a=9.当c=12时,b=11,a=7;b=10,a=8.当c=13时,b=12,a=5;b=11,a=6;b=10,a=7;b=19,a=8.当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7.(2)这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89…但1+1+2+5+8+13+21+34+55=143<150,1+1+2+3+5+8+13+21+34+55+89>150,故n的最大值为10.共有以下7种方式:(1,1,2,3,5,8,13,21,34,62);(1,1,2,3,5,8,13,21,35,61);(1,1,2,3,5,8,13,21,36,60);(1,1,2,3,5,8,13,21,37,59);(1,1,2,3,5,8,13,22,35,60);(1,1,2,3,5,8,13,22,36,59);(1,1,2,3,5,8,14,22,36,58).例6解法1我们不妨先考察三角形内有1个点、2个点、3个点…的简单情况,有下表所示的关系:三角形内点数1234…连线得到的小三角形个数3579…不难发现,三角形内有一个点时,连线可得到3个小三角形,以后每增加一个点,这个点必落在某一个小三角形内,它与该三角形的三个顶点可得到三个小三角形,从而增加了两个小三角形,于是可以推出,当三角形内有2008个点是,连线可得到小三角形的个数为:3+2×(2008-1)=4017(个).解法2整体核算法设连线后把原三角形分割成n个小三角形,则它们的内角和为180°·n,又因为原三角形内每一个点为小三角形顶点时,能为小三角形提供360°的内角,2008个点共提供内角2008×360°,于是得方程180n =360×2008+180,解得n =4017,即这2008个点能将原三角形纸片分割成4017个小三角形.A 级1.2(b +c )2.-5<a <-23.钝角4.180°5.90°6.C7.D8.B9.B 10.B11.提示:过G 作GH ∥EB ,可推得BE ∥CF .12.(1)∠AMC =12(∠ABC +∠ADC )=12×(24°+42°)=33°(2)∵AN 、CN 分别平分∠DAE ,∠BCD ,∴可设∠EAN =∠DAB =x ,∠BCN =∠DCN =y ,∴∠BAN =180°-x ,设BC 与AN 交于S ,∴∠BSA =∠CSN ,∴180°-x +∠B =y +∠ANC ,①同理:180°-2x +∠B =2y +∠D ,②由①×2-②得:2∠ANC =180°+∠B +∠D .∴∠ANC =12(180°+24°+42°)=123°.13.(1)(2)略提示:(3)DA +DB >AB ,DB +DC >DC ,DC +DA >CA ,将三个不等式相加,得2(DA +DB +DC )>AB +CB +CA .(4)由(2)知AB +AC >DB +DC ,同理BC +BA >DC +DA ,CA +CB >DA +DB ,故AB +BC +CA >DA +DB +DCB 级1.82.193.175提示:设∠A =(2x )°,∠B =(5x )°,则∠C =180°-(7x )°,由∠A ≤∠C ≤∠B 得15≤x ≤204.2a5.A6.D7.D8.B9.提示:设长度为4和12的高分别是边a ,b 上的,边c 上的高为h ,△ABC 的面积为S ,则24S a =,212S b =,2S c h =,由22222412412S S S S S h -<<+得36h <<,故5h =.10.711.设锐角三角形最小角的度数为x ,最大角的度数为4x ,另一角为y ,则41804490x x y x y x x ++=︒⎧⎪⎨⎪<︒⎩,解得20≤x ≤22.5,故x =20或21或22.所有锐角三角形的度数为:(20°,80°,80°),(21°,75°,84°),(22°,70°,88°).12.(1)S △BCD =2(2)略(3)设∠ABC =x ,则∠BCF =90°+x ,可证:∠E =12x ,∠DMF =45°.∴2(90)245212BCF DMF x E x ∠-∠︒+-⨯︒==∠。

2018-2019年初中物理西藏初二竞赛测试模拟试卷【2】含答案考点及解析

2018-2019年初中物理西藏初二竞赛测试模拟试卷【2】含答案考点及解析

2018-2019年初中物理西藏初二竞赛测试模拟试卷【2】含答案考点及解析班级:___________ 姓名:___________ 分数:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.卡车和联合收割机以同样快慢、向同一方向前进时,我们说卡车静止所选取的参照物是A.卡车B.联合收割机C.地面D.地面上的庄稼【答案】B【解析】试题分析:卡车和联合收割机以同样快慢、向同一方向前进说明卡车相对于联合收割机的位置没有变化,卡车相对于联合收割机静止,B正确。

判断物体的运动状态不能选择自身作参照物,A错。

考点:机械运动,参照物。

2.游泳运动员刚从水中上岸感觉特别冷,是由于运动员身上的水A.熔化吸热B.汽化吸热C.升华吸热D.液化放热【答案】B【解析】试题分析:人上岸后,人体表面的水分开始蒸发,人身上的水蒸发需要从人体吸收热量,于是人会感觉冷.故选B考点:本题考查汽化及汽化吸热的特点点评:解决此题需掌握:物质由液态变成气态的现象叫做汽化,汽化方式有两种:蒸发和沸腾;蒸发是在任何温度下都能进行的汽化方式,液体蒸发需要吸收热量.3.有一物体从距离凸透镜1.5倍焦距的地方沿主光轴向透镜方向移动,当物距减少到原来的一半时,移动光屏,下列说法正确的是()A.在光屏上可以得到比物体大的实像B.在光屏上可以得到比物体小的实像C.在光屏上不可能得到像D .在光屏上可以得到一个物体大的虚像 【答案】C 【解析】试题分析:凸透镜成像规律:当物体位于1倍焦距与2倍焦距之间时,会成倒立放大的实像, 而当物体位于1倍焦距之内时,会成正立放大的虚像.当物体位于距离凸透镜1.5倍焦距的地方时,即u=1.5f ,而当物距减少到原来的一半时,即u=0.75f <f ,物体在焦点之内,故成正立放大的虚像,不能在光屏上成像. 故选C .考点:本题考查凸透镜成像规律及其探究实验 点评:解决本题的关键是熟知凸透镜成像规律。

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)一、选择题:1、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 1911B. 1199C. 819D. 273 2、若790a b +=,则2ab 一定是( )A 、正数B 、负数C 、非负数D 、非正数 3、满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、若不等式︱x+1︱+︱x-3︱≤a 有解,则a 的取值范围是( ) A.0<a ≤4 B.a ≥4 C.0<a ≤2 D.a ≥25、若a 、b 是有理数,且a 2001+b 2001=0,则A 、a=b=0B 、a-b=0C 、a+b=0D 、ab=06、某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )A 、20%B 、25%C 、80%D 、75%7、两个相同的瓶子中装满了酒精溶液,第一个瓶子里的酒精与水的体积之比为a :1,第一个瓶子为b :1,现将两瓶溶液全部混和在一起,则混和溶液中酒精与水的体积之比是( ) (安徽省初中数学联赛试题)A 、2b a + B 、12++b a ab C 、22++++b a ab b a D 、24++++b a abb a 8、咖啡A 与咖啡B 按x :y(以重量计)的比例混合。

A 的原价为每千克50元,B 的原价为每千克40元,如果A 的价格增加10%,B 的价格减少15%,那么混合咖啡的价格保持不变。

则x :y 为( ) A 、5:6 B 、6:5 C 、5:4 D 、4:59、设P 是质数,若有整数对(a ,b )满足 ,则这样的整数对(a ,b )共有 ( ) A .3对 B .4对 C .5对 D .6对 10、有理数a 、b 、c 满足下列条件:a +b +c =0且abc <0,那么cb a 111++的值 ( ) (A )是正数 (B)是零 (C)是负数 (D)不能确定11、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于( ) A .2002; B .2004: C .2006: D .2008。

全国初中数学竞赛辅导(初2)第32讲 自测题

全国初中数学竞赛辅导(初2)第32讲 自测题

自测题自测题一1.分解因式:x4-x3+6x2-x+15.2.已知a,b,c为三角形的三边长,且满足a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.3.已知a,b,c,d均为自然数,且a5=b4,c3=d2,c-a=19,求d-b的值.4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c 的值.5.设E,F分别为AC,AB的中点,D为BC上的任一点, P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC 上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数.9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?自测题二1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.2.对于集合p={x丨x是1到100的整数}中的元素a,b,如果a除以b的余数用符号<a,b>表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;(2)用列举法表示集合{x丨<x,6>=<x,8>=5,x∈P}.3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.4.已知方程x2-3x+a+4=0有两个整数根.(1)求证:这两个整数根一个是奇数,一个是偶数;(2)求证:a是负偶数;(3)当方程的两整数根同号时,求a的值及这两个根.5.证明:形如8n+7的数不可能是三个整数的平方和.7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?自测题三2.对于任意实数k,方程(k2+1)x2-2(a+k)2x+k2+4k+b=0总有一个根是1,试求实数a,b的值及另一个根的范围.4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q, R.求证:5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D 点,过D引AB的平行线交BC于F.求证:BF=EC.6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?自测题四1.求多项式2x2-4xy+5y2-12y+13的最小值.2.设试求:f(1)+f(3)+f(5)+…+f(1999).3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.4.若a,b,c为有理数,且等式成立,则a=b=c=0 .5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.7.设x1,x2,…,x9均为正整数,且x1<x2<…<x9,x1+x2+…+x9=220.当x1+x2+…+x5的值最大时,求x9-x1的值.8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:FA·BC=AE·CD.(2)当E点移动到D点时,命题(1)将会怎样?(3)当E点在AD的延长线上时又会怎样?自测题五2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根3.设x+y=1,x2+y2=2,求x7+y7的值.4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.6.a,b,c是三个自然数,且满足abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);(2)当A点在BC上时,将怎样?按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?。

初中物理竞赛题 (2)

初中物理竞赛题 (2)

初中物理竞赛题题目一:测量实验与误差分析题目描述小明使用皮尺测量了一本书的长度为20.5厘米。

然而,他的朋友小红使用千分尺测量了同一本书的长度为20.503厘米。

请问小明和小红的测量结果哪个更准确?为什么?解析与答案测量实验是物理学中常见的实验方法之一,它可以用来确定某个物理量的大小。

在测量过程中,我们常常会遇到误差的问题,而误差可以分为系统误差和随机误差。

小明使用的皮尺是一个直尺,它的刻度是每厘米为单位的,因此小明测得的长度为20.5厘米。

而小红使用的千分尺可以测量更加精确的长度,它的刻度是每毫米为单位的,所以小红测得的长度为20.503厘米。

从测量结果来看,小红的测量结果更加准确。

这是因为千分尺的刻度更加精细,可以测量更小的长度单位,所以小红能够更加准确地测量书的长度。

在误差分析中,我们将误差分为系统误差和随机误差。

系统误差是由于测量仪器或者操作方法等原因而造成的,它导致了测量结果的偏差。

而随机误差是由于各种不可控制的因素导致的,它表现为测量结果的波动。

在这个题目中,皮尺的刻度是每厘米为单位的,而千分尺的刻度是每毫米为单位的。

因此,小明使用皮尺测量书的长度时,存在一个系统误差,由于刻度的限制,可能会导致测量结果存在一个固定的偏差。

而小红使用千分尺测量时,由于千分尺的刻度更加精细,所以系统误差相对较小。

此外,由于随机误差的存在,无论是使用皮尺还是千分尺测量,我们都无法完全消除随机误差。

但是,使用更加精细的测量仪器可以减小随机误差的影响。

因此,综合考虑系统误差和随机误差,小红的测量结果更加准确。

题目二:速度与运动问题题目描述小明骑自行车以10 m/s的速度向前行驶,同时小红以8 m/s的速度从他的后面追赶。

如果小明和小红之间的距离为100米,那么小红需要多长时间才能追上小明?解析与答案速度是物体在单位时间内所经过的距离。

在这个问题中,小明和小红的速度分别为10 m/s和8 m/s。

设小红从追赶开始到追上小明的时间为t秒,则小红行驶的距离为8t米,小明行驶的距离为10t米。

初中数学竞赛教程2、绝对值和有关绝对值的化简

初中数学竞赛教程2、绝对值和有关绝对值的化简

2013年暑期初一数学竞赛第二讲:绝对值和有关绝对值的化简【典型例题】例1、已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c -a | - | b -c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b 1、如果|2|x -+x -2=0,那么x 的取值范围是( ) A 、x >2 B 、x <2 C 、x ≥ 2 D 、x ≤22、若||0a a +=,||ab ab =,||0c c -=, 则化简||||||||b a b c b a c -+--+-得( )A 、2c-bB 、2c-2aC 、-bD 、b3、已知0ab <,那么22||||(||||)a b b a ab a b -+-=( ) A 、0 B 、2a 2b C 、 2ab 2 D 、 2a 2b+ 2ab 2例2、已知有理数,,x y z 满足0xy <,0yz >,并且||3x =,||2y =,|1|2z +=, 求x y z ++的值。

1、已知||4x =,1||2y =,且0xy <,求xy的值。

2、已知||1a =,||2b =,||3c =,且a b c >>,求a b c +-的值。

例3、化简:13++-x x1、已知|1||1|4|62|-++-+=x x x y ,求y 的最大值.例4、观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答: .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 .(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 .(4)满足341>+++x x 的x 的取值范围为 。

(5)若y =|x +1|+|x +2|+|x +3|,当x = 时,y 有最小值,最小值等于 .(6)当x 为何值时,|1||2|...|2012|y x x x =-+-++-的值最小,并求出这个最小值。

2020初中数学竞赛辅导(初2)第02讲因式分解

2020初中数学竞赛辅导(初2)第02讲因式分解

第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法 1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法 2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m 和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。

