五年级奥数专题--长方形、正方形的面积
五年级奥数 第4讲 长方形 正方形的面积
五年级奥数第4讲平均数知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出所求面积的题目,这就需要我们切实掌握有关概念,利用“割补”“平移”“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例1、已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?练习:1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积?2、正方形的一条边增加30厘米,另一条边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形,求这个正方形的边长是多少分米?例2、一个大长方形被两条平行于它的两条边的线分成四个较小的长方形,其中三个长方形的面积如下图所示,求第四个长方形的面积?练习:1、下图所示为一个大长方形被分成四个小长方形,其中三个小长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
2、下图所示为一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
3、下图中阴影部分是边长为5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。
例3、把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?练习:1、一块正方形地,一边划出15米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。
这块地原来的面积是多少平方米?2、一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。
五年级奥数正方形长方形面积问题
长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?22BA分析 从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A 和B 的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A 和B 的面积,再用A 或B 的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2、正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?例题1专题简析:长方形、正方形的面积挑战自我3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析 因为A E ×CE=6,DE ×EB=35,把两个式子相乘A E ×CE ×DE ×EB=35×6,而CE ×EB=14,所以AE ×DE=35×6÷14=15。
1、下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
五年级奥数周周练 第4周 长方形、正方形的面积 (教师版)答案
第4周长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
二、精讲精练【例题1】已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?【思路导航】从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
小正方形的边长:(40-2×2)÷2÷2=9(厘米);大正方形的边长:9+2=11(厘米);小正方形的面积:9×9=81(平方厘米);大正方形的面积:11×11=121(平方厘米)。
答:大正方形的面积是121平方厘米,小正方形的面积是81平方厘米。
练习1:1.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
(20+2×2)×(15+2×2)-20×15=156(平方米)答:小路的面积是156平方米。
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?解法一:正方形的边长:30×18÷(30-18)=45(厘米)正方形的面积:45×45=2025(平方厘米)解法二:解:设原正方形的边长是x厘米。
五年级奥数分册第4周 长方形、正方形的面积-名师推荐
五年级奥数分册第4周长方形、正方形的面积-名师推荐教育专区小学教育数五年级奥数分册第4周长方形、正方形的面积-名师推荐第4周长方形、正方形的面积专题简析:长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例1 已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?分析从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
练习一1,有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2,正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3,把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?例2 一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析因为AE×CE=6,DE×EB=35,把两个式子相乘AE×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。
小学五年级奥数长方形、正方形的面积及答案
思文教育小学五年级奥数第一课时:长方形、正方形的面积一、知识点:长方形面积=长⨯宽正方形面积=边长⨯边长例题一:已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积2、正方形的一条边增加30厘米,另一条边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形,求这个正方形的边长是多少分米例题二:一个大长形被两条平行于它的两条边的线分成四个较小的长方形,其中三个长方形的面积如下图所示,求第四个长方形的面积C6 14A E B36D1、下图所示为一个大长形的被分成四个小长方形,其中三个小长形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积32 242、下图所示为一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
15 A 1245 24 B3、下图中阴影部分是边长为5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。
例题三:一个长方形的如果宽不变,长增加6米,面积增加30平方厘米;如果长不变,宽增加3米,面积就增加24平方米,这个长方形原来有多少平方米1、有一个周长是72厘米的正方形,它是由四个大小相等的小正方形拼成的。
一个小正方形的面积是多少平方分米2、学校操场长220米,宽80米,平整后长减少10米,宽增加了10米,平整后操场的面积比原来大还是小3、有一张长方形纸,长12厘米,宽10厘米。
从这张纸上剪下一个最大的正方形后,剩下部分的面积是多少平方厘米答案:例一;121 1、156平方米 2、2025平方分米3、17分米例二 15 1、40平方厘米 2、A;8平方厘米 B;36平方厘米 3、441平方厘米例三40平方厘米 1、81平方厘米2、1300平方米3、20平方厘米。
五年级奥数分册第4周 长方形、正方形的面积-优选
第4周长方形、正方形的面积专题简析:长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例1 已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?分析从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
练习一1,有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2,正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3,把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?例2 一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析 因为AE ×CE=6,DE ×EB=35,把两个式子相乘AE ×CE ×DE ×EB=35×6,而CE ×EB=14,所以AE ×DE=35×6÷14=15。
练 习 二1,下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
人教版五年级奥数教案:长方形、正方形的面积
人教版五年级奥数教案:长方形、正方形的面积
专题知识点详解:
长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例1 已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?