初中数学竞赛资料第二辑专题14 多边形的边与角

初中数学竞赛资料第二辑专题14 多边形的边与角

专题14多边形的边与角阅读与思考主要是指多边形的边、内外角、对角线、凸多边形、凹多边形等基本概念和多边形内角和定理、外角和定理,其中多边形内、外角和定理是解有关多边形问题的基础.多边形的许多性质与问题往往可以利用三角形来说明、解决,将多边形问题转化为三角形问题是解多边形问.题的基本策略,转化的方法是连对角线或向外补形.多边形的内角和是随着多边形的边数变化而变化的,但外角和却总是不变的,所以,我们常以外角和的“不变”来制约内角和的“变”,把内角问题转化为外角问题来处理,这是解多边形相关问题的常用技巧.例题与求解【例1】两个凸多边形,它们的边长之和为12,对角线的条数之和为19,那么这两个多边形的边数分别是____和____.(“希望杯”邀请赛试题)解题思路:设两个凸多边形分别有m,n条边,分别引出(3)2m m-,(3)2n n-条对角线,由此得m,n方程组.【例2】凸边形有且只有3个钝角,那么n的最大值是()A.5B.6C.7D.8解题思路:运用钝角、锐角概念,建立关于n的不等式,通过求解不等式逼近求解.【例3】凸n边形除去一个内角外,其余内角和为2570°,求n的值.(山东省竞赛试题)解题思路:利用n边形内角和公式,以及边数n为大于等于3的自然数这一要求,推出该角大小,进而求出n的值.【例4】如图,凸八边形ABCDEFGH的八个内角都相等,边AB,BC,CD,DE,EF,FG的长分为7,4,2,5,6,2,求该八边形的周长.(全国通讯赛试题)解题思路:该八边形每一内角均为135°,每一外角为45°,可将八边形问题转化为特殊三角形解决、特殊四边形加以解决.A BCD EFGH【例5】如图所示,小华从M点出发,沿直线前进10米后,向左转20°,再沿直线前进10米后,又向左转20°,…这样走下去,他第一次回到出发地M时,行走了多少米?解题思路:试着将图形画完,你也许就知道答案了.20︒20︒20︒M能力训练A级1.如图,凸四边形有___个;∠A+∠B+∠C+∠D+∠E+∠F+∠G=___.(重庆市竞赛试题)ABCD EF G第1题ABCD第2题2.如图,凸四边形ABCD的四边AB,BC,CD和DA的长分别为3,4,12和13,∠ABC=90°,则四边形ABCD 的面积为___.3.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G =___.A BC DE F G 第3题AB CD247x第4题第7题4.如图,ABCD 是凸四边形,则x 的取值范围是___..5.一个凸多边形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数是()A .9条B .8条C .7条D .6条(“祖冲之杯”邀请赛试题)6.—个凸n 边形的内角和小于1999°,那么n 的最大值是()(全国初中联赛试题)A .11B .12C .13D .147.如图,是一个正方形桌面,如果把桌面砍下一个角后,桌面还剩()个角.A .5个B .5个或3个C .5个或3个或4个D .4个8.—个凸n 边形,除一个内角外,其余1n 个内角的和为2400°,则n 的值是()A .15B .16C .17D .不能确定9.如图,在四边形ABCD 中,AB =AD =8,∠A =60°,∠D =150°,四边形周长为32,求BC 和DC 的长.ABCD10.—个凸n 边形的最小内角为95°,其他内角依次增加10°,求n 的值.(“希望杯”邀请赛试题)11.平面上有A,B,C,D四点,其中任何三点都不在一直线上,求证:在△ABC,△ABD,△ACD,△BDC中至少有—个三角形的内角不超过45°.(江苏省竞赛试题)12.我们常见到如图那样图案的地面,它们分别是全用正方形或全用正六边形形状的材料铺成的,这样形状的材料能铺成平整的、无空隙的地面.问:(1)像上面那样铺地面,能否全用正五边形的材料,为什么?(2)你能不能另外想出一个用一种多边形(不一定是正多边形)的材料铺地的方案?把你想到的方案画成草图.(3)请你再画出一个用两种不同的正多边形材料铺地的草图.(安徽省中考试题)B级1.一个正m边形恰好被正n边形围住(无重叠、无间隙,如图所示是m=4,n=8的情况),若m =10,则n=____.第1题AB CDEF第2题1A1B2A2B3B4B5B3A4A5A第3题2.如图,六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA CD=3,则BC+DE=____.(北京市竞赛试题)3.如图,延长凸五边形A 1A 2A 3A 4A 5的各边相交得到五个角:∠B 1,∠B 2,∠B 3,∠B 4,∠B 5,它们的和等于___.若延长凸n 边形(n ≥5)的各边相交,则得到的n 个角的和等于____.(第十二届“希望杯”邀请赛试题)4.如图,在四边形ABCD 中,AB=4BC =1,CD =3,∠B =135°,∠C =90°,则∠D =()A .60°B .67.5°C .75°D .不能确定(重庆市竞赛试题)ABCD第4题O ABCD第5题5.如图,已知O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70°,则∠DAO +∠DCO 的大小是()A .70°B .110°C .140°D .150°6.在一个多边形中,除了两个内角外,其余内角之和为2002°,则这个多边形的边数为()A .12B .12或13C .14D .14或15(江苏省竞赛试题)7.一个凸十一边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸十一边形各个内角大小,并画出这样的凸十一边形的草图.(全国通讯赛试题)8.一块地能被n 块相同的正方形地砖所覆盖,如果使用较小的相同正方形地砖,那么需n +76块这样的地砖才能覆盖该块地,已知n 及地砖的边长都是整数,求n 的值.(上海市竞赛试题)9.设有一个边长为1的正三角形,记作A1如下左图,将A1的每条边三等分,在中间的线段上各向形外作正三角形,去掉中间的线段后得到的图形记作A2(如下中图);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如下右图);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,求A4的周长.A2A3A1(全国初中数学联赛试题)10.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫作平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:正多边形边数3456…n正多边形每个内角的度数60°90°(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形.说明你的理由.专题14多边形的边与角例157例2B例3n =17提示:设此角为x ,则(n -2)×180°=x +2570°,得2570360180x n +︒+︒=︒,x =130°,此时n =17.例4双向延长AB ,CD ,EF ,GH 得四边形MNPQ ,如图,原八边形的内角都相等,其每一内角均为(82)1801358-⨯︒=︒,每一外角均为45°,因此MNPQ 为长方形,△BPC ,△DQE ,△FMG ,△ANH .=x ,,由MQ =MF+FE +EQ =NA +AB +BP 5226722y +=++,∴3y =-∵MN =QP ,∴x =3+,∴周长=7+4+2+5+6+2+3++3=32+.例5将整个图形画完,就知道是一个边长为10米的正多边形,且每个外角的大小都是20°,由多边形的外角和等于360°知这是一个18边形,所以小华第一次回到M 点时走的总路程是180米.A 级1.7;540°2.363.540°4.1<x <135.D6.C7.C8.A9.BC =10,DC =610.n =611.提示:分构成凸四边形和凹四边形两种情况讨论,并用反证法加以证明推出矛盾.12.(1)所用材料的形状不能是正五边形,因为,正五边形的每个内角都是108°,要铺成平整的,无空隙的地面,必须使若干个正五边形拼成一个周角,但找不到符合条件的以n ×108°=360°的n 值,故不能用形状是正五边形的材料铺地面.⑵⑶略.B 级1.5 2.143.180°;(n -4)180°4.B5.D 由OA=OB=OC 得∠BAO=∠ABO,∠BCO=∠OBC,所以∠DAO+∠DCO=360°-3×70°=150°6.D7.提示:因凸十一边形由正方形或正三角形拼成,故其内角的大小只能是60°,90°,120°,\150°四种可能,设这些角的个数分别为x ,y ,z ,w ,则116090120150(112)180x y z w x y z w +++=⎧⎨+++=-⨯⎩解得x =y =0,z =1,w =10.说明这个十一边形一个内角为120°,由两个正三角形的内角拼成,其余10个角均为150°,由一个正三角形内角与一个正方形内角拼成,图略.8.n =3249.649提示:从A 1开始,每进行一次操作,所得到的图形的周长是原来图形周长的43倍.10.(1)108°;120°;()02180n n-⨯(2)正三角形、正四边形(或正方形)正六边形.假定在接合处一共有k 块正边形地砖,由于正n 边形的所有内角都相等,则()002180360n k n-⨯= 即24222n k n n ==+--.因k 为整数,故n -2|4,n —2=1,2,4,得n=3,4或6,由此可见,只有三种正多边形的瓷砖,可以按要求铺地,即正三角形、正方形和正六边形.(3)如:正方形和正八边形,草图如下,设在一个顶点周围有m 个正方形的角,n 个正八边形的角,那么,m ,n 应是方程m ·90°+n ·135°=360°的整数解.即2m +3n =8的整数解.∵这个方程的整数解只有12m n =⎧⎨=⎩一组∴符合条件的图形只有一种.。

初一数学竞赛(二)

初一数学竞赛(二)

初一数学思维拓展(三)----(有理数2)一、 填空题:1、任何整数的平方的个位数字都不可能是哪些数字___________。

2、如果一个数的平方等于它的绝对值,那么这个数是_____。

3、(1-2+3-4+5-6+7-8+9-10)÷(0.1+0.2+0.3+0.4+0.5+0.6+0.7+0.8+0.9)= 。

二、选择题:1、数轴上表示整数的点叫整点,某数轴单位长度为1cm ,若在数轴上随意画出一条长为2001cm 的线段AB ,则线段AB 盖住的整数点的个数为( )A. 2000个B. 2001个C. 2000或2001个D. 2001或2002个2、在绝对值小于100的整数中,可以写成整数平方的数及整数立方的数共有( )A. 16个B. 17个C. 18个D. 19个三、某国股民星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:已知买进股票时付了1.5%的手续费,卖出时还需付成交额1.5%的手续费和1%的交易税,如果周六收盘前将全部股票卖出,他的收益情况如何?四、已知: A=.90123456788901234567 B=90123456778901234566.试比较A 与B 的大小.五、在1998后面写一串数字.写下的每个数字都是它前面两个数字乘积的个位数.那么从这串数字的第一位数字1开始向右数.问一直数到1989个数字是多少?例1. 如图: 是一个五边形的点阵.它的中心是一个点.算做第一层,第二层是每边两个点,第三层是每边三个点. ……若这个五边形共有100层.试求点阵中点的总数.六、有一串真分数,,...54,53,52,51,43,42,41,32,31,21 那么第100个真分数是几分之几.七、 计算:1051011171311391951⨯+⋯+⨯+⨯+⨯八、 计算:2019181543143213211⨯⨯+⋯+⨯⨯+⨯⨯+⨯⨯九、 计算:(1)、23333 (2)、1111111111×9999999999十、 已知:1999减去它的21,再减去余下的31,再减去余下的41,……,依此类推,一直到减去余下的19991,那么最后剩下的数是多少?。

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。

塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。

角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。

(完整版)初中物理凸透镜成像竞赛题(2)

(完整版)初中物理凸透镜成像竞赛题(2)

关于凸透镜成像(难题)1.如图所示,在凸透镜的两个焦点处,垂直光轴放置两个大小相同的平面镜,镜面相对,每个平面镜都关于凸透镜的光轴上下对称,现在左侧平面镜的中心处挖去一个圆孔,在凸透镜左侧两倍焦距处一个点光源,则点光源在该光具组中所成的虚像个数为()A.一个B.两个C.无数个D.一个也没有2.如图所示,平面镜和凸透镜的主光轴垂直并处在凸透镜两倍焦距处,在凸透镜另一侧两倍焦距处有一个点光源S.现将平面镜向凸透镜靠近的过程中,关于点光源所成的像,下述结论中错误的是()A.平面镜在移动过程中,最多只能成两个实像B.平面镜移动到一定位置时,正好只成一个实像C.平面镜移动到一定位置时,正好只成一个虚像D.平面镜移动到一定位置时,正好既成一个实像,又成一个虚像3.如图所示,P、Q为凸透镜主轴O1O2上的两点。

若物体放在P点可得到一个放大的实像,若在Q点可得到一个缩小的实像,则下列判断中正确的是()A.凸透镜必须在P、Q之间B.凸透镜一定不在P、Q之间C.凸透镜可在P点左侧,也可在P、Q之间D.凸透镜可在Q点右侧,也可在P、Q之间4.如图所示,竖直放置的不透光物体(足够大)中紧密嵌有一凸透镜,透镜左侧两倍焦距处,有一个与主光轴垂直的物体AB,在透镜右侧三倍焦距处竖直放置一平面镜MN,镜面与凸透镜的主光轴垂直,B、N两点都在主光轴上,AB与MN高度相等,且与透镜上半部分等高。

遮住透镜的下半部分,则该光具组中,物体AB的成像情况是()A.两个实像,一个虚像B.一个实像,两个虚像C.只有一个虚像D.只有一个实像5.如图所示,OO'为凸透镜的主光轴,将点光源放在A点时,像在B点;将点光源放在B点时,像在C点。

当将点光源放在C点时,则()A.一定在B点成一个实像B.一定在A点的左侧成一个虚像C.可能在B、C之间成一个实像D.可能在C点的右侧成一个虚像6.平面镜水平放置且镜面朝上,在镜面上方竖直放置一凸透镜,在凸透镜左侧主光轴上两倍焦距处有一点光源S,关于点光源在该光具组中成像情况的判断,正确的是()A.两个实像,两个虚像B.两个实像,一个虚像C.一个实像,两个虚像D.一个实像,三个虚像7.如图a,蜡烛在光屏上能成一清晰的像。

初中数学竞赛专题复习第二篇平面几何第11章比例与相似试题1新人教版

初中数学竞赛专题复习第二篇平面几何第11章比例与相似试题1新人教版

第11章 比例与相似§11.1比例线段11.1.1★在ABC △中,角平分线AD 与BC 交于D ,AB c =,BC a =,CA b =,求BD 、CD 之长度(用a 、b 、f 表示). 解析 如图,易知有BD CD a +=,BD AB c CD AC b ==,故ac BD b c =+,abCD b c=+. AB D C11.1.2★已知:等腰梯形ABCD 中,M 、N 分别是腰AB 、CD 的中点,BD BC =,BD CA ⊥且交于E ,求证:CE MN =.解析 如图,不妨设1BE CE ==,则BC BD AC ==,1AE ED =,故2AD =,()112MN AD BC CE =+==. ADEMN BC11.1.3★在ABC △中,2AC AB =,A ∠的平分线交BC 于D ,过D 分别作AB 、AC 的平行线交AC 、AB 于F 、E ,FE 和CB 的延长线交于G ,求证:EF EG =. 解析 如图,由ED AC ∥,及AD 平分BAC ∠,知12GE BE BE BD AB GF DF AE CD AC =====,故2GF GE =,因此EF EG =.AEFGBDC11.1.4★设D 为ABC △的边BC 的中点,过D 作一直线,交AB 、AC 或其延长线于E 、F ,又过A 作AG BC ∥,交FE 的延长线于G ,则EG FD GF DE ⋅=⋅.G AE BDCF解析 由平行知GE AG AG GFDE BD CD DF===. 于是由第一式与最后一式,转化为乘法,即可得结论. 11.1.5★已知O 是平行四边形ABCD 内的任意一点,过点O 作EF AB ∥,分别交AD 、BC 于E 、F ,又过O 作GH BC ∥,分别交AB 、CD 于G 、H ;连结BE ,交GH 于P ;连结DG ,交EF 于Q .如果OP OQ =,求证:平行四边形ABCD 是菱形. 解析 如图,易知OP EO GA BF EF AB ==,OQ GO AEDH GH AD==. 由于AE BF =,GA DH =,故OP AB GA BF AE DH OQ AD ⋅=⋅=⋅=⋅,于是AB AD =,四边形ABCD 是菱形.A E DQGH POB F C11.1.6★ABC △中,AB AC >.AD 是BAC ∠的角平分线.G 是BC 的中点,过G 作直线平行于AD 交AB 、AC 或延长线于E 和F .求证:2AB ACBE CF +==. 解析 如图,易知G 比D 靠近B ,E 在AB 上,而F 在CA 延长线上.易知12BG BC =,而AB BC BD AB AC ⋅=+,故2BE BG AB ACAB BD AB+==,同理,CF 也是此值. F AEB G D C评注 不用比例线段的方法是:延长EG 一倍至P ,则CP BE =,再证AEF △和FCP △均为等腰三角形.11.1.7★凸四边形ABCD 中,ADC ∠,90BCD ∠>︒,BE 平行于AD 交AC 延长线于点E ,AF 平行于BC 交BD 延长线于点F ,连结E 、F ,证明:EF CD ∥. 解析 如图,设AC 、BD 交于O ,则由平行线性质,知FO AO BO CO =,AOFO BO CO=⋅,同理,BO EO AO DO =⋅,故FO DOEO CO=,故EF CD ∥. AF DOB CE11.1.8★★如图,在ABC △中.AB AC =,BP 、BQ 为B ∠的三等分角线,交A ∠的平分线AD 于P 、Q ,连结CQ 并延长交AB 于R ,求证:PR QB ∥.ARP Q BDC解析 易知ABC △关于AD 对称.又设QBC QCB θ∠=∠=,则2ABQ RQB θ∠==∠,故RQ RB =,于是由角平分线之性质,知AR AR AC AB APBR RQ CQ BQ PQ====,于是PR QB ∥. 11.1.9★★梯形ABCD 中,AD BC ∥(AD BC <),AC 和BD 交于M ,过M 作EF AD ∥,交AB 、CD 于E 、F ,EC 和FB 交于N ,过N 作GH AD ∥,交AB 、CD 于G 、H .求证:1212AD BC EF GH+=+.A DE MF GNHBC解析 11EM AM DM BM EM BC AC DB DB AD ===-=-,故111EM AD BC =+,同理111FM AD BC =+,故11112EF AD BC ⎛⎫=+ ⎪⎝⎭,同理11112GH EF BC ⎛⎫=+ ⎪⎝⎭,两式相加并整理即得结论.11.1.10★设a 、b 、c 分别是ABC △的三边的长,且a a bb a b c+=++,求它的内角A ∠、B ∠. 解析 由条件,得22a ab ac ab b -+=+,即()2b a a c =+,所以b a ca b+=. 如图,延长CB 至D ,使BD AB =,于是CD a c =+.因此在ABC △与DAC △,AC DCBC AC=,且C ∠为公共角,所以ABC △∽DAC △,BAC D ∠=∠.而BAD D ∠=∠,故22ABC D BAD D BAC ∠=∠+∠=∠=∠.CABbca D11.1.11★设凸四边形ABCD ,对角线交于E ,过E 作直线与BC 平行,交AB 、CD 及DA 延长线于G 、H 、F .若1GE =,2EH =,求EF .DA FGEHBC K解析 延长DF 与CB 延长线交于K ,则有FG GE KB FEBC EH==. 设EF x =,则1FG x =-,代人上式,便得12xx -=.故2EF x ==. 11.1.12★★AP 为等腰三角形ABC 底边BC 上的高,CD 为ACB ∠的平分线,作DE BC ⊥于E ,又作DF DC ⊥与直线BC 交于F ,求证:4CFPE =. 解析 如图,设AB AC m ==,BC n =,则由角平分线性质知PE AD ACBP AB AC BC==+, 故()2mnPE m n =+.又取FC 中点G ,连结DG ,1902F C ∠=︒-∠,DG FG =,故1902FDG C ∠=︒-∠,DGF C ∠=∠,故DG AC ∥,从而DG BD BC AC AB AC BC ==+,故mnDG m n=+.于是224FC FG DG PE ===.ADF B EG P C11.1.13★★足球场四周有四盏很高的灯,在长方形的四角,且一样高,求某一运动员任何时刻的四个影子长之间的关系.跳起来呢?解析 设运动员P 在矩形球场ABCD 内,如图(a),过P 作MPN BC ∥,M 在AB 上,N 在CD 上,则22222222AP BP AM BM DN CN PD PC -=-=-=-,或2222AP CP BP DP +=+.A MBCND P图(a)又设灯高为H ,运动员身高为h ,点A 处的灯造成的影子长为PA ′,如图(b),则A P h AA H'=',得A P h PA H h '=-,同理B PC PD P hPB PC PD H h'''===-,故四个影子的关系是2222A P C P B P D P '+'='+'.图(b)图(c)A'hHAP A'AA''P lh H跳起来时,不妨设脚底离地l ,此时点A 处的灯造成的影子长度为A ′A ″,如图(c),则h l A P PA H h l +'=--,lA P PA H l"=-,于是A A A P A P '"='-"h l l PA H h l H l +⎛⎫=- ⎪---⎝⎭()()Hh PA H h l H l =---, 同理B B C C D D PB PC PD '"'"'"==()()Hh H h l H l =---,所以A ′2A "+2C C '"=22B B D D '"+'"仍旧成立.11.1.14★★求日高公式.解析 如图所示,设太阳高度为RD x =,杆AB =A ′B =h 直立在地上,影子的长度分别为BC a =,B ′C ′b =,两杆距离为d .所谓日高公式就是用a 、b 、d 、h 表示x ,这里假定大地为平面,且AB 、A ′B ′与R 在同一平面上.RxDB'A A'hhCB易知CB AB CD RD =,代入得a h a BD x =+,故1x BD a h ⎛⎫=- ⎪⎝⎭;同理,B ′1x D b h ⎛⎫=- ⎪⎝⎭.由BD B -′D B =B ′d =,代入得()1x a b d h ⎛⎫--= ⎪⎝⎭,由此解得1d x h a b ⎛⎫=+⎪-⎝⎭. 11.1.15★★设梯形ABCD ,E 、F 分别在AB 、CD 上,且AD EF BC ∥∥,若3AD =,7BC =,5AB =,6CD =,梯形AEFD 和梯形EBCF 的周长相等,求EF .解析 如图,作平行四边形DABH ,H 在BC 上,则5DH AB ==,4CH =.设DH 与EF 交于G .A DEG FB HC易知梯形AEFD 的周长为DGF △的周长加上6,梯形EBCF 的周长为梯形FGHC 的周长加6,故DGF △的周长=梯形GHCF 的周长,也即DG DF DHC +=△周长的一半即152. 又56DG DH DF CD ==,故6154511211DF =⨯=.453046611DF GF CH CD =⋅=⨯=,306331111EF =+=.11.1.16★★如图,已知ABC △中,AD 、CE 交于F ,BF 、ED 交于G ,过G 作GMN BC ∥,交CE 于M ,交AC 于N ,求证:GM MN =.AEP BDCG K MNF解析 设AD 与GM 交于K ,AB 与直线NG 交于P ,则KN CD KMPK BD GK==. 于是1PK PG CD GM MN KN KM KM KM PG PG GM GK GK BD PG ⎛⎫=-=-=⋅=⋅=⋅=⎪⎝⎭. 11.1.17★四边形ABCD 为正方形,E 、F 在BC 延长线上,CE CD =,CF CA =,H 、G 分别是CD 、DE 与AF 的交点.求证:CHG △为等腰三角形. 解析 如图,不妨设正方形边长为1,则CF ,1CE =,1EF .ADH JBCEFG作GJ CF ∥,交CD 于J.则JG DG AD CE DE AD EF ==+于是12HG JG HF CF ===,即G 为直角三角形斜边HF 之中点,于是GH GC =. 11.1.18★★在ABC △中,4AB =,2BC =,3CA =,P 是ABC △内一点,D 、E 、F 分别在AB 、BC 、CA 上,且PD BC ∥,PE AC ∥,PF AB ∥.若PD PE PF ==,求PD . 解析 如图,延长CP 交AB 于C ′(同理定义A ′、B ′,图中未画出),设PD PE PF x ===,则2x C P CC '=',同理,4x B P BB '=',3x PA AA '=',由于1PA PB PC AA BB CC '''++=''',故1234x x x ++=,1213x =. AC'FPDE B C11.1.19★ABC △内有一点O ,AO 的延长线交边BC 于点A ′,BO 的延长线交边AC 于点B ′,CO 的延长线交边AB 于点C ′.若AO BO CO k OA OB OC ++=''',求AO BO COOA OB OC ⋅⋅'⋅'⋅'的值(用k 表示). 解析 如图,设AO x OA =',BO y OB =',CO z OC =',则x y z k ++=,而1OA OB OCAA BB CC ''++=''',即1111111x y z++=+++,展开得 ()32x y z xy yz zx ++++++()1x y z xy yz zx xyz =+++++++,故22xyz x y z k =+++=+.AC'B'B A'CO11.1.20★已知ABC △的三边长分别为a 、b 、c ,三角形中有一点P ,过P 作三边的平行线,长度均为x ,试用a 、b 、c 来表示x .解析 设AP 延长后与BC 交于A ′(同理定义B ′与C ′),则1x AP PA a AA AA '==-'',同理1x PB b BB '=-', 1x PC b CC '=-',三式相加,得11132PA PB PC x a b c AA BB CC '''⎛⎫⎛⎫++=-++= ⎪ ⎪'''⎝⎭⎝⎭,所以2abcx ab bc ca=++.ABCPA'评注 P 存在的条件是x a <,b ,c ,代人得:1a 、1b 、1c可组成三角形三边之长. 11.1.21★已知D 、E 、F 分别是锐角三角形ABC 的三边BC 、CA 、AB 上的点,且AD 、BE 、CF 相交于点P ,6AP BP CP ===.设PD x =,PE y =,PF z =,28xy yz zx ++=,求xyz 的大小.解析 由熟知结论1PD PE PFAD BE CF++=,得1666x y z x y z ++=+++,因此(6)(6)(6)(6)(6)(6)x x z y x z z x y ++++++++=(6)(6)(6)x y z +++,即 1083()xyz xy yz zx =-++=24.11.1.22★如图,正方形ABCD 边长为1,Q 为BC 延长线上一点,QA 与CD 、BD 分别交于点P 、E ,QO (点O 是AC 与BD 交点)与CD 交于点F ,若EF AC ∥,求AP 的长.ADEPFOCBQ解析 连结DQ ,则由EF AC ∥,得EQ EF EF DEQA AO CO DO===,于是DQ AC ∥,CQ AD =,P 为CD 中点,所以AP =. 11.1.23★★如图,已知EF BC <,G 、D 分别在EF 、BC 上,则下面任两条可推出第三条:(1)BE 、DG 、CF 共点;(2)EF BC ∥;(3)EG BDFG CD=. AA'E'EGF F'B DC解析 (1),(2)⇒(3):EF BC ∥,则EG AG GF BD AD CD ==,故EG BDGF CD=. (2),(3)⇒(1):EG BD FG CD =⇒1EG FG EFBD CD BC==<,故可设BE 、DG 延长后交于A ,DG 、CF 延长后交于AG EG GF AD BD CD ===A G A D '',AG A GGD GD'=,A 与A '重合. (1),(3)⇒(2):若EF 与BC 不平行,作E 'GF 'BC ∥,E '在AB 上,F '在AC 上,则有E G BD EG F G CD FG'==',得EE 'FF ∥',即AB AC ∥,矛盾. 11.1.24★ABC △中,AK 为A ∠的平分线,在BA 、CA 上取BD CE =,G 、F 分别为DE 、BC 的中点,则GF AK ∥.解析 如图,连结BE ,设BE 中点为M ,连结CM 、FM ,则12GM BD =∥12CE MF ∥,所以GM FM =,且GMF GME EMF ABE ∠=∠+∠=∠+180180BEC BAC ︒-∠=︒-∠. 取AC 上的点S ,使KS AB ∥,则等腰GMF △∽等腰AKS △,且对应边KS GM ∥,AS MF ∥,故第三边也平行,即GF AK ∥.AE SGD MBFKC11.1.25★★★已知:ABC 中,90A ∠=︒,D 为BC 上一点,且非BC 中点,211AD BD CD=+,P 为AD 中点,求证:2BDA BAD ∠=∠,PD 平分BPC ∠.解析 如图,作BR AD ∥,与CA 延长线交于R ,延长CP 交BR 于Q ,则由AP PD =,AD RB ∥,有RQ BQ =.又90RAB ∠=︒,故AQ BQ =.由条件,知111BCPD BD CD BD CD++=⋅,于是PD CD PD BD BC BQ ==,BD BQ AQ ==,四边形AQBD 乃等腰梯形(若四边形AQBD 是菱形,则C ∠=QAR R DAC ∠=∠=∠,D 为BC 中点,与题设矛盾),12BAD QBA QAD ∠=∠=∠12BDA =∠.又P 为AD 中点,显然(比如由全等)有BPD APQ DPC ∠=∠=∠.RQBDCAP11.1.26★★★已知M 、N 分别为矩形ABCD 的边AD 、BC 的中点,CD 延长线上有一点P ,PM 延长后与AC 交于Q .求证.NM 平分PNQ ∠.解析 如图,设AC 与MN 交于O ,则MO NO =,过O 作OR MN ⊥,交QN 于R ,则MR NR =.AMDPROB N C又OR BC ∥,MO PC ∥,故QM QO QRMP OC RN==,于是MR PN ∥,由于OR 将MN 垂直平分,于是RNO RMO PNM ∠=∠=∠. 11.1.27★★在ABC △中,3A B ∠=∠,求证:2a b b c a b -⎛⎫= ⎪+⎝⎭,a 、b 、c 为ABC △的对应边长.解析 如图,延长CA 至D ,使223D BAC ABC ∠=∠=∠,于是DBA ABC ∠=∠,故CD BC =,AD a b =-.ABD △中,2D DBA ∠=∠,则2()AB AD AD BD =+.又由角平分线性质BD AD BC AC =,得()a a b BD b-=,22a b AD BD b -+=,代人前式,得222()()a b a b c b --=,即得结论.DACB评注 ABC △中,22()A B BC AC AC AB ∠=∠⇔=+,证明如下:延长CA 至D ,使AD AB =,于是2()D ABC BC AC AC AD ∠=∠⇔=+或()AC AC AB +.11.1.28★★已知AB CD ∥,E 、F 分别是AB 、CD 上任两点,DE 、FB 延长后交于M ,AF 、EC 延长后交于N ,求证:若AB CD ≠,则AD 、BC 、MN 共点;若AB CD =,则AD BC MN ∥∥.解析 如图,设AE a =,BE b =,CF c =,DF d =,延长AB 、DC 分别与MN 交于P 、Q ,设BP x =,CQ y =.由AP FQ ∥知a cb x y =+,同理d bc y x=+,即ay bc cx =+,dx bc by =+,于是ay cc dx by -=-,a b c d x y ++=,或AB CDBP CQ=.若AB CD =,则BP CQ =,又BP CQ ∥,做AD BC PQ ∥∥;AB CD ≠,由AB ∥CD ,得AD 、BC 、MN 共点(见题11.1.23).ADE FB C MPQN11.1.29★★正三角形ABC ,D 、E 、F 是BC 、CA 、AB 的中点,P 、Q 、R 分别在EF 、FD 、DE 上,A 、P 、Q 共线,B 、Q 、R 共线,C 、R 、P 共线,求FPPE. 解析 如图,不妨设ABC △边长为2,PF x =,QD y =,ER z =,则1PE x =-,1FQ y =-,1DR z =-.AE PQRBDCF由PE ER CD RD =,得11z x z -=-,同理11y z y -=-,11x y x -=-,于是121xy x -=-,121y x yx -=-,13111111212x x x z x x--=-=-=---,x y z ===.所以1x -=1FPx PE x ===- 11.1.30★★任给锐角ABC △,问在BC 、CA 、AB 上是否各存在一点D 、E 、F ,使FD BC ⊥,DE AC ⊥,EF AB ⊥?解析 这样的DEF △是存在的.作法如下:在BC 上任取一点D ′,作D ′E ′AC ⊥于E ′,分别过D ′、E ′作BC 、AB 的垂直线交于点F ′.A RF SB D'D CEE'F'若F ′恰在AB 上,则D ′、E ′、F ′,即为满足条件的三点D 、E 、F ;若,F ′不在AB 上,设C 、F ′,所在直线与AB 交点为F (因为ABC △是锐角三角形,所以交点必在AB 上),过F 分别作BC 、AB 的垂线交BC 、AC 于D 、E ,则FD BC ⊥,EF AB ⊥,连结DE ,易知CD CF CECD CF CE ==''',得DE ∥D ′E ′,由作法D ′E ′AC ⊥,所以DE AC ⊥,D 、E 、F 满足条件.11.1.31★★★已知凸四边形内有一点P ,APB ∠、BPC ∠、CPD ∠、DPA ∠的平分线分别交AB 、BC 、CD 、DA 于K 、L 、M 、N ,求证:四边形KLMN 为平行四边形的充要条件是P 为AC 、BD 的中垂线的交点.解析 若P 为AC 、BD 的中垂线之交点,则AP CP =,BP DP =,于是AK AP AP ANBK BP DP ND===,于是KN BD ∥,同理ML ∥BD ,又同理MN AC KL ∥∥,故四边形KLMN 为平行四边形.D反之,若四边形KLMN 为平行四边形,由于AN DM AP AK BLND MC CP KB LC⋅==⋅,故由梅氏定理,若MN 、KL 不与AC 平行,它们将与AC 交于同一点,这与NM KL ∥矛盾,因此NM AC ∥,AP CP =,同理BP DP =,故P 在AC 、BD 的中垂线上. 11.1.32★★★已知梯形ABCD 中,AD ∥BC ,E 、F 分别在AB 、CD 上,求证:若ED BF ∥,则AF CE ∥.又此时若ED 、AF 交于M ,CE 、BF 交于N ,问三直线AB 、MN 、CD 共点的条件.解析 如图(a),不妨议BA 、CD 延长后交于P ,于是有PQ PD BP PC =,PE PDPB PF=.PA D M EFN BC图(a)于是PA PC PB PD PE PF ⋅=⋅=⋅,由此可得PA PFPE PC=,故AF CE ∥. 因为四边形MENF 为平行四边形,MN 过EF 的中点,若P 、M 、N 共线,则由塞瓦定理,有AD EF ∥BC ∥.下面刻画E 或F 的位置,如图(b),设BD 与EF 交于Q ,AEk EB=,则由ED BF ∥,DF DQ EQ k FC BQ FQ ===,而111EQ AD K =++,1QF k BC k =+,故1ADk k BC =⋅,此即AEBE= ADEFQBC图(b)11.1.33★★如图,已知ABC △中,AD 、BE 、CF 交于G ,FH AD ∥,FH 延长后与ED 的延长线交于K ,求证:FH HK =.AFEMG N BH DJ CK解析 作EJ AD ∥,EJ 与CF 交于N ,FK 与BE 交于M ,则由平行,知FH AD EJFM AG EN==,故FH FM FG HD HKEJ EN GN DJ EJ====,于是FH HK =.11.1.34★★★已知ABC △,AD 、BE 、CF 是角平分线,M 、N 在BC 上,且FM AD EN ∥∥,求证:AD 平分MAN ∠.AF EPI TSBMDN C解析1 设ABC △内心为I ,FM 与BE 交于S ,EN 与CF 交于T ,连结EF ,交AD 于P .由角平分线及平行性质,有FM AD EN FS AI ET ==,故有FM FS SI FP AFEN ET IE PE AE====,又11802AFM BAC ∠=︒-∠∠AEN =∠,故AFM △∽AEN △,于是FAM EAN ∠=∠,于是AD 平分MAN ∠.解析2 由角平分线性质,知AE AB EC BC =,AF AC BF BC =,于是AE AB CE AF AC BF =⋅.又易见FM BFAD AB=,EN CE AD AC =,故EN CE AB FM BF AC ⋅=⋅,于是AE ENAF FM =,以下同解析1. 评注 注意解析1更好些,因为只要求AD 平分BAC ∠.不要求I 是内心,本题结论也成立.于是本题的逆命题是,由AD 平分MAN ∠得出AD 平分BAC ∠,而不能证明I 是内心.这个逆命题也是正确的,读诗者不妨一试.11.1.35★★P 为XOY ∠内一点,A 、B 在OX 上,C 、D 在OY 上,线段AD 、BC 交于P .若1111OA OD OB OC+=+,则OP 平分XOY ∠,反之亦然. 解析 如图,作平行四边形PQOR ,Q 、R 分别在OX 、OY 上.设QP OR a ==,OQ PR b ==. 此时易得1a b a b OD OA OC OB +=-+,因此1111a b a b b b OD OD OA OC OC OB --⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭,于是a b a bOD OC --=.但OD OC >,故a b =.所以平行四边形PQOR 是菱形,OP 为XOY ∠之平分线.XYBA Q POR C反之,可设所作平行四边形PQOR 为菱形.设菱形边长为n ,则1a PR RD aOA OA OD OD===-,即得111OA OD a +=.同理,111OB OC a+=,于是命题得证.11.1.36★★已知ABC △,三边分别为a 、b 、c ,AD 是角平分线.求AD 之长(用a 、b ,c 表示)解析 如图,延长AD 至E ,使E B ∠=∠,于是A 、B 、E 、C 共圆,又ABD △∽AEC △,故AB AC ⋅=()AD AE AD AD DE ⋅=+=22AD AD DE AD BD CD +⋅=+⋅.ABDCE设AB c =,AC b =,则ac BD b c =+,abCD b c=+,故AD ===. 11.1.37★★在ABC △中,AD 、AE 三等分BAC ∠,且BD =2,DE =3,EC =6,求AB 的长. 解析 如图,设AB x =,AD y =,则由角平分线性质知32AE x =,2AC y =. AB D E由于2AB AE AD BD DE ⋅-=⋅,即22362x y -=,同理2292184y x -=,消去y ,得AB x ==11.1.38★★★已知平行四边形ABCD ,点E 是点B 在AD 上的垂足,点F 在CD 上,90AFB ∠=︒,EG AB ∥,点G 在BF 上,点H 是AF 与BE 的交点,又DH 延长后与CB 的延长线交于点I ,求证:FI GH ⊥.解析 如图,作IK HF ⊥.对OKF △与HFG △来说,KF FG ⊥,IK HF ⊥,而90HFG IKF ∠=︒=∠,如果能证明两三角形(顺向)相似,那么第三组对应边OF 与HG 就垂直了,于是只需证明KF IK FG HF =或KF FGIK HF=.事实上设AF 、BC 延长后交于点J ,且设J θ∠=∠,则易知cos KF BO θ=,sin KI IJ θ=,于是cot cot cot KF BI DE FGIK IJ AD FBθθθ===,又HB BJ ⊥,故HBF θ∠=,于是tan FB HF θ=,代人上式,即得KF FGKI HF=. θθθCJ IB G KF HAE D§11.2相似三角形11.2.1★已知,B 是AC 中点,D 、E 在AC 的同侧,且ADB EBC ∠=∠,DAB BCE ∠=∠,证明:BDE ADB ∠=∠.解析 如图,易知DBE DBC EBC A ADB EBC A ∠=∠-∠=∠+∠-∠=∠. 又ABD △∽BDE △,故BD AD ADBE BC AB==,于是ADB △∽BDE △,故BDE ADB ∠=∠. DEA B C11.2.2★已知αβ+=α′+β′<180︒,sin sin αβ=sin sin αβ'',则αα=′,ββ='. 解析 如图,作ABC △与A △′B ′C ′,使B α∠=,B ∠′α=′,C β∠=,C ∠′β=',则由条件A A ∠=∠′,且sin sin sin sin AB A B AC A C ββαα'''===''',故ABC △∽A △′B ′C ′,从而B B ∠=∠′,C C ∠=∠′.此即αα=′,ββ=′.AB C A'B'C'评注 这个结果用途极广.11.2.3★线段BE 分ABC △为两个相似的三角形,求ABC △的各内角. 解析 如图,不妨设BCE △∽ABE △,BCE △比较“大”.BA EC由于BEA ∠>EBC ∠及C ∠,故只能有BEA CEB ∠=∠,于是BE AC ⊥.ABE CBE ∠=∠不可能(否则ABE △≌BCE △),故ABE C ∠=∠,CBE A ∠=∠,90ABC ∠=︒,BCAB=ABC △三内角为:30︒、60︒、90︒. 11.2.4★★设ABC △中,D 在BC 在上,且22BD AD BC AC =,求证:ABD △∽CBA △. AEB D C解析 过D 作DE AC ∥,E 是AB 是一点.于是BD EDBC AC=,代入条件并整理,即得ED ADAD AC=. 又EDA DAC ∠=∠,于是EDA ∠∽DAC △,于是BAD C ∠=∠,故ABD △∽CBA △.。