分析从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
第1 页共1 页。
五年级奥数正方形长方形面积问题
长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?22BA分析 从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A 和B 的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A 和B 的面积,再用A 或B 的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2、正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?例题1专题简析:长方形、正方形的面积挑战自我3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析 因为A E ×CE=6,DE ×EB=35,把两个式子相乘A E ×CE ×DE ×EB=35×6,而CE ×EB=14,所以AE ×DE=35×6÷14=15。
1、下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
最新小学五年级奥数长方形、正方形的面积及答案
思文教育小学五年级奥数第一课时:长方形、正方形的面积一、知识点:长方形面积=长⨯宽正方形面积=边长⨯边长例题一:已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积?2、正方形的一条边增加30厘米,另一条边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形,求这个正方形的边长是多少分米?例题二:一个大长形被两条平行于它的两条边的线分成四个较小的长方形,其中三个长方形的面积如下图所示,求第四个长方形的面积?C6 14A E B? 36D1、下图所示为一个大长形的被分成四个小长方形,其中三个小长形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积?2、下图所示为一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
15 A 1245 24 B3、下图中阴影部分是边长为5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。
例题三:一个长方形的如果宽不变,长增加6米,面积增加30平方厘米;如果长不变,宽增加3米,面积就增加24平方米,这个长方形原来有多少平方米?1、有一个周长是72厘米的正方形,它是由四个大小相等的小正方形拼成的。
一个小正方形的面积是多少平方分米?2、3、学校操场长220米,宽80米,平整后长减少10米,宽增加了10米,平整后操场的面积比原来大还是小?4、5、有一张长方形纸,长12厘米,宽10厘米。
从这张纸上剪下一个最大的正方形后,剩下部分的面积是多少平方厘米?答案:例一;121 1、156平方米 2、2025平方分米3、17分米例二 15 1、40平方厘米 2、A;8平方厘米 B;36平方厘米 3、441平方厘米例三40平方厘米 1、81平方厘米2、1300平方米3、20平方厘米。
东辰二小五年级奥数精讲-长方形、正方形的面积
y
8
y x
=221÷13
设长方形的长为X cm,宽为y分米 则 x+5=y+8 x+5)×8+5y=181 =17(分米) ( (y+8)×8+5y=181 13y+64=181 y=9 (分米) 大正方形的边长 9+8=17(分米)
补
原来草地的面积: 20x15=300(平方厘米) 小路加草地的面积: 24x19=456(平方厘米)
小路的面积: 456一300=156(平方厘米)
•
已知大正方形比小正方形边长多2厘米,大正 方形比小正方形的面积大40平方厘米。求大、小•
已知大正方形比小正方形边长多2厘米,大正 方形比小正方形的面积大40平方厘米。求大、小 正方形的面积各是多少平方厘米?
设一部份长X dcm,宽为ydm 则 x+y=20 (x+y)×(x-y)=40 x-y=2 (dm) X=11dm 大正方形的面积 11×11=121(dm2) 爷爷方法:
王牌例题7
添辅助线法
有一个正方形ABCD如下图,请把这个正 方形的面积扩大1倍,并画出来。
【思路导航】由于不知道正方 形的边长和面积,所以,也没 有办法计算出所画正方形的边 长或面积。我们可以利用两个 正方形之间的关系进行分析。 以正方形的四条边为准,分别 作出4个等腰直角三角形,如图 中虚线部分,显然,虚线表示 的正方形的面积就是原正方形 面积的2倍。
爷爷方法:
方法总结作填空题的方法:这样一个长方形被两条线分成 四个长方形,两组对着的两个小长方形相乘相等: 6×35=2×3×7×5=14×?
五年级奥数正方形长方形面积问题
积长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?分析从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2、正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析 因为AE ×CE=6,DE ×EB=35,把两个式子相乘AE ×CE ×DE ×EB=35×6,而CE ×EB=14,所以AE ×DE=35×6÷14=15。
1、下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
2、下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A 和B的面积。
五年级奥数举一反三第4周(长方形、正方形的面积)分析PPT课件
王牌例题1
• 已知大正方形比小正方形边长多2厘米,大正 方形比小正方形的面积大40平方厘米。求大、小 正方形的面积各是多少平方厘米?