(完整版)初中物理凸透镜成像竞赛题(2)

(完整版)初中物理凸透镜成像竞赛题(2)

关于凸透镜成像(难题)1.如图所示,在凸透镜的两个焦点处,垂直光轴放置两个大小相同的平面镜,镜面相对,每个平面镜都关于凸透镜的光轴上下对称,现在左侧平面镜的中心处挖去一个圆孔,在凸透镜左侧两倍焦距处一个点光源,则点光源在该光具组中所成的虚像个数为()A.一个B.两个C.无数个D.一个也没有2.如图所示,平面镜和凸透镜的主光轴垂直并处在凸透镜两倍焦距处,在凸透镜另一侧两倍焦距处有一个点光源S.现将平面镜向凸透镜靠近的过程中,关于点光源所成的像,下述结论中错误的是()A.平面镜在移动过程中,最多只能成两个实像B.平面镜移动到一定位置时,正好只成一个实像C.平面镜移动到一定位置时,正好只成一个虚像D.平面镜移动到一定位置时,正好既成一个实像,又成一个虚像3.如图所示,P、Q为凸透镜主轴O1O2上的两点。

若物体放在P点可得到一个放大的实像,若在Q点可得到一个缩小的实像,则下列判断中正确的是()A.凸透镜必须在P、Q之间B.凸透镜一定不在P、Q之间C.凸透镜可在P点左侧,也可在P、Q之间D.凸透镜可在Q点右侧,也可在P、Q之间4.如图所示,竖直放置的不透光物体(足够大)中紧密嵌有一凸透镜,透镜左侧两倍焦距处,有一个与主光轴垂直的物体AB,在透镜右侧三倍焦距处竖直放置一平面镜MN,镜面与凸透镜的主光轴垂直,B、N两点都在主光轴上,AB与MN高度相等,且与透镜上半部分等高。

遮住透镜的下半部分,则该光具组中,物体AB的成像情况是()A.两个实像,一个虚像B.一个实像,两个虚像C.只有一个虚像D.只有一个实像5.如图所示,OO'为凸透镜的主光轴,将点光源放在A点时,像在B点;将点光源放在B点时,像在C点。

当将点光源放在C点时,则()A.一定在B点成一个实像B.一定在A点的左侧成一个虚像C.可能在B、C之间成一个实像D.可能在C点的右侧成一个虚像6.平面镜水平放置且镜面朝上,在镜面上方竖直放置一凸透镜,在凸透镜左侧主光轴上两倍焦距处有一点光源S,关于点光源在该光具组中成像情况的判断,正确的是()A.两个实像,两个虚像B.两个实像,一个虚像C.一个实像,两个虚像D.一个实像,三个虚像7.如图a,蜡烛在光屏上能成一清晰的像。

初中物理竞赛-综合预赛模拟试题(2)

初中物理竞赛-综合预赛模拟试题(2)

2L g 2Lg一、单选题(3 分⨯ 40=120 分) 初三物理竞赛预赛模拟考试卷(3)1. 一船在静水中以速度v1,往返于沿河流方向的甲、乙两地需时间t1,若水流速度为v2,船仍以速度v1,往返于甲、乙两地需时间t2,则t2 等于( )v t v 2v v 2t v 2t A.1 1 .B. 1 2 t . C. 2 1 . D. 11 .v - vv 2 - v 2 1 v 2 - v 2 v 2 - v 21 21212122. 如图所示,河宽为 h ,水流流速恒定为 u ,小船在静水中的速度为v.今令小船自A点出发渡河,第一次小船以AB航线渡河,第二次小船沿AC航线渡河,已知AB、AC与河岸垂线间的夹角都为 a ,则两次渡河所需时间相比 ( )A.沿AB航线较长. B.沿AC航线较长.C.两航线相等. D.无法比较. 3. 如图所示,均匀直杆 AB 的 A 端装有垂直于纸面的水平转动轴,B 端搁在小车上,杆与车的水平上表面间滑动摩擦系数为μ,小车静止时,杆对车的压力大小为N 1.当小车水平向左运动时,杆对车的压力大小为N 2, 则 ( )A .N 1=N 2.B .N 1<N 2.C .N 1>N 2.D .无法确定. 4. 如图所示,密度为 ρ、边长为 L 的均匀立方体,表面光滑,静止在水平面上,并抵住一个小木桩.有风与水平方向成 45°角斜向上地吹到立方体的一个面上,产生压强为 p ,则使立方体刚要翻动的 p 值为 ()A . 2Lg .B . .C . Lg .D . .3 25. 如图所示,小物块位于光滑斜面上,斜面位于光滑水平地面上.从地面上看,在小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A .垂直于接触面,做功为零.B .垂直于接触面,做功不为零.C .不垂直于接触面,做功不为零.D .不垂直于接触面,做功为零. 6. 如图所示,把一端封闭的玻璃管,装满水银后竖直地倒立在水银槽内,管子的顶端高出槽中水银面 36cm ,在标准大气压下,则 ( )A .水银对玻璃管顶的压强为零B .水银对玻璃管顶的压强为 36 cm 水银柱C .水银对玻璃管顶的压强为 40 cm 水银柱D .如果在玻璃管顶端开一个小孔,水银不会从小孔中冲出7. 如图所示,一正方体小铁块放在水银与水的交界面处,处于静止状态;如果又向容器中加水,在加水过程中,则铁球将( )A .下沉一些B .静止不动C .上浮一些D .无法确定 8.一个凸透镜在空气中时,测出它的焦距是 f ,把它放在水中,它的焦距 f /将( )。

初中数学竞赛专题复习第二篇平面几何第9章三角形试题 新人教版

初中数学竞赛专题复习第二篇平面几何第9章三角形试题 新人教版

第9章三角形§9.1全等三角形9.1.1★已知等腰直角三角形ABC ,BC 是斜边.B ∠的角平分线交AC 于D ,过C 作CE 与BD 垂直 且交BD 延长线于E ,求证.2BD CE =.解析如图,延长CE 、BA ,设交于F .则FBE ACF ∠=∠,AB AC =,得ABD ACF △△≌,CF BD =. 又BE CF ⊥,BE 平分FBC ∠,故BE 平分CF ,E 为CF 中点,所以2CE FC BD ==.9.1.2★在ABC △中,已知60A ∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,P 、Q 为ABC △形外两点,使PE AB ⊥,2AB PE =,QF AC ⊥,2ACQF =,若1GP =,求PQ 的长. F AE DBC解析如图,连结EG 、FG ,则EG AC ∥,FG AB ∥,故150PEG QFG ∠=︒=∠.又12QF AC EG ==,12PE AB FG==,故PEG GFQ △△≌,所以PG GQ =,30EGP FGQ FQG FGQ ∠+∠=∠+∠=︒,又60EGF ∠=︒,所以90PGQ ∠=︒,于是PQ ==ACG QPEF9.1.3★在梯形ABCD 的底边AD 上有一点E ,若ABE △、BCE △、CDE △的周长相等,求BCAD. 解析作平行四边形ECBA ',则A BE CEB '△△≌,若A '与A 不重合,则A '在EA (或延长线)上,但由三角形不等式易知,A '在EA 上时,ABE △的周长>A BE '△的周长;A '在EA 延长线上时,ABE △的周长A BE '<△周长,均与题设矛盾,故A 与A '重合,AE BC ∥,同理ED BC ∥,12BC AD =.B CEDAA'9.1.4★★ABC △内,60BAC ∠=︒,40ACB ∠=︒,P 、Q 分别在边BC 、CA 上,并且AP 、BQ 分别是BAC ∠、ABC ∠的角平分线.求证.BQ AQ AB BP +=+. 解析延长AB 到D ,使BD BP =,连结DP .易知80ABC ∠=︒,所以40QBC ACB ∠=︒=∠,AC AQ QC AQ QB =+=+.ABCDQP因1402BDP BPD ABC ACB ∠=∠=∠=︒=∠,所以ADP ACP △△≌,AC AD AB BD AB BP ==+=+. 于是BQ AQ AB BP +=+.9.1.5★★设等腰直角三角形ABC 中,D 是腰AC 的中点,E 在斜边BC 上,并且AE BD ⊥.求证. BDA EDC ∠=∠.解析如图,作BAD ∠的平分线AF ,F 在BD 上.ABCEFD由于45BAF ACE ∠=︒=∠,AB AC =,ABF CAE ∠=∠,故ABF CAE △△≌,故EC AF =. 又45C FAD ∠=∠=︒,AD CD =,于是AFD CED △△≌,于是ADB EDC ∠=∠.9.1.6★★设ABE △、ACF △都是等腰直角三角形,AE 、AF 是各自的斜边,G 是EF 的中点,求证.GBC △也是等腰直角三角形.解析如图,作AQ 、GP 、EM 、FN 分别垂直于直线BC ,垂足为Q 、P 、M 、N .AE FGMBQ PC由90EBM ABQ BAQ ∠=︒-∠=∠,AB BE =,EMB BQA △△≌,故有EM BQ =,BM AQ =.同理FN QC =,CN AQ =,所以BM CN =, EM FN BQ QC BC +=+=. 又EG GF =得BP CP =,且()1122GP EM FN BC =+=,故GP BP CP ==.又由GP BC ⊥,故 结论成立.9.1.7★★已知AB AC ⊥,AB AC =,D 、E 在BC 上(D 靠近B ),求证.222DE BD CE =+的充要条件是45DAE ∠=︒.ABEFC解析如图,作FC BC ⊥,且FC BD =,则45ACF B ∠=︒=∠,又AB AC =,故ABD ACF △△≌,AD AF =,且490D F BAC ∠=∠=︒.若45DAE ∠=︒,则45EAF ∠=︒,因AD AF =,得ADE AFE △△≌,则222222DE EF EC FC EC BD ==+=+.反之,若222DE EC BD =+,由222EF EC FC =+得EF DE =.又AD AF =,故ADE AEF △△≌,又90DAF ∠=︒,于是45DAE ∠=︒.9.1.8★★两三角形全等且关于一直线对称,求证.可以将其中一个划分成3块,每一块通过平移、 旋转后拼成另一个三角形.解析如图,设ABC △与A B C '''△关于l 对称,分别找到各自的内心I 、I ',分别向三边作垂线ID 、IE 、 IF 与I D ''、I E ''、I F '',于是6个四边形AFIE ……均为轴对称的筝形,且四边形AFIE ≌四边形A E J F '''',所以两者可通过平移、旋转后重合;同理,另外两对筝形也可通过平移、旋转后重合.AECDF BA'B'C'D'F'E'l l'l9.1.9★★★已知.两个等底等高的锐角三角形,可以将每个三角形分别分成四个三角形,分别涂上红色、蓝色、黄色和绿色,使得同色三角形全等.解析如图,设BC B C ''=,A 至BC 距离等于A '至B C ''距离,取各自的中位线FE 、F E '',则FE FE '=.由ABC △、A B C '''△均为锐角三角形,可在BC 、B C ''上各取一点D 、D ',使图中标相同数字的角相等,于是AEF D E F '''△△≌,DEF A E F '''△△≌,FBD FD B ''△△≌,EDC E C D '''△△≌. 评注还有一种旋转而不是对称的构造法.A BC DEF A'B'D'C'E'F'123451465264152432519.1.10★已知ABC △与A B C '''△中,A A '∠=∠,BC B C ''=,ABC A B C S S '''=△△,ABC △与A B C '''△是否一定全等?A B CA'解析如图,让B 与B '重合,C 与C '重合,A 、A '在BC 同侧,若A 与A '重合,则ABC A B C '''△△≌;否则由条件知四边形ABCA '为梯形和圆内接四边形,于是它是一个等腰梯形,于是ABC A CB '∠=∠,AB A C '=,ABC A C B '''△△≌.综上,可知ABC △与A B C '''△全等. 评注本题也可以运用三角形面积公式、余弦定理结合韦达定理来证明.9.1.11★★如图所示,已知ABC △、CED △均为正三角形,M 、N 、L 分别为BD 、AC 和CE 的中点,求证.MNL △为正三角形.ABEDM TS CN L解析如图,设BC 、CD 中点分别为S 、T ,连结NS 、SM 、MT 、TL .则四边形CSMT 为平行四 边形,设BCD θ∠=,则60180240NSM LTM θθ∠=︒+︒-=︒-=∠,360120240NCL θθ∠=︒-︒-=︒-,又NC SN SC MT ===,LC LT CT SM ===,故CNL SNM TML △△△≌≌, NL NM ML ==,于是MNL △为正三角形.评注注意有时S 在MN 另一侧,此时120NSM LTM NCL θ∠=∠=∠=︒+,不影响最终结论.9.1.12★★★ABC △中,90A ∠=︒,AB c =.6AC =,BC a =,M 是BC 中点,P 、Q 分别在AB 、AC 上(可落在端点),满足MP MQ ⊥,求22BP CQ +的最小值(用a 、b 、c 表示).解析如图,延长QM 至N ,使QM MN =,连结PN 、BN 、PQ 、AM 由于M 是BC 、NQ 的中点,故BN CQ =,BN AC ∥,BN BP ⊥,又PM 垂直平分NQ ,故222222BP CQ BP BN PN PQ +=+==.取PQ 中点K (图中未画出),则2a PQ AK MK AM =+=≥,于是22BP CQ +的最小值为24a ,取到等号仅当PQ AM =即四边形APMQ 为矩形时.NMP CBQA9.1.13★★★已知P 为ABC △内一点,PAC PBC ∠=∠,由P 作BC 、CA 的垂线,垂足分别是L 、M .C ABDEFMP L设D 为AB 中点,求证.DM DL =.解析如图所示,取AP 中点E ,BP 中点F ,连ME 、ED 、DF 、FL .显然四边形DEPF 是平行四边形,所以EP DF =,FP DE =.DEP DFP ∠=∠.又由PM AC ⊥,所以EM EA EP DF ===,2PEM PAC ∠=∠;同理FL DE =,2PFL PBC ∠=∠.由PAC PBC ∠=∠,所以DEM DEP PEM DFP PFL DFL ∠=∠+∠=∠+∠=∠,从而DFM LFD △△≌,所以DM DL =.9.1.14★★在ABC △中,已知60CAB ∠=︒,D 、E 分别是边AB 、AC 上的点,且60AED ∠=︒,ED DB CE +=,2CDB CDE ∠=∠,求DCB ∠的度数. 解析如图,延长AB 到F ,使BF ED =,连CF 、EF .CEA DB F因为60EAB AED ∠=∠=︒,所以60FDA ∠=︒,120EDB CED ∠=∠=︒, AD AE ED BF ===.CE ED DB DB BF DF =+=+=.于是,AC AF =,60ACF AFC ∠=∠=︒. 又因为120EDB ∠=︒,2CDB CDE ∠=∠, 所以40CDE ∠=︒,80CDB ∠=︒,18020ECD CED EDC ∠=︒-∠-∠=︒.在CDA △和CBF △中,CA CF =,60CAD CFB ∠=∠=︒,AD BF =,所以CDA CBF △△≌,故 20FCB ACD ∠=∠=︒.于是,6020DCB CDE FCB ∠=︒-∠-∠=︒.9.1.15★★在ABC △中,B ∠、C ∠为锐角,M 、N 、D 分别为边AB 、AC 、BC 上的点,满足AM AN =,BD DC =,且BDM CDN ∠=∠.求证.AB AC =.解析若DM DN >,则在DM 上取一点E ,使DN DE =.连结BE 并延长交AC 于F ,连结EN .在BED △与CND △中,BD DC =,BDE CDN ∠=∠,DE DN =,故BDE CDN △△≌.于是有EBD NCD ∠=∠,BE NC =,所以FB FC =.又易知EN BC ∥,因此ENF ACB ∠=∠. 但另一方面,由DM DN >,知ABC FBC ACB ∠>∠=∠,所以AFM NE BDC1(180)2ANM BAC ∠=︒-∠()12ABC ACB =∠+∠ ()12ACB ACB ACB >∠+∠=∠. 从而ENF MNA ACB ∠>∠>∠.矛盾,故假设DM DN >不成立. 若DM DN <,同法可证此假设不成立.综上所述DM DN =,于是由BDM CDN △△≌ 知DBM DCN ∠=∠,从而AB AC =.9.1.16★★如图,ABC △为边长是1的等边三角形,BDC △为顶角()BDC ∠是120︒的等腰三角形,以D 为顶点作一个60︒角,角的两边分别交AB 、AC 于M 、N ,连结MN ,形成一个AMN △. 求AMN △的周长.AM NBC DE解析延长AC 到E ,使CE BM =,连结DE .易知在BMD △与CED △中有BD DC =,90MBD ECD ∠=∠=︒,BM CE =,从而MBD ECD △△≌.所以MD DE =,MDB EDC ∠=∠. 于是在DMN △与DEN △中有DN DN =,MD DE =,60MDN MDB CDN EDC CDN EDN ∠=︒=∠+∠=∠+∠=∠.从而MDN EDN △△≌,故NE MN =. 所以AM MN AN AM NE AN AM NC CE AN AM MB NC AN ++=++=+++=+++= 2AB AC +=.9.1.17★★★ABC △为等腰直角三角形,90C ∠=︒,点M 、N 分别为边AC 和BC 的中点,点D 在射线BM 上,且2BD BM =,点E 在射线NA 上,且2NE NA =,求证.BD DE ⊥. 解析取AD 中点F ,连EF .EADF MBNC在BMC △与DMA △中,AM MC =,12BM BD MD ==,BMC DMA ∠=∠,故AMD CMB △△≌.于是有ADM CBM ∠=∠,AD BC =,AD BC ∥.同样易知BMC ANC △△≌,于是有CBM CAN ∠=∠.在ANC △与EAF △中,12NA NE AE ==,1122AF AD BC NC ===,由AD BC ∥知EAF ANC ∠=∠,所以FAF ANC △△≌.于是有AEF NAC ∠=∠,90EFA ACN EFD ∠=∠=︒=∠.从而在EAF △与EDF △中有AF FD =,EF EF =,故FAF EDF △△≌.于是有EDF EAF ∠=∠, FED FEA ∠=∠.总之,90EDF MDA EDF NAC EDF AEF EDF FED ∠+∠=∠+∠=∠+∠=∠+∠=︒,即 BD DE ⊥.9.1.18★★★已知ABCD ,延长DC 至P ,使DP AD =,连结PA 与BC 交于Q ,O 为PQC △的外心,则B 、O 、C 、D 共圆.ADBC O PQ解析如图连好辅助线,由于DPA BAP PAD CQP ∠=∠=∠=∠,故CQ CP =,设OCP OCQ OQC θ∠=∠=∠=,则180BQO DCO θ∠=︒-=∠,又BQ AB CD ==,QO CO =,故BQO DCO △△≌,于是QOB COD ∠=∠,于是2BOD QOC QPC BCD ∠=∠=∠=∠,因此B 、O 、C 、D 共圆.9.1.19★★★已知ABC △和A B C '''△,A A '∠=∠,且BC B C ''=,D 和D '分别是BC 、B C ''的中点,AD A D ''=,问两个三角形是否必定全等?解析如图,作出ABC △外心O (A B C '''△及相应的O '、D '图中未画出). 若O 在BC 上,则90A A '∠=︒=∠,此时ABC △与A B C '''△未必全等. 若O 不与D 重合,则2sin 2sin BC B C AO A O A A ''''===', cos cos OD BO A AO A == cos A O A O D '''''==,AD A D ''=.当A 、O 、D 共线,则AD BC ⊥,A D B C ''''⊥,所以ABD A B D '''△△≌,ACD A C D '''△△≌,从而 ABC A B C '''△△≌.当A 、O 、D 不共线,则AOD A O D '''△△≌,ODA O D A '''∠=∠,于是'ADC A D C ''∠=∠(或A D B '''∠),于是由三角形全等可得AC A C ''=(或A B ''),AB A B ''=(或A C ''),故有ABC A B C '''△△≌(或A CB '''△). 