分析与解 (a+b) ×c=a×b+从的b图面×中积c可大以出看的出40,平大方正厘方米形,的可面以积分比成小三正部方分形,
其中A和B的面积相等。因此,用40平方厘米 减去阴影部分的面积,再除以2就能得到长方 形A和B的面积,再用A或B的面积除以2就是 小正方形的边长。求到了小正方形的边长,计 算大、小正方形的面积就非常简单了。
王牌例题4
有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。
【思路导航】由于不知道正方形的边长和面积 ,所以,也没有办法计算出所画正方形的边长 或面积。我们可以利用两个正方形之间的关系 进行分析。以正方形的四条边为准,分别作出 4个等腰直角三角形,如图中虚线部分,显然 ,虚线表示的正方形的面积就是原正方形面积的2倍
方法2:这样一个长方形被两条线分成四个长方形,两组对着的 两个小长方形相乘相等:6×35=14×?,则?=6×35÷14=15
练习 2
• 1.下图一个长方形被分成四个小长方形, 其中三个长方形的面积分别是24平方 厘米、30平方厘米和32平方厘米,求 阴影部分的面积。
(a+bห้องสมุดไป่ตู้ ×c=a×b+b×c
王牌例题5
一个长方形如果宽不变,长增加6米,面积就增加30平方米; 如果长不变,宽增加3米,面积就增加24平方米,这个长方 形原来有多少平方米?
【思路导航】根据“宽不变, 长增加6米,面积就增加30平 方米”可以求出宽是 30÷6=5(a(+米b))×,c=根a×据b“+b长×c不变, 宽增加3米,面积就增加24平 方米”可以求出长是 24÷3=8 (米)。这个长方形原来的面 积就是 5×8=40(平方米)
五年级奥数正方形长方形面积问题
长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?22BA分析 从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A 和B 的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A 和B 的面积,再用A 或B 的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2、正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?例题1专题简析:长方形、正方形的面积挑战自我3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析 因为A E ×CE=6,DE ×EB=35,把两个式子相乘A E ×CE ×DE ×EB=35×6,而CE ×EB=14,所以AE ×DE=35×6÷14=15。
1、下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
五年级奥数正方形长方形面积问题
长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?22BA分析 从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A 和B 的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A 和B 的面积,再用A 或B 的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2、正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?例题1专题简析:长方形、正方形的面积挑战自我3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析因为A E×CE=6,DE×EB=35,把两个式子相乘A E×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。
1、下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
五年级奥数专题--长方形、正方形的面积
五年级奥数专题--长方形、正方形的面积专题简析:长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例1.已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?变式训练1.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3.把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?例 2.一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
变式训练1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A 和B 的面积。
3.下图中阴影部分是边长5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。
例3.把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?变式训练1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。
这块地原来的面积是多少平方米?B1224A 45152.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数专题--长方形、正方形的面积
专题简析:
长方形的面积=长×宽,正方形的面积=边长×边长.掌握并能运用这两个面积公式,就能计算它们的面积.
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目.这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答.
例1.已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米.求大、小正方形的面积各是多少平方厘米?
变式训练
1.有一块长方形草地,长20米,宽15米.在它的四周向外筑一条宽2米的小路,求小路的面积.
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形.原正方形的面积是多少平方厘米?
3.把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形.求这个正方形的边长是多少分米?
例 2.一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积.
变式训练
1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积.
2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A 和B 的面积.
3.下图中阴影部分是边长5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积.
例3.把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?
变式训练
1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米.这块地原来的面积是多少平方米?
B
1224
A 45
15
2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米.原来正方形的面积是多少平方厘米?
3.有一个正方形草坪,沿草坪四周向外修建一米宽的小路,路面面积是80平方米.求草坪的面积.
例4.有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来.
变式训练
1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的宽.
2.如图的每条边都垂直于与它相邻的边,并且28条边的长都相等.如果此图的周长是56厘米,那么,这个图形的面积是多少?
3,正图中,正方形ABCD的边长4厘米,求长方形EFGD的面积.
例5.有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的.一个正方形的面积是多少平方厘米?
变式训练
1.五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?
2.有一张长方形纸,长12厘米,宽10厘米.从这张纸上剪下一个最大的正方形后,剩下部分的周长是多少厘米?
3.有一个小长方形,它和一个正方形拼成了一个大长方形ABCD(如下图),已知大长方形的面积是35平方厘米,且周长比原来小长方形的周长多10厘米.求原来小长方形的面积.。