评注此题亦可用中线长公式证明.9.1.20★★如果两个三角形满足“ASS ”,它们不一定全等,此时称它们是相近的,现在有一三角形1△,作2△与之“相近”,……一般有1n +△与n △相近,问是否存在一个k ,使1△与k △相做且不全等? 解析这是不可能的.因为由正弦定理,1△与2△有等大的外接圆(它们有一对内角相等或互补),从而 推出1△与x k △有等大的外接圆,它们不可能只相似不全等.9.1.21★★★是否存在两个全等的三角形△与'△,△可划分为两个三角形1△与2△,'△可划分成两个三角形1'△与2'△,使12△△≌,2△与2'△却不全等?解析这样的两个三角形是存在的,如图(a)、(b),设不等边三角形ABC A B C '''△△≌,其中22''BC AB AC A B A C B C ''''=⋅=⋅=,不妨设AC A C ''=是各自的最长边,则AB 、A B ''为各自的最短边.在AC 、B C ''上分别找D 、D ',使CD AB =,BA D C ''∠=∠,则由于2BC AB AC CD AC =⋅=⋅,故ABC BDC △∽△,所以'BDC ABC A B C ''∠=∠=∠,又因为C B A D '''∠=∠,CD A B ''=,因此BDC D B A '''△△≌,而ABD △显然不与A C D '''△全等.(若90B B '∠=∠=︒,还可避免相似.) ABCDA'B'D'图(a)图(b)9.1.22★★★已知ABC △中,60A ∠=︒,I 是ABC △内心,AI 的垂直平分线分别交AB 、AC 于M 、N ,E 、F 在BC 上,BE EF FC ==,求证.ME NF ∥.解析如图,连结MI 、BI 、CI 、NI .易诮AMN △与IMN △为全等之正三角形,120BIC ∠=︒, 180MIB NIC ∠+∠=︒.ANMTB E F CIS两端延长MN 至S 与T ,使SM MN NT ==,则60SMB AMN BMI ∠=∠=∠=︒,于是SMB IMB △△≌,同理NTC NIC △△≌,因此180S T MIB NIC ∠+∠=∠+∠=︒,SB TC ∥.而M 、N 将ST 三等分,E 、F 将BC 三等分,于是由平行线分线段成比例,知ME NF ∥(SB ∥). 评注读者可以考虑.如果ME NF ∥是否有60BAC ∠=︒.9.1.23★★★已知锐角三角形ABC ,60BAC ∠=︒,AB AC >,ABC △的垂心和外心分别为M 和O ,OM 分别与AB 、AC 交于X 、Y ,证明.AXY △的周长为AB AC +,OM AB AC =-.解析如图,连结AO 、BO 、CO 、AM .由AB AC >可知O 在AB 一侧,M 在AC 一侧.因120BOC ∠=︒,故AO =,而tan BC AM BAC ==∠于是AO AM =,AOM AMO ∠=∠. 又90OAB C YAM ∠=︒-∠=∠,故AXY AYX ∠=∠,AXY △为正三角形.又60XOB YOC YOC OCY ∠+∠=︒=∠+∠,故XOB YCO ∠=∠,120BXO CYO ∠=︒=∠,又BO CO =,故XBO YOC △△≌,XY XO YO BX YC =+=+.于是AX XY YA AB AC ++=+.又XO MY YC ==,做()()112233OM XY YC AB AC AC AB AC AB AC ⎡⎤=-=+--+=-⎢⎥⎣⎦.§9.2特殊三角形9.2.1★在直角三角形ABC 中,BC 是斜边,5AC =,D 是BC 中点,E 是AC 上一点,2DE AE ==,求AB .BADEC解析如图,连结AD .设AD CD x ==,因2DE =,2AE =,3CE =,则 22223x -=⨯,x =AB ==9.2.2★已知ABC △中,14AB =,16BC =,28CA =,P 为B 在A ∠平分线上的射影,M 为BC 中 点,求PM .解析延长BP 交AC 于Q .由BAP QAP ∠=∠.AP BQ ⊥知BP QP =,AB AQ =.又BM CM =,故()()11128147222PM CQ AC AQ =-=⨯-=∥.ABCQ P M9.2.3★等腰三角形ABC 中,AB AC =,D 为直线BC 上一点,则22AB AD BD CD -=⋅(D 在BC 上),22AD AB BD CD -=⋅(D 在BC 外). 解析如图,设D 在BC 上且较靠近B .作AE BC ⊥于E ,则E 为BC 中点,于是AB D E C()()BD CD BE DE CE DE ⋅=-⋅+2222BE DE AB AD =-=-.当D 在BC 外时的结论同理可证.评注这是斯图沃特定理在等腰三角形的特殊情形,具有十分广泛的用途(例如题9.2.1),亦可用相 交弦定理证明.9.2.4★★已知锐角三角形ABC 中,AD 、CE 是高,H 为垂心,AD BC =,F 是BC 的中点,求证.12FH DH BC +=.AEBFDCH解析如图,连结EF ,则12EF CF BC ==.于是2222FH EF EH CH EF AH HD EF =-⋅=-⋅=- 222AH HD HD HD EF HD AD ⋅-+=-⋅+22222HD EF HD BC HD EF HD =-⋅+=-⋅ ()22EF HD EF HD +=-.由于EF FH HD >>,故12FH EF DH BC DH =-=-. 9.2.5★已知斜边为AC 的直角三角形ABC 中,B 在AC 上的投影为H .若以AB 、BC 、BH 为三边可以构成一个直角三角形,求AHCH的所有可能值. BHAC解析显然由AB 、BC 、BH 构成的直角三角形中,BH 不是斜边,且AB BC ≠.若AB BC >,则AB 为斜边.设AB c =,BC a =,BH h =,则由ABC △的面积知h ac ,又h =,故4422c a a c -=.易知2222AH AB c kCH BC a ===,则由前式知21k k -=,得k =,故AH CH =同理,若AB BC <,可得AH CH =.所以AHCH9.2.6★★已知ABC △中,AD 为高,D 在BC 上, 以下哪些条件能判定AB AC =. (1)AB CD AC BD +=+. (2)AB CD AC BD ⋅=⋅;(3)1111AB CD AC BD+=+. AB D C解析设BD x =,CD y =,AD h =,则AB ,AC先看条件y x =.若x y =,则AB AC =;否则不妨设x y >,则22x y -==.x y =+,于是0h =,矛盾. 故AB AC =.再看见条件(2).=22222222h y x y h x x y +=+,于是x y =,故AB AC =. 最后条件(3).11y x =+.于是22x y xy -=.若x y ≠,则()xy x y =+,仍有0h =,矛盾,故AB AC =.所以三个条件都能判定AB AC =.9.2.7★已知P 是等腰直角三角形ABC 的斜边BC 上任意一点,求222BP CP AP +.解析如图,作AD BC ⊥于D .AB D CP不妨设1AD BD CD ===.P 在CD 上,PD a =,则1BP BD PD a =+=+,1CP CD PD a =-=-,于是()()222221122BP CP a a a +=++-=+.又22221AP AD PD a =+=+.故2222BP CP AP +=.评注请读者考虑,若对BC 上任一点P ,有222BP CP AP+为定值,是否可认为ABC △为等腰直角三角形. 9.2.8★★在ABC △中,19AB =,17BC =,18CA =,P 是ABC △内一点,过点P 向ABC △的 三边BC 、CA 、AB 分别垂线PD 、PE 、PF ,垂足分别为D 、E 、F ,且27BD CE AF ++=,求BD BF + 的长.解析如图,由于2222220BD CD CE AE AF BF -+-+-=,于是AFEPBDC()()222222(17)18190BD BD CE CE AF AF --+--+--=,此即171819487BD CE AF ++=.而181818486BD CE AF ++=,故1AF BD -=.所以118BD BF BD AB AF AB +=+-=-=. 9.2.9★★已知ABC △中,AB AC =,AE 是BC 的中垂线,AE BC =,3BDC BAC ∠=∠, 求ADDE.AF DBEC解析如图,不妨设1BE CE ==,则2AE =,AB =.作ABD ∠的平分线BF ,由于3BDE BAE ABD BAE ∠=∠=∠+∠,故ABF DBF BAE ∠=∠=∠.因此AF BF =,ABD BFD △∽△, AB AD BD BF BD DF ==,从而2BD DF DA =⋅,DB ADDF AB DB⋅=+,所以()2DA BD BD AB =⋅+. 设DE x=,则221BD x =+,2DA x=-,因此()2221x x -=+,()223455x x -=+,2112440x x -+=,211x =(2x =舍).于是2011AD =,10AD DE =. 9.2.10★★正三角形ABC 内有一点P ,P 关于AB 、AC 的对称点分别为Q 、R ,作平行四边形QPRS ,求证.AS BC ∥.A SMRQBCP解析如图,设QS 与AB 交于M ,连结MP ,则60Q ∠=︒,AB 垂直平分PQ ,QM PM =,MPQ △ 为正三角形,MP PQ SR ==,于是四边形MPRS 为等腰梯形,PR 的中垂线即MS 的中垂线. 于是60SAC MAC C ∠=∠==∠,AS BC ∥.9.2.11★★AB 与O 相切于点B ,AC 与O 相交于C 、D ,若45C ∠=︒,60BDA ∠=︒,CD =求AB .BC D AK T解析如图,由题意可得45ABD ∠=︒,作BK AC ⊥于K ,则BK CK=,又CK CD DK =+=,故32BK =,BD =再作AT BD ⊥于T ,设BT AT x ==,则DT =,x =x =于是6AB ==.9.2.12★已知大小相等的等边ABC △与等边PQR △有三组边分别平行,一个指向上方,一个指向 下方,相交部分是一个六边形,则这个六边形的主对角线共点.A D KR QEHBFGCP解析如图,设两个三角形的边的交点依次为D 、E 、F 、G 、H 、K .设ABC △、PQR △的高为h ,则正ADK △的高h =(RQ 与BC 的距离)=正FPG △的高,于是DK FG ∥,DG 、KF 互相平分,同理DG 、EH 互相平分,于是DG 、EH 、KF 的中点为同一点,结论成立.9.2.13★★★★求证.过正三角形ABC 的中心O 任作一条直线l ,则A 、B 、C 三点至l 的距离平方和为常数.AlB'A'OC'B QC P解析如图,不妨设l 与AB 、AC 相交,且与BC 延长线交于P (平行容易计算).由中位线及重心性质,知BB CC AA '''+=.故222222()B B C C A A B B C C B B C C '''''''++=++⋅.连结OB 、OC ,作OQ BC ⊥,易知B BP QOP C CP ''△∽△∽△,故C C CP OQ OP '=,B B BPOQ OP'=. 对于等腰三角形OBC ,有22OP OC CP BP -=⋅.因此()()222222222223OQ OQ B B C C B B C C CP BP CP BP BC CP BP OP OP ''''++⋅=++⋅=+⋅= ()222222333OQ BC OP OC OQ OP+-=(定值),这里用到了BC =. 于是A 、B 、C 三点至l 的距离平方和为22162OQ BC =,结论得证.§9.3三角形中的巧合点9.3.1★已知.H 是ABC △内一点,AH 、BH 、CH 延长后分别交对边于D 、E 、F ,若AH HD BH HE CH HF ⋅=⋅=⋅,则H 是ABC △的垂心,解析如图,由条件知AHE BHD △∽△,故AEH BDH ∠=∠,同理,AFH CDH ∠=∠,故180AFH AEH ∠+∠=︒.A FEHBDC又FBH ECH △∽△,故BFH CEH ∠=∠,这样可得90AFH AEH ∠=∠=︒,故H 为ABC △之垂 心.9.3.2★★求证.到三角形三顶点的距离平方和最小的点是三角形的重心.解析设ABC △中,AD 、BE 、CF 是中线,G 是重心,M 是任一点.由斯图沃特定理,并考虑到 结论成立. 123DG GA AD =∶∶∶∶,得2222122339MG AM DM AD =+-22212233AM DM GD =+-.① 又由中线长公式,有 ()22221124MD BM CM BC =+-, ()22221124GD BG CG BC =+-. 代入式①,得()()222222230MG MA MB MC GA GB GC =++-++≥.结论成立. 9.3.3★★★已知,H 是锐角ABC △的垂心,D 是BC 中点,过H 作DH 的垂线,交AB 、AC 于M 、N ,求证.H 是MN 中点.AQ NMHBD PC解析设ABC △两条高为AP 、CQ .又不妨设D 在BP 上.由于HAM DCH ∠=∠,90AHM DHP HDC ∠=︒-∠=∠,故AMH CHD △∽△,于是MH AH HD CD =,同理NH AHHD BD=, 又CD BD =,故MH NH =.9.3.4★★★ABC △的边BC 、CA 、AB 上分别有点D 、E 、F ,且BD CE AFDC EA FB==,求证.ABC △的重心与DEF △的重心是同一点.解析在AB 上取一点M ,使MD AC ∥,则MD BD CEAC BC AC==,所以MD CE =,四边形MDCE 为平行四边形,设MC 与DE 交于N ,又设BC 的中点为,P 连结PN 、AP 、FN ,AP 与FN 交于G ,于是由 BM BD CE AF AB BC AC AB ===,得RM AF =,于是1122PN BM AF ∥∥,于是12PG GN PN GA FG AF ===,所以G 为ABC △与DEF △之重心.AFMG EBDPCN9.3.5★★★已知ABC △,60A ∠=︒,G 是ABC △重心,120BGC ∠=︒,求证.ABC △是正三角形. 解析设ABC △三条中线分别为AD 、BE 、CF .连EF 为中位线.于是由条件知A 、F 、G 、E 共圆,故GBD FEG BAD ∠=∠=∠,于是2BD GD DA =⋅.由于12BD BC =,13GD AD =,代入,得AD =. 在ABC △外作等腰BCP △,使BP CP =,120BPC ∠=︒,连结DP ,DP BC ⊥.由圆心角与圆周角的关系,211333GP BP AD AD AD GD PD ====+=+,故G 、D 、P 三点共线,故AD BC ⊥,于是AB AC =,又60RAC ∠=︒,故ABC △为正三角形.AFEBD CPG9.3.6★★★已知D 是BC 上一点,ABD △、ECD △、BCF △都是正三角形,A 、E 在BC 同侧,F 在另一侧,求证.以这三个正三角形的中心为顶点的三角形是正三角形,且它的中心在BC 上.又问此题如何推广?A BCEFR R'DQ'P'Q解析如图,设P 、Q 、R 分别为BCF △、DCE △和ABD △的中心,则由题11.2.25知PQR △为正三角形.过P 、Q 、R 分别作BC 的垂线PP '、QQ '、RR ',则RR QQ PP BD CD BC ⎛'''=== ⎝⎭,又BD CD BC +=, 故RR QQ PP '''+=.又设RQ 中点为S (图中未画出),SS BC '⊥于S ',则SS PP ''∥,且()1122SS RR QQ PP ''''=+=.设SP 与BC 交于G ,则12SG SS GP PP '==',所以G 为PQR 的中点. 评注此题不难推广,只需AB DE CF ∥∥,AD CE BF ∥∥,此时ABD DC FCB △∽△∽△, P 、Q 、R 为各自对应的重心,则必有PQR △之重心位于BC 上. 9.3.7★★★ABC △内有一点P ,连结AP 、BP 、CP 并延长,分别与对边相交,把ABC △分成六个小三角形,若这六个小三角形中有三个面积相等,则点P 是否必为ABC △之重心? 解析如图,设AD 、BE 、CF 交于P .由对称性,可分四种情况讨论.AFEPBDC(1)BPD CDP BPF S S S ==△△△.于是BD CD =,2CPPF=,由梅氏定理(或添平行线),得AF BF =,P 为中心.(2)BPD CDP APF S S S ==△△△.此时FD AC ∥,故D 、F 分别为BC 、AB 中点,P 为重心.(3)BPD BPF APE S S S ==△△△.此时有DE AB ∥,由塞瓦定理,AF BF =,于是APF BPF S S =△△,回到情形(1).(4)APF BPD CPE S S S ==△△△,见题15.1.58.综上所知,答案是肯定的.9.3.8★★★设有一个三角形三角之比为124∶∶,作两较大角的平分线,分别交对边于M 、N .求证.这个三角形的重心在MN 上.解析如图(a),设A ∠为最小角,作中线AD ,交MN 于G ,于是只要证明2AG GD =.分别作EB AD CF ∥∥,E 、F 在直线MN 上,则2GD EB CF =+,故问题变成1EB FCAG AG+=,或 1BC BC CM BN CF BEAB AC AM AN AG AG+=+=+=. 不妨设A θ∠=,2C θ∠=,4B θ∠=,7180θ=︒,在AC 上找一点P ,使ABP θ∠=,又作PQ BC ∥,Q 在AB 上,则各角大小如图(b)所示.于是BC BP AP BQ ===,故 11BC AP CP BQ BCAC AC AC AB AB==-=1-=-. ABCD E FNMGA QP B C2θ3θ2θ3θ3θθθ图(a)图(b)9.3.9★★★不等边锐角ABC △中,H 、G 分别是其垂心和重心,求证.若112HABHACHBCS S S +=△△△,AG HG ⊥.ABDECGH解析设ABC △的一条中线与高分别为AD 、AE ,则欲证结论等价于AG AD AH AE ⋅=⋅.熟知cot AH BC A =⋅,23AG AD =.于是结论变为22cot cos 3AD BC AE A AB AC A =⋅⋅=⋅⋅. 设AB c =,BC a =,CA b =,则由中线长及余弦定理,知欲证式左端()2221226b c a =+-, 右端2222b c a +-=,整理,得2222b c a +=,于是剩下的任务是证明这个等价条件.1cos 2BHC S BH BC C =⋅⋅⋅△1cot cos 2AC BC B C =⋅⋅⋅⋅ cot cot ABC S B C =⋅⋅△,同理有另两式,于是条件变为cot cot 2cot C B A +=,由正弦及余弦定理,知上式即cos cos ab C ac B +=2cos bc A ,或()()22222222262()ac a c b b c a +-++-=+-,化简即得2222b c a +=.9.3.10★★已知凸四边形ABCD 中,2BAC BDC ∠=∠,2CAD CBD ∠=∠,A 是否一定为BCD △之外心?ABDC解析当BCD △固定.由题设BAC ∠、CAD ∠固定,于是BAC △、ACD △外接圆固定,它们的交点 C 、A '固定,又若A 为BCD △外心时,确为BAC △的外接圆和ACD △的外接圆之异于C 的交点,因此A A '=,结论成立.9.3.11★★★已知锐角ABC △的外接圆与内切圆的半径分别为R 、r ,O 是外心,O 至三边距离之和为L ,试用R 、r 表示L .解析易知()cos cos cos L R A B C =++.设ABC △三边分别为a 、b 、c ,由于cos cos a B b A c +=等,则()()cos cos cos a b c A B C ++⋅++=cos cos cos a b c a A b B c C +++++,于是 cos cos cos 1A B C ++-cos cos cos a A b B c Ca b c++=++.①又1cos 2BOC Ra A S =△等,可得()()11cos cos cos 22ABC R a A b B c C S r a b c ++==++△,故式①的右端r R =. 于是L R r =+. 9.3.12★★★★.已知ABC △,D 、E 分别在AC 、AB 上,BD 、CE 交于F ,ED BC ∥,求证.AEF △、ADF △、EFB △、DFC △的外心四点共圆.AED BCOKO 1O 2解析如图,设BEF △、DFC △的外心分别为1O 、2O ,O 为EFD △的外心,于是1OO 垂直平分EF .2OO 垂直平分DF .设EFB DFC θ∠=∠=,则由垂径定理知11sin 2OO BD θ=,21sin 2OO CE θ=,于是12OO BD FD OO CE EF ==. 易知AF 过ED 中点(由塞瓦定理或面积比),作KD EF ∥,K 在AF 上,则KD EF =,又 12180KDF EFD O OO ∠=︒-∠=∠,故12O OO FDK △∽△.又设AEF △,ADF △的外心分别为3O 、4O (图中未画出),于是3O 、4O 分别在直线1O O 与2O O 上, 且34O O AF ⊥,于是4312OO O KFD OO O ∠=∠=∠,于是1O 、2O 、3O 、4O 四点共圆.9.3.13★★★已知.ABC △中,AB AC =,D 是AB 中点,F 为ADC △重心,O 为ABC △外心,求证.FO CD ⊥.解析1如图,延长DF 交AC 于E ,则AE CE =,2DF EF =.连结AO 并延长,分别交CD 、BC 于G 、H ,则G 为ABC △重心,BH CH =,2233DF DE BH ==,易见2323BHDO BH DF AD AH AG AH ===. ADEF OGB H C又OD AB ⊥,90ODF ADE DAG ∠=︒-∠=∠,ODF DAG △∽△,对应边垂直,所以FO CD ⊥. 解析2O 为ABC △外心,故22222CO DO AO DO AD -=-=; 而由中线公式,CF =DF 于是22222CF DF AD CO DO -==-,于是FO CD ⊥.9.3.14★★★设I 和O 分别是ABC △的内心和外心,求证.90AIO ∠︒≤的充分必要条件是2BC AB AC +≤.解析延长AI 与外接圆交于点D ,连结BD 、CD 、OD ,则 90AIO ∠︒≤ AI ID ⇔≥.2ADDI⇔≤D由内心性质知,DI DB DC ==,结合托勒密定理得 AD BC AB CD AC BD ⋅=⋅+⋅ AB DI AC DI =⋅+⋅, 所以AD AB ACDI BC+=, 所以902AB ACAIO BC+∠︒⇔≤≤, 故90AIO ∠︒≤的充要条件是2BC AB AC +≤.评注本题的关键是先把90AIO ∠︒≤转换为AI ID ≥,然后再用托勒密定理.托勒密定理是.圆内接四边形的对角线的乘积等于对边乘积的和.9.3.15★★★设O 是ABC △的外接圆,G 是三角形重心,延长AG 、BG 、CG ,分别交O 于D 、E 、F ,则3AG BG CGGD GE GF++=. AF ERQGBP DC解析设BC 、CA 、AB 的中点分别为P 、Q 、R ,则由中线长公式及相交弦定理,有(此处ABC △三边分别设为a 、b 、c ) AG AG AGBP CPGD GP PD GP AP==⋅++22223133APAP BP CP AP BP CP AP AP ==⋅+⋅+ 2222222222222122211132244b c a b c a a b c b c a a +-+-==+++-+. 同理,有22222222BG c a b GE a b c +-=++ , 22222222CG a b c GF a b c +-=++. 三式相加,即得结论.9.3.16★★I 在ABC △内,AI 平分BAC ∠,1902BIC A ∠=︒+∠,求证.I 是ABC △内心.解析如图,作EIF AI ⊥,E 在AB 上,F 在AC 上,则AE AF =,LE IF =,AEF BCI1902BEI IFC A BIC ∠=∠=︒+∠=∠.又1902EBI EIB A EIB FIC ∠+∠=︒-∠=∠+∠,故EBI FIC ∠=∠,于是EBI FIC △∽△,BI BE BEIC IF EI==.而BEI BIC ∠=∠,故BEI BIC △∽△,ABI IBC ∠=∠,所以I 为ABC △内心.9.3.17★★已知.ABC △中,2BC AB AC =+,D 是内心,DE 与BC 垂直于E ,求2DE BE CE⋅的值.解析设ABC △三边长分别为a 、b 、c ,则2a b c =+. 易知若设DE r =,()12p a b c =++,则BE p b =-,CE p c =-.r =于是2133DE P a b c a a BE CE p a b c a -+-====⋅++. 9.3.18★★设ABC △中,AB 最长,在其上分别找两点M 、N ,使AN AC =,BM BC =,又设I 为ABC △内心,求MIN ∠(用A ∠、B ∠、C ∠及其组合表示). 解析如图,连结CM 、CN 、CI 、AI .CABM NI易知ACI ANI △△≌,CI NI =,同理CI MI =,I 为CMN △的外心,因此 MCN ACN BCM C ∠=∠+∠-∠11909022A B C =︒-∠+︒-∠-∠1902C =︒-∠,2180MIN MCN C ∠=∠=︒-∠.9.3.19★★★★ABC △的边BC 上有一点D ,ABD △与ACD △的内心与B 、C 四点共圆,求证. AD BD ABAD CD AC+=+. AMNE FBDCPI 1I 2解析如图,设ABD △与ACD △的内心分别为1I 与2I .连结1AI 、2AI 、1BI 、2CI 、12I I ,两端延长12I I ,分别交AB 、AC 于E 、F ,则由条件知()1112AEF ABI EI B ABC ACB ∠=∠+∠=∠+∠,同理AFE ∠也是此值,于是AE AF =. 又设12I I 与AD 交于P ,则由角平分线性质知1212EI FI AE AF I P AP AP I P ===,故由梅氏定理(直线AB 截1PDI △及直线AC 截2PDI △),得1212I D I DI M I N=(此处M 、N 分别为1DI 、2DI 延长后与AB 、AC 之交点),又由角平分线性质,知11I D AD BD I M AB +=,22I D AD CDI N AC+=于是结论成立. 9.3.20★★★已知ABC △中,AB AC =,O 、I 分别为其外心与内心,D 在AC 上,DI AB ∥,求证.OD CI ⊥.解析如图,不妨设O 在ABC △内,且在I “之上”(O 在形外、I 之下类似处理),连结AOI 、OC ,则IOC BAC IDC ∠=∠=∠,故O 、I 、C 、D 共圆,于是ODC ICD OIK ICD ∠+∠=∠+∠.这里K 为DO 、CI 直线之交点.AD O KIBC由于AOI BC ⊥,故9090OIK ICD BCI ICD ∠+∠=︒-∠+∠=︒,于是90DKC ∠=︒.9.3.21★★设G 为ABC △的重心,已知GA =GB =2GC =,求ABC △的面积.解析1由题意可画出图(a),令D 为AB 中点,GE AB ⊥,垂足为点E ,因G 为重心,可知112GD GC ==.由勾股定理可知222222222GE GB EB GE GA EA GE GD DE ⎧=-⎪=-⎨⎪=-⎩①②③,C ABD E G22322(a)令AD BD c ==.由①与②可得(()(()2222c DE c DE -+=--,化简后可得1c DE ⨯=,即1DE c =,代入③得2211GE c=-,再代入①式可得 22118c c c ⎛⎫1-=-- ⎪⎝⎭, 解方程可得3c =,GE =,故 ABC △的面积=6GBD ⨯△的面积1632=⨯⨯= 解析2由题意可画出图(b),令D 为AB 中点,在GD 的延长线上取E 点使得GD DE =,因此GBD △ 之面积为AEG △之面积的一半.此时因AB 与GE互相平分,可知四边形AEBG 为平行四边形,也因此可知AE GB ==,即AEG △的三边长为2、,故可知AEG △为直角三角形,故GBD △的面积为11222⨯⨯=,所以ABC △的面积6GBD =⨯△的面积=(b)22232GD BAC 22E 119.3.22★★★已知120AFB BFC CFA ∠=∠=∠=︒,P 为异于F 的任一点,求证. PA PB PC FA FB FC ++>++.解析如图,在ABC △外作正三角形ABD ,由于ABC ∠,120BAC ∠<︒,故四边形DBCA 的内角均小于180︒,是凸四边形.ADF F'PP'BC对于ABC △中任一异于F 的点P ,将ABP △、ABF △均以点A 为中心顺时针旋转60︒,至ADP '△ 和ADF '△,则AFF △与APP '△均为正三角形.由全等知AP BP CP PP DP CP CD DF F F FC AF BF CF ''''++=++>=++=++,这是因为DP PC '是一条折线,而120DF A AFC '∠=∠=︒,60AFF AF F ''∠=∠=︒,D 、F '、F 、C 四点共线且仅对于F 满足四点共线.评注当ABC △内角均小于120︒时,满足条件的点F 称为ABC △的费马点(当ABC △有内角比如120A ∠︒≥时,到A 、B 、C 距离之和最小的点正是点A ).。

初中数学竞赛2:整除性

初中数学竞赛2:整除性
a=5,b=74,c=2,abc=740,
所以abc最大值为1008,
故答案为:1008.
【点睛】
本题考查数的整除性的知识,难度一般,注意根据题意得出c(a+b)=2×79以及验证得出c的值是本题的关键.
7.314159
【详解】
3141,31415,3141592,31415926,31415927依次能被3,5,2,2,31整除.所以314159是质数.
分析10个数都有 的形式,因此只要研究 这个数.
解10个数都可以写成 .
而 ,
其中n为1983到1992的自然数,
又 是三个连续自然数的和,因此,它一定能被2和3整除,即被6整除.
另一方面,当 时, 不能被12整除.
故选C.
4.C
【详解】
解设三个连续整数为 ,n, (n为整数),则 能被3整除.
虽 能被6整除,但 不能被6整除.
且 ,
这等价于 且 .
证明首先证 .
当 时, ;
当 时, ;
当 时, .
因此,对任何整数x,都有 .
于是, ,
即 .
其次证 .
当 时, ;
当 时, ;
当 时, ;
当 时, ;
当 时, .
因此,对任何整数x,都有 .
从而, ,
即 .
因为 ,所以, .
故对每个整数 的值都是整数.
注:为证明 ,可假定 ,然后对 进行讨论.
A.2B.3C.6D.12
4.能整除任意三个连续整数之和的最大整数是().
A.1B.2C.3D.6
5.若 ,其中M为自然数,n为使得等式成立的最大的自然数,则M()
A.能被2整除,但不能被3整除B.能被3整除,但不能被2整除

普通初中第二届命题竞赛化学(附答案)

普通初中第二届命题竞赛化学(附答案)

龙山县普通初中第二届命题竞赛化学学科试卷华塘中学叶小英、下列变化属于化学变化的是、蜡烛燃烧B、海水晒盐、玻璃破碎D、冰变成水、厨房中的下列物质与水混合不能形成溶液的是、味精B、花椒粉C、白糖D、食醋、近年来汽车轮胎中常以空气中含量最多的气体作为填充气,这种气体是、氧气B、氮气C、二氧化氮D、稀有气体、下列图示实验操作正确的是、点燃酒精灯 B、倾倒液体 C、滴加液体 D、加热液体B、用木炭烤羊肉串D、用铜丝作导线、水的污染会引起土壤的污染B、地球上淡水资源很丰富、过滤能出去水中所有的杂质D、水是由氧气和氢气组成0.9%的氯化钠溶液,生理盐水属于、化合物B、单质C、纯净物D、混合物A、一个一氧化碳分子CoB、2个硫酸根离子2SO42-C、一个镁离子Mg+2D、 2个氢原子2H2:考号:内不要答题9、生活中一些常见物质的PH如下,这些物质中碱性最强的是A、橘子汁B、西瓜汁C、牙膏D、肥皂水10、某同学欲选用下列试剂探究Mg、Fe、Cu三种金属的活动性顺序其中不合理的一组试剂是A、Mg、Cu、FeSO4溶液B、Fe、 MgSO4溶液、CuSO4溶液C、Fe、Cu、MgSO4溶液D、Mg、Fe、Cu、稀 H2SO411、如图所示是AB两种固体物质的溶解度曲线,下列说法中错误的是A、t1℃时,A、B的溶解度相等B、t2℃时A的饱和溶液中溶质的质量分数为:C、A、B的溶解度随温度的升高而增大D、将t2℃时B的饱和溶液降温到t1℃时溶液变稀了12、摩托罗拉公司研发了一种新型手机电池,可连续使用一个月才充一次电,其电池反应原理为:2CH3OH+3X+4NaOH=2Na2CO3+6H2O其中x的化学式为:A、O2B、 COC、 CO2D、 H213、某饮品的主要成分为:脂肪、鸡蛋白粉、钾、钙等。

该饮品不能为人体补充的营养素是A、无机盐B、油脂C、蛋白质D、维生素14、冲洗照片时,需将底片浸泡在大苏打(Na2S2O3)溶液中,使影像固定下来,这一过程中叫“定影”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1、如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2、(第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3、(1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4、(1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5、(1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明:如图29-5,设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6、(第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7、(首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾.故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8、对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B 和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习参考答案1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

两人不通话,就不连线.(1)果任两点都有连线并涂有颜色,那么必有一点如A1,以其为一端点的8条线段中至少有两条同色,比如A1A2、A1A3.可见A1,A2,A3之间可用同一语言通话.②如情况①不发生,则至少有两点不连线,比如A1、A2.由题设任三点必有一条连线知,其余七点必与A1或A2有连线.这时七条线中,必有四条是从某一点如A1引出的.而这四条线中又必有二条同色,则问题得证.4.结论不成立,如图所示(图中每条线旁都有一个数字,以表示不同语种).5.类似于第3题证明.6.用点A1、A2、…、A100表示客人,红、蓝的连线分别表示两人相识或不相识,因为由一个顶点引出的蓝色的线段最多有32条,所以其中至少有三点之间连红线.这三个点(设为A1、A2、A3)引出的蓝色线段最多为96条.去掉所有这些蓝色的线段(连同每条线段上的一个端点AI,I≠1,2,3),这样,在图中至少还剩下四个点,除A1、A2、A3外,设第四点为A4,这四个点中A1,A2,A3每一个点与其它的点都以红色的线段相连,于是客人A1、A2、A3、A4彼此两两相识.7.先利用右图证明"若平面上有两个异色的点距离为2,地么必定可以找到符合题意的三角形".再找长为2端点异色的线段.以O(白色)为圆心,4为半径作圆.如圆内皆白点,问题已证.否则圆内有一黑点P,以OP为底作腰长为2的三角形OPR,则R至少与O、P中一点异色,这样的线段找到.。

相关文档
最新